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Abstract: Virtual screening—predicting which compounds within a specified compound library bind
to a target molecule, typically a protein—is a fundamental task in the field of drug discovery. Doing
virtual screening well provides tangible practical benefits, including reduced drug development
costs, faster time to therapeutic viability, and fewer unforeseen side effects. As with most applied
computational tasks, the algorithms currently used to perform virtual screening feature inherent
tradeoffs between speed and accuracy. Furthermore, even theoretically rigorous, computationally
intensive methods may fail to account for important effects relevant to whether a given compound
will ultimately be usable as a drug. Here we investigate the virtual screening performance of the
recently released GNINA molecular docking software, which uses deep convolutional networks
to score protein-ligand structures. We find, on average, that GNINA outperforms conventional
empirical scoring. The default scoring in GNINA outperforms the empirical AutoDock Vina scoring
function on 89 of the 117 targets of the DUD-E and LIT-PCBA virtual screening benchmarks with
a median 1% early enrichment factor that is more than twice that of Vina. However, we also find
that issues of bias linger in these sets, even when not used directly to train models, and this bias
obfuscates to what extent machine learning models are achieving their performance through a
sophisticated interpretation of molecular interactions versus fitting to non-informative simplistic
property distributions.

Keywords: virtual screening; structure-based drug design; molecular docking; deep learning

1. Introduction

Virtual screening poses this problem: given a target molecule and a set of compounds,
rank the compounds so that all those that are active relative to the target are ranked ahead
of those that are inactive. An in vitro screen is the source of ground truth for this binding
classification problem, but there are at least four significant limitations associated with
such screening: time and cost limit the number of screens that can be run; only compounds
that physically exist can be screened this way; the screening process is not always accurate;
and in vitro activity against a given target is necessary but not sufficient for identifying
useful drugs (perhaps this is a separate problem from virtual or in vitro screening, but from
a practical standpoint it would be desirable to exclude compounds with problematic
properties from the beginning of a drug discovery campaign, and, in theory, a virtual
screening method could penalize such compounds in a ranking). Thus virtual screening
has attracted significant interest as a way of overcoming these limitations to identify strong
drug candidates at reduced cost.

Virtual screening methods can be broadly classified as ligand-based or structure-based.
Ligand-based methods rely on information about known active compounds and base their
predictions on the similarity between compounds in the screening database and these
known actives. No 3D structures are required, but at least one known active is. There are
many possible similarity metrics, but regardless of which is used, identifying truly novel
actives with this approach is unlikely. In contrast, structure-based approaches derive from
a model of the interaction between a protein and ligand, facilitating identification of truly
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novel interactions between the two. A “scoring function” maps the input structure repre-
senting the relative location and orientation of the pair of molecules to a score representing
the strength of their interaction [1]. Several different approaches have been applied to
scoring function development, yielding four major classes. Force fields [2–10], empirical
scoring functions [11–17], and knowledge-based functions (also referred to as statistical
potentials) [18–24] are known collectively as “classical” scoring functions, distinguishing
them from the newer machine learning (ML) scoring functions [24–31]. Briefly, force fields
rely on physics-based terms mostly representing electrostatic interactions; empirical scor-
ing functions may include counts of specific features as well as physics-inspired pairwise
potentials; and knowledge-based statistical potentials calculate close contacts between
molecules in structural databases and fit potentials biased toward structures that resemble
this reference data. In comparison, modern ML scoring functions tend to impose fewer
restrictions on the final functional form and attempt to learn the relevant features from
the data and prediction task itself (for example, they may consist of a neural network that
processes the structural input directly).

Since structure-based approaches rely on a representation of the binding mode defined
between the protein and ligand structures, the first step in using them is often generating
one or more plausible binding modes. A typical approach is to start from a protein structure
and use a scoring function to identify favorably scored conformations and binding poses
of all compounds of interest (i.e., “docking”) within a search space defined on the surface
of the protein. That scoring function may differ from the scoring function that will be used
to generate the final compound ranking for the virtual screen; a persistent problem in this
domain has been difficulty in simultaneously optimizing scoring functions for accurate
binding pose scoring and accurate compound ranking. This “pose prediction” task should
be fundamental to structure-based approaches to virtual screening, since these approaches
aim to use the physical interactions underlying binding to guide scoring. If molecular
interactions are not represented accurately by a pose used for scoring, the scoring method
will either be unable to accurately score the pose, or will accurately score the pose for
reasons unrelated to molecular interactions—i.e., it devolves to a ligand-based approach.
In practice, it has been found that for many ML scoring functions, accurate input poses are
not essential for good performance at binding affinity prediction [32].

