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Abstract

Background: Tumor recurrence and metastasis develop as a result of tumors’ acquisition of anti-apoptotic
mechanisms and therefore, it is necessary to develop novel effective therapeutics against metastatic cancers. In this
study, we showed the differential TRAIL responsiveness of human prostate adenocarcinoma PC3 and human colon
carcinoma KM12 cells and their respective highly metastatic PC3-MM2 and KM12L4A sublines and investigated the
mechanism underlying high susceptibility of human metastatic cancer cells to TRAIL.

Results: PC3-MM2 and KM12L4A cells with high level of c-Myc and DNA-PKcs were more susceptible to TRAIL
than their poorly metastatic primary PC3 and KM12 cells, which was associated with down-regulation of c-FLIPL/S
and Mcl-1 and up-regulation of the TRAIL receptor DR5 but not DR4 in both metastatic cells. Moreover, high
susceptibility of these metastatic cells to TRAIL was resulted from TRAIL-induced potent activation of caspase-8, -9,
and -3 in comparison with their primary cells, which led to cleavage and down-regulation of DNA-PKcs.
Knockdown of c-Myc gene in TRAIL-treated PC3-MM2 cells prevented the increase of DR5 cell surface expression,
caspase activation and DNA-PKcs cleavage and attenuated the apoptotic effects of TRAIL. Moreover, the
suppression of DNA-PKcs level with siRNA in the cells induced the up-regulation of DR5 and active caspase-8, -9,
and -3. We also found that 4,5-dimethoxy-2-nitrobenzaldehyde (DMNB), a specific inhibitor of DNA-PK, potentiated
TRAIL-induced cytotoxicity and apoptosis in relatively TRAIL-insensitive PC3 and KM12 cells and therefore
functioned as a TRAIL sensitizer.

Conclusion: This study showed the positive relationship between c-Myc expression in highly metastatic human
prostate and colon cancer cells and susceptibility to TRAIL-induced apoptosis and therefore indicated that TRAIL
might be used as an effective therapeutic modality for advanced metastatic cancers overexpressing c-Myc and
combination of TRAIL therapy with agent that inhibits the DNA-PKcs/Akt signaling pathway might be clinically
useful for the treatment of relatively TRAIL-insensitive human cancers.
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Background
Despite the improvement of therapeutic strategies
against cancer, the acquisition of invasive/metastatic
capabilities and the development of resistance to therapy
in cancer cells are still critical problems for successful
cancer therapy because recurrent or metastatic cancers
that appear after the initial radiotherapy or chemother-
apy are generally refractory to secondary therapies [1].
Some metastatic cancers are more resistant to che-
motherapeutic drugs than their poorly metastatic coun-
terparts as a result of their acquisition of anti-apoptotic
mechanisms [2-5]. Therefore, it is necessary to elucidate
the therapy-resistance mechanisms of metastatic cells
for development of effective therapeutic modalities
against metastatic cancers, since the molecular basis for
the association of an aggressive metastatic phenotype
with resistance to apoptosis is still unclear.
The death-inducing cytokine tumor necrosis factor

(TNF)-related apoptosis-inducing ligand (TRAIL) holds
enormous promise as an anti-cancer agent due to its
highly selective apoptosis-inducing action on neoplastic
versus normal cells [6,7]. The apoptosis signaling cas-
cade is initiated through the engagement of the cell sur-
face death receptors DR4 and/or DR5 by their ligand
TRAIL. The binding of TRAIL to the death receptors
leads to their trimerization and the recruitment of Fas-
associated protein with death domain (FADD). Subse-
quently, FADD recruits the initiator procaspase-8 or
-10, leading to the assembly of the death-inducing sig-
naling complex (DISC), where the initiator caspases are
autoactivated by proteolysis. Activated caspase-8 or -10
then cleaves the effector caspase-3, resulting in the clea-
vage of the death substrates [8].
c-Myc is deregulated and over-expressed in many can-

cer cells. The deregulation of c-Myc confers a selective
advantage on cancer cells by promoting proliferation,
cell survival, and genetic instability, which can contri-
bute to metastasis [9]. By contrast, the activation of c-
Myc dramatically sensitizes cells to the apoptotic action
of TRAIL by up-regulating the cell surface level of DR5
and activating DISC, thereby playing an important role
in determining cellular sensitivity to TRAIL [10]. The
decision of a cell to undergo apoptosis or to promote
cell survival by c-Myc depends on the specific cell type
and the physiological status of the cell [11]. c-Myc-
dependent priming of the mitochondrial pathway is cri-
tical for the capacity of TRAIL-induced caspase-8 sig-
nals to activate effector caspases and for the
establishment of a lethal caspase feedback amplification
loop in human cells [12,13].
Recently, we demonstrated that metastatic cancer cells

have an increased level and activity of DNA-PKcs, the
catalytic subunit of DNA-dependent protein kinase
(DNA-PK), compared with their primary cells [14], and

An et al. reported that DNA-PKcs regulates the stability
of c-Myc through the Akt/GSK3b/c-Myc ubiquitination
signal pathway [15]. In addition, it has been shown that
the level of phosphorylated Ser-473 Akt was much
higher in metastatic cancer cells than in non-metastatic
cancer cells, and siRNA against Akt blocked cell migra-
tion, indicating that Akt activation is necessary for the
metastasis of these cultured cells [16].
Therefore, we studied sensitivity of metastatic cancer

cells to TRAIL and demonstrated the differential TRAIL
responsiveness of two pairs of primary (PC3 and KM12)
and metastatic (PC3-MM2 and KM12L4A) cells. PC3-
MM2 and KM12L4A cells were more susceptible to
TRAIL than their poorly metastatic primary counter-
parts. This susceptibility was correlated with the up-reg-
ulation of cell surface DR5 and the prominent activation
of caspases (caspase-8, -9 and -3) by TRAIL treatment,
leading to the inactivation of the DNA-PKcs/Akt path-
way through the cleavage of DNA-PKcs and the up-reg-
ulation of proapoptotic Bax.

Results
High susceptibility of metastatic cancer cells to TRAIL is
mediated via DR5 and down-regulation of c-FLIP and Mcl-
1
To compare the susceptibility of TRAIL-induced apop-
tosis between of highly metastatic cells and their respec-
tive primary cancer cells with low metastatic potential,
human prostate adenocarcinoma PC3 and its highly
metastatic PC3-MM2 subline were treated with increas-
ing concentrations of TRAIL. Interestingly, PC3-MM2
cells were significantly more sensitive to TRAIL-induced
apoptosis and cytotoxicity than PC3 cells (Figure 1A).
Similar results were obtained in the highly metastatic
colorectal carcinoma KM12L4A cells and its primary
KM12 cells. KM12L4A cells were significantly more sus-
ceptible to TRAIL-mediated apoptosis and cytotoxicity
than KM12 cells (Figure 1B). These results indicated
greater susceptibility of highly metastatic cells to TRAIL
than their poorly metastatic primary counterparts.
Since it is well known that TRAIL triggers apoptotic

signals via two types of death receptors, DR4 and DR5
[7], we examined whether the increased TRAIL-induced
apoptosis in highly metastatic cells was mediated via
DR4 and/or DR5 death receptors (Figure 2A). We found
that treating PC3-MM2 cells with neutralizing antibody
to TRAIL receptor DR5 prior to TRAIL treatment
inhibited significantly TRAIL-induced apoptosis, while
the neutralizing anti-DR4 antibody only