Well-designed benchmarks can be constructed to require more than simple descriptors
derived solely from the ligand to achieve good virtual screening performance. Benchmarks
that are not designed to account for this bias are susceptible to delivering “state-of-the-
art” performance when used to train and evaluate ML scoring functions merely because
they can be perfectly classified using descriptors so simple that classical scoring functions
would never be so naive as to use them as the sole basis of a scoring model [33–35]. Such
biased benchmarks may have limited utility for evaluating an existing scoring function—good
performance on the benchmark could derive from either a uselessly simple or a sophisticated
model, and the dataset’s bias means that if the goal of the benchmark is to predict a model’s
ability to perform well on an unknown dataset, the benchmark may only provide information
about the model’s prospective performance on another dataset with the same bias. These
benchmarks may be of limited utility for training machine learning scoring functions that
generalize to real-world tasks, since training on them may merely produce a model that
recapitulates their biases. Thus while these biased benchmarks could have served as ac-
ceptable assessments of classical scoring functions, where the explicit design choices made
by human researchers eschewed the achievement of perfect performance via exploitation
of dataset bias, fitting modern machine learning scoring functions to them risks creating
models that have been “taught to the test” and cannot be expected to generalize beyond it.

Once problems with an existing dataset are identified, the challenge of constructing
an improved alternative remains; this problem, combined with the need to compare
new scoring functions with existing published results for older scoring functions (which
may have exclusively had access to benchmarks now deemed problematic), ensures the
continued relevance of now disfavored benchmarks. Such is the case with DUD [36],
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DUD-E [37], and MUV [38], three virtual screening benchmarks that have been widely
used to assess scoring functions in the literature.

More recent literature [33–35] has demonstrated that both MUV and DUD-E are biased
and are likely to be unsuitable for training or even validating machine learning scoring
functions. Sieg et al. [33] found that for DUD, DUD-E, and MUV, better-than-random (and
in the case of DUD and DUD-E, perfect) AUCs could be obtained merely by fitting cross-
validated models on exactly the simple chemical descriptors that the dataset developers
had attempted to control for during dataset construction. For DUD-E, synergistic effects
were associated with using multiple descriptors together; the authors note that this prob-
ably derives from the construction process, which matches each feature separately in its
one-dimensional feature space, unlike MUV, which considers distances within the multidi-
mensional feature space. Accordingly, the authors find that MUV does not afford synergis-
tic performance when including additional features. Wallach and Heifets [34] explain that
MUV considered only the difference between active-active and active-inactive distances,
omitting a comparison of inactive-inactive distances; since class labels for machine learning
models are arbitrary, the MUV approach may produce datasets where “actives” are not
clumped but the “inactives” are, and a machine learning scoring function can in principle
learn from the intraclass similarity of either class. Further, as Sieg et al. [33] point out,
the MUV dataset was constructed for ligand-based similarity search, and therefore it is
likely to be inappropriate for benchmarking machine learning methods due to inherent
analogue bias. Finally, Chen et al. [35] note that there is high similarity among inactives
across targets in DUD-E, biasing that benchmark even further.

In their paper describing the limitations of only considering distances relative to
actives in the MUV dataset construction approach, Wallach and Heifets [34] propose
Asymmetric Validation Embedding (AVE), an improved measure of bias that considers
clumping among inactives and between examples from the same class used in the training
and validation sets. They do not construct a new dataset using AVE, however; rather, Tran-
Nguyen et al. [39] first reported a novel dataset, LIT-PCBA, that used AVE for unbiasing and
was explicitly designed for training and validation of machine learning scoring functions.
It consists of 15 target sets, with 9780 actives and 407,839 inactives (some duplicated across
multiple targets) after initial filtering. These values were reduced to 7844 unique actives
and 407,381 unique inactives after AVE unbiasing. Thirteen of these targets have more
than one PDB template provided as a reference receptor structure. All compounds are
taken from assay data and therefore all inactives have experimental support for inactivity.
The authors also confirmed that the included actives were not too biased toward high
affinity compounds (i.e., the actives have typical potencies found in HTS decks) and that
they were diverse when compared with other actives included for a given target. For all
included targets, an EF1% > 2 was achievable by at least one of a fingerprint-based, shape-
based, or structure-based approach prior to AVE unbiasing (no such threshold was imposed
on minimum performance for inclusion after unbiasing). Unfortunately, the majority of the
primary assays used by LIT-PCBA are cell-based phenotypic assays (see Table S1) and so
most actives are not validated against their putative target. In fact, in at least one LIT-PCBA
target (MAPK1) there are actives that were experimentally determined to selectively inhibit
an alternative target (EGFR) [40]. This implies that, for target-based approaches, LIT-PCBA
has an unknown number of incorrectly labeled actives.

Here we do not attempt to address the challenging problem of constructing a truly
unbiased virtual screening benchmark appropriate for training machine learning models.
Instead, we evaluate the convolutional neural network (CNN) models of the recently
released GNINA 1.0 molecular docking software [41] on the established DUD-E [37] and
LIT-PCBA [39] benchmarks. These models were trained for affinity prediction and pose
selection and were not directly trained for virtual screening performance. We find that,
on average, GNINA outperforms classical empirical scoring on these benchmarks. However,
despite training for different outcomes and having minimal overlap in the raw training
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and test set data, we still find an underlying historical ligand-only bias that obfuscates the
predictive power of these models.

2. Methods

We evaluate the built-in CNN models of GNINA on established virtual screening
benchmarks and compare to multiple alternative scoring approaches, including evaluating
ligand-only models trained on simple chemical descriptors.

2.1. Models

The GNINA approach to applying machine learning to molecular modeling is based
on using 3D grids derived from voxelizing a fixed-size box centered on a protein binding
site [42–45]. Our previous virtual screening evaluations [42,43,46] used older, less validated
model architectures and were explicitly trained for the virtual screening task, which
resulted in fitting to benchmark bias [33,35].

Here we evaluate the latest model ensembles [45] available in GNINA, which are based
on the two architectures, Default2018 and Dense, shown in Figure 1. CNN models are used
to score and rank poses generated using the AutoDock Vina [17] scoring function and Monte
Carlo search, as integrating CNN scoring earlier in the docking pipeline was not found to be
beneficial and came with a significant computational cost [41]. GNINA 1.0 contains four pre-
trained model ensembles using these two model architectures and different training sets.
These model ensembles contain five models trained with five random seeds. The default
model ensemble (“Default”) is constructed from individual models of these four ensembles
to balance computational cost and predictive performance [41]. In addition to evaluating
this default ensemble, we also show results for the General ensemble, which combines the
simplest model, Default2018, with the smallest training set, redocked poses from the 2016
PDBbind General set, and the Dense ensemble, which combines the largest model with the
largest training set, CrossDocked2020 [45]. The variations in architecture and training data
allow us to compare the effects of these aspects of the CNN scoring functions on virtual
screening performance, while the ensembles themselves are expected to improve average
predictive accuracy by reducing the effects of bias from individual learners [47] and in
theory allow us to approximate the uncertainty in our predictions [48,49].

Note that none of these models were trained to perform virtual screening. Their
outputs do not classify an input as “active” or “inactive” directly, nor were they provided
distinctly “active“ or “inactive” compounds as input examples (i.e., they were not trained
on any virtual screening datasets). Instead, they were simultaneously trained to predict
whether a given input is a binding mode (<2Å RMSD) and, if so, what its affinity would
be; if a pose is not a binding mode, the affinity is instead optimized to be lower (in pK
units) than the true binding affinity for that compound. Consequently, the models produce
both a pose score and an affinity prediction; e.g., a weak binder with a correct pose should
have a high pose score and a low predicted affinity.

2.2. Metrics

We primarily use the area under the receiver operating characteristic curve (AUC)
and top 1% enrichment factor (EF1%) to assess performance. The AUC assesses the quality
of the entire ranking of compounds, with a perfect ranking receiving a 1.0 and a random
ranking 0.5. From a practical standpoint, the ability of a method to provide a set of
compounds highly enriched for actives as its top ranked compounds is highly desirable for
virtual screening. EF1% is the ratio of the percentage of actives in the top 1% of ranked
compounds to the overall percentage of actives. Unfortunately, the best possible EF1%
varies depending on the number of actives and inactives, making it difficult to compare
performance across benchmarks. To address this, the normalized EF1% [50] (NEF1%)
divides the EF1% by the best achievable EF1% so that 1.0 means that as many actives as
possible are ranked in the top 1% and zero means that none are.
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Figure 1. Voxelized grid-based CNN architectures evaluated in this work.

2.3. Benchmarks

We use DUD-E and the more recently published LIT-PCBA dataset to assess virtual
screening performance. DUD-E is primarily used to facilitate comparisons with published
work. LIT-PCBA is appealing due to its apparently principled construction and the fact that
all actives and inactives were drawn directly from a single assay per target; even though we
do not use the training and validation splits (as the built-in GNINA models were not trained
this way) and instead assess our performance on the full dataset, it still features diverse
and more typical (lower) potency actives, and topological similarity between actives and
inactives. Each target that was included in the final LIT-PCBA benchmark could reach at
least an EF1% of two using a fingerprint-based, shape-based, or structure-based method
prior to AVE unbiasing, further evidence of its suitability as a benchmark. Despite these
virtues, its reliance on primarily cell-based assays and lack of target validation for active
compounds may limit the best achievable performance on this benchmark. Nonetheless,
the distinctly different methods of construction of the two datasets makes for an interesting
contrast when evaluating virtual screening approaches (e.g., see score distributions in
Figures S27 and S28).

Neither evaluation dataset was used for training. Nearly all the ligands in these
datasets lack an experimentally determined protein-ligand structure. Previous work [42]
found that when training without known poses (i.e., using computer-generated putative
poses) the learned models were effectively ligand-based. DUD-E’s known bias also suggests
that it is unsuitable for model fitting, but that does not necessarily imply that it is useless
for evaluating a model fit on other data, as we do here, since the model is not fit to
DUD-E’s biases (at least not directly, but there is still some risk of exploiting bias to gain
performance due to shared bias between datasets). Further, there is utility in comparing
model performance when testing on an independent dataset versus performing cross-
validation, since improved performance at classification on a dataset when training on
a subset of it could be due to dataset-wide bias artificially enhancing performance (as
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appears to be the case with DUD-E, where similarity among inactives between targets
constitutes test set leakage [35]).

2.4. Comparisons

Since most of the poses we use for training and scoring are generated with the
smina [11] fork of AutoDock Vina [17], we take Vina as our empirical scoring function
baseline. We also compare with Vinardo [51], a modified version of the Vina scoring
function that aims to improve performance at pose prediction, binding affinity prediction,
and virtual screening. We also include virtual screening results from two versions of
RFScore (RFScore-VS [52], which was trained on DUD-E, and RFScore-4 [32], which was
trained on the 2014 PDBBind refined set). These two random forest based scoring functions
are an interesting contrast to our approach: RFScore-4 has similar training data to ours
but is a different type of statistical model that was fit to predict binding affinity with a
different training strategy and distinct features, while RFScore-VS was trained specifically
for virtual screening.

We used docked poses we had previously generated (and used for rescoring [31]) for
DUD-E, obtained with the default smina arguments –seed 0 –autobox_add 4 –num_modes
9 and a box defined by the crystal ligand associated with the DUD-E reference receptor.
For LIT-PCBA we used –seed 0 –autobox_add 16 –num_modes 20. We used our CNN
models, RFScore-VS, and RFScore-4 to rescore and rank these poses generated with the
Vina scoring function. For Vinardo scoring, we generated new poses using Vinardo to
generate a new set of poses (e.g., appending –scoring vinardo to the command-line) as,
unlike the ML scoring functions, it was designed to be incorporated into the full docking
pipeline. A method’s best predicted score for a (target, compound) pair was taken as its
prediction except where noted otherwise. For DUD-E there is a single reference receptor
per target, while LIT-PCBA typically provides more than one. In the case of multiple
reference receptors, we docked into all provided receptors and took the maximum score
over all of them.

Finally, we also establish baseline performance using a variety of statistical models fit
to our training datasets with the simple chemical descriptors used in the construction of
DUD-E and MUV as their input features. These include linear and nonlinear regression
models (Lasso, K-nearest neighbors, Decision Tree, Random Forest, Gradient Boosted Tree,
and Support Vector regressors) available through sklearn [53]. The associated descriptors
are shown in Table 1.

Table 1. Descriptors used in the construction of DUD-E and MUV.

DUD-E MUV

molecular weight
number of hydrogen bond acceptors number of hydrogen bond acceptors
number of hydrogen bond donors number of hydrogen bond donors
number of rotatable bonds
logP logP
net charge

number of all atoms
number of heavy atoms
number of boron atoms
number of bromine atoms
number of carbon atoms
number of chlorine atoms
number of fluorine atoms
number of iodine atoms
number of nitrogen atoms
number of oxygen atoms
number of phosphorus atoms
number of sulfur atoms
number of chiral centers
number of ring systems

6 features 17 features
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3. Results

First we summarize virtual screening performance of the GNINA convolutional neural
networks, initially comparing with Vina, Vinardo, RFScore-4, and RFScore-VS. We also
assess pose prediction performance on the reference receptors provided with LIT-PCBA,
which in 13 out of 15 cases involve multiple protein templates and therefore can be used
to construct cross-docking tasks. Finally, we attempt to explain aspects of the observed
performance, in particular taking inspiration from Sieg et al. [33] and establishing a baseline
ML model fit to the “simple” chemical descriptors calculated for our training sets (Table 1).
We can thereby compare our performance on the test sets to this baseline in order to assess
the potential influence of shared dataset bias on performance.

3.1. Virtual Screening Performance

Virtual screening performance is shown in Table 2, with AUCs shown in Figure 2,
NEF1% in Figure 3, and EF1% in Figure S17. Per-target confidence intervals are provided in
Figures S1–S10. We provide AUCs for comparison with other literature, but NEF1%, which
assesses early enrichment, affords a better measure of virtual screening performance.

Table 2. Median AUCs, NEF1% and EF1% values on DUD-E and LIT-PCBA. Mean values are
provided in Table S2. The best CNN model value for each column is shown in bold. Models
whose distributions of per-benchmark metrics are not statistically dissimilar to the model in bold (as
computed with a Mann-Whitney U rank test, p-value > 0.05) are shown in italic. RFScore-VS is the
only model that was trained on DUD-E.

Model
DUD-E LIT-PCBA

AUC NEF1% EF1% AUC NEF1% EF1%

RFScore-4 0.683 0.0514 3.02 0.6 0.013 1.28
RFScore-VS 0.963 0.857 51.9 0.542 0.00733 0.733

Vina 0.745 0.118 7.05 0.581 0.011 1.1
Vinardo 0.764 0.187 11.4 0.577 0.0103 0.99

General (Affinity) 0.756 0.179 11.6 0.579 0.037 2.06
General (Pose) 0.702 0.156 10.3 0.498 0.0147 1.3

Dense (Affinity) 0.795 0.27 17.7 0.616 0.037 2.58
Dense (Pose) 0.767 0.313 20.4 0.514 0.0238 1.81

Default (Affinity) 0.795 0.258 15.6 0.611 0.0238 1.88
Default (Pose) 0.744 0.241 15.8 0.512 0.0147 1.47

For all models, average performance according to either metric is better on DUD-E
than on LIT-PCBA. In the case of RFScore-VS, which has the best performance on DUD-E
(median AUC of 0.96) and the worst performance on LIT-PCBA (median AUC of 0.60),
the performance discrepancy between the two benchmarks suggests that its performance on
DUD-E is not an accurate representation of its generalization ability, likely due to the data
biases discussed previously. RFScore-4 has virtual screening performance comparable to
other methods tested (particularly Vina), despite not being trained with inactive examples,
which have previously been suggested to be essential [52] for good virtual screening
performance. Among the CNN models, the affinity score tends to provide better virtual
screening performance than the pose score, and the Dense models generally perform best.
In most cases, the significantly faster Default ensemble performs nearly as well as the Dense
ensemble (median AUCs of 0.79 and 0.61 for Default versus 0.80 and 0.62 for Dense on
DUD-E and LIT-PCBA respectively), affirming its selection as the default model in GNINA.

The LIT-PCBA paper reports EF1% for three baseline methods: fingerprints, ligand
shape overlap, and Surflex-Dock (SD), a structure-based docking method. Each target that
was included in the final LIT-PCBA benchmark could reach at least an EF1% of two by at
least one of those three methods prior to AVE unbiasing. Interestingly, there is no clear
correlation between our observed performance and the previously reported performance.
For example, there are targets that were amenable to Surflex-Dock (OPRK1, ADRB2) that
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most of our structure-based approaches performed poorly on, and targets where only
ligand-based approaches were reported to perform well (ESR, IDH1) where most of our
models performed well (see Figure S17b). This could be due to sampling differences
between Surflex-Dock and Vina/Vinardo, but it could also be evidence of ligand-based
shape or 2D descriptors being incorporated into the ML models.

The CNN predictions (particularly the affinity values) outperform other approaches.
On LIT-PCBA, which was designed to more closely resemble true HTS experiments and
on which none of the methods were directly trained, all the CNN models exhibit a larger
average early enrichment than the other methods (although the improvement is not always
statistically significant). Across the 102 DUD-E targets and 15 LIT-PCBA targets, there are
only 24 targets where Vina has a statistically significant improvement in NEF1% perfor-
mance relative to Default ensemble affinity scoring, but the Default is significantly better
for 89 targets compared to Vina. Full per-target comparisons of all models with the Default
ensemble with 95% confidence intervals are shown in Figures S11–S16.
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Figure 2. Assessment of virtual screening performance on (a) DUD-E and (b) LIT-PCBA using the AUC metric. The x-axis is
sorted in order of increasing median performance. Each data point is the area under the curve of the ROC curve (AUC) of
the method on a single target. LIT-PCBA targets are shown with distinctive individual markers.
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Figure 3. Assessment of virtual screening performance on (a) DUD-E and (b) LIT-PCBA using the NEF1% metric. The x-axis
is sorted in order of increasing median performance. Each data point is the normalized 1% enrichment factor (NEF1%) of
the method on a single target. LIT-PCBA targets are shown with distinctive individual markers. EF1% results are shown in
Figure S17.

3.2. Pose Prediction Performance

Next we examine the CNN ensemble’s pose prediction performance on the templates
provided with LIT-PCBA. When more than one template was provided, we cross-docked
each crystal ligand into every available non-cognate structure and used each scoring
function to rank the resulting poses. The CNN models were used to rescore Vina-generated
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poses, and all these were compared with Vinardo, which was derived from Vina but
intended to improve its pose prediction performance. Such an improvement did not
manifest on this benchmark, as shown by the average fraction of compounds with a “good”
(≤2Å RMSD) pose sampled at ranks 1, 3, and 5 in Figure 4 (per-target results are shown
in Figure S19). The CNN models improve on Vina’s pose ranking, whether using the
output from the pose layer (which was trained to predict whether a given pose is a binding
mode) or affinity layer (which was trained to predict binding affinity, in a manner that
is pose-sensitive). Interestingly, there is no statistically significant correlation between
model performance at pose prediction and virtual screening performance (Figure S18),
although we note there are orders of magnitude fewer ligands available for pose prediction
performance estimation than for virtual screening.
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Figure 4. Assessment of cross-docking performance on LIT-PCBA structures. The percent of a target’s
compounds with a good pose at ranks 1, 3, and 5, averaged across all thirteen targets in LIT-PCBA
with more than one template available is shown. Labeled horizontal lines show the best performance
possible with the poses sampled by Vina and Vinardo.

3.3. Understanding Performance

We would like to understand the mechanisms underlying virtual screening perfor-
mance; we would especially like to examine whether our predictions are pose sensitive,
whether trivial descriptors are the primary basis of model performance, and whether
performance is predictable based on similarity to training data.

First, we check whether our virtual screening predictions are pose sensitive by compar-
ing NEF1% when basing a compound’s prediction on its highest- versus its lowest-ranked
pose. The assumption is that the lowest-ranked pose will be the lowest quality and lack
realistic protein-ligand interactions. A model that performs well with low quality poses is
likely using primarily ligand-only information and is ignoring protein-ligand interactions.
Figure 5 shows this assessment for the Default ensemble. Other methods are shown in
Figures S20 and S21. All methods exhibit some pose sensitivity, with the top-ranked pose
generally exhibiting better performance and the bottom ranked pose often providing no
enrichment, but there are also cases where non-random performance is achievable with
even the lowest-ranked pose, and every model also has at least one task for which choos-
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ing the lowest-ranked pose outperforms the highest-ranked one. This suggests that pose
information is being used but (1) it is not always correct and (2) it is likely not the sole basis
of the prediction.

Next we investigated the set of “simple chemical descriptors” that are known to
afford perfect performance on DUD-E when used to fit models [33]. Since none of the
CNN models were fit to DUD-E (nor indeed to any virtual screening dataset), we might
hope to have avoided fitting models that derive their performance from these descriptors.
However, these descriptors are useful because of historical bias in the underlying datasets
from which most benchmarks are drawn, so it is entirely possible for models fit to other
datasets to have a bias with respect to these descriptors. In Francoeur et al. [45], motivated
by this consideration, we assessed similar “Simple Descriptor” models for performance
at binding affinity prediction on PDBbind and Pocketome test sets and found them to
have better-than-random and, in some cases, competitive to state-of-the-art performance.
Therefore it seems necessary to compare virtual screening performance to the baseline
established by one or more reasonably trained models that use these simple descriptors.
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To that end, we establish a performance baseline by fitting a variety of linear and
nonlinear regression models (Lasso, K-nearest neighbors, Decision Tree, Random Forest,
Gradient Boosted Tree, and Support Vector regressors) available through sklearn [53] to
the ligand affinity data associated with the CNN models’ training sets (PDBbind 2016 and
CrossDock2020). For features, we use the descriptors used in the construction of DUD-E,
the descriptors used in the construction of MUV (see Table 1), or ECFP4 fingerprints as
implemented in OpenBabel [54]. Hyperparameter optimization was performed for all
models via cross-validation on the PDBbind-Refined 2016 set. We then evaluate how these
“simple descriptor” models perform at virtual screening on our test sets.

In Figure 6, we take the maximum performance per-target across any of the simple de-
scriptor models and compare it with the Default ensemble affinity score. Comparisons with
additional models are provided in Figures S22 and S23. Note that since the best performing
model for each target is selected, this is not intended to be a fair comparison, but instead
suggest an upper-bound for how well a ligand-only model can perform given the ideal
model class, descriptors, and training set for a target. The Default ensemble generally
performs well, outperforming all simple descriptor models on 77 out of 117 targets, but it
is worth noting that even when cross-training for different purposes (affinity prediction
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vs. virtual screening) and on different training sets, simple, ligand-only descriptors can
often exhibit better than random performance. Early enrichment performance for different
descriptors and training sets is shown in Figure 7. Simple descriptor model performance
seems to be uncorrelated with the size of the training set and to depend primarily on the
chosen descriptors, with the simplest descriptors (DUD-E) performing best and the most
complex (ECFP4) worst.
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Figure 7. Early enrichment as measured by (a) NEF1% and (b) EF1% of best-performing ligand-only descriptor models when
trained on different descriptors (ECFP4, MUV, DUDE-E—see Table 1) using training sets of different sizes and compositions
(Refined and General from the PDBbind [55] and CrossDock2020 [45]). Each dot represents the best performing model for a
DUD-E or LIT-PCBA target. Performance of the Default ensemble is provided for reference.

Next we consider similarity between training and benchmark datasets. Figure 8 plots
the early enrichment performance (NEF1%) of the Default ensemble on each target versus
the similarity between actives in the benchmark and training set compounds (other models
are shown in Figures S24 and S25). Similarities are computed using the Tanimoto coefficient
of ECFP4 fingerprints. Only actives are considered since the training set does not include
any inactive compounds. For each target active, the maximum similarity with any training
set compound is computed and the average of these similarities is taken to represent the
similarity of that target’s actives with the training set. There is a statistically significant
correlation (Spearman ρ of 0.45 and 0.50 for affinity and pose scoring, respectively) between
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training similarity and early enrichment performance. However, there exists a moderate
correlation even for the non-ML models (Spearman ρ of 0.21 and 0.34 for Vina and Vinardo,
respectively, see Figure S25), suggesting that this trend is not entirely due to learned
training set bias.
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Figure 8. Correlation between similarity with training set and early enrichment performance for the
Default ensemble (a) affinity and (b) pose scoring. For each benchmark, the average of the maximum
similarity between active compounds and the PDBbind General set is computed using the Tanimoto
coefficient of ECFP4 fingerprints.

3.4. Score Adjustment

Finally, we consider two straightforward combinations of the pose and affinity score
(more sophisticated methods [48,56,57] of consensus scoring are left for future investiga-
tion). Pose and affinity scores are combined either by taking the predicted affinity of the
pose with the best pose score, or by multiplying the affinity and pose scores. As shown in
Figure 9, simply multiplying scores results in a modest boost in virtual screening perfor-
mance, although the difference in score distributions has minimal statistical significance,
especially compared to affinity scores (p = 0.053). Nonetheless, this multiplication score is
generated in GNINA outputs as the CNN_VS score, for easier ranking of hits.

Affinity Affinity Max Pose Pose Pose × Affinity
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Figure 9. Early enrichment using score combinations. NEF1% performance of the Default ensemble
on both DUD-E and LIT-PCBA targets is shown. The two-sided Mann-Whitney U rank test is used to
compute p-values. Other metrics are shown in Figure S26.
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4. Conclusions

Dataset bias is a serious obstacle to applying data-driven approaches to solve prob-
lems in drug discovery. Unless care has been taken to assess the bias of a dataset and
lack of bias, accordingly, machine learning models fit to that dataset will learn its bias.
Since many of the existing biases are historical, it is entirely possible to subsequently
evaluate performance on a test dataset that shares similar biases and inaccurately report
improvements in generalization when in fact the resulting model is worse at generalizing
than the conventional scoring functions that predate it. The community is still developing
appropriate datasets and evaluation methods to ensure that we can effectively leverage
data without fitting to the artifactual patterns it contains.

A recent study of 14 machine learning scoring functions for virtual screening found
that none of them outperformed classical scoring functions, except for RFScore-VS, which
only performed well on DUD-E (the dataset to which it was fit) [58]. Here we have
demonstrated that machine learning models fit for binding affinity prediction and pose
selection, specifically the CNN models of the GNINA molecular docking package, can
be used for virtual screening, and they outperform classical empirical scoring methods.
Further, we show that, in most cases, these models significantly outperform models fit
to the same training data using simple chemical descriptors. Although there remains
substantial room for improvement, these results support the use of GNINA as an alternative
to AutoDock Vina or smina when performing virtual screens.

Supplementary Materials: The following are available online. Table S1: Analysis of LIT-PCBA
assays, Table S2: Mean AUCs, NEF1% and EF1% values on DUD-E and LIT-PCBA, Figures S1–S10:
Per-target confidence intervals for various metrics and methods, Figures S11–S16: Virtual screening
performance compared to Default model for various metrics and methods, Figure S17: Assessment
of virtual screening performance using EF1%, Figure S18: Correlation between EF1% and pose
prediction performance, Figure S19: Per-target pose prediction performance, Figures S20 and S21:
Pose sensitivity assessment, Figures S22 and S23: Comparison of models to simple descriptor
models, Figures S24 and S25: Correlation between similarity with training set and early enrichment
performance, Figure S26: Performance of pose/affinity score combinations, Figures S27 and S28:
Score distributions and correlations for different methods.
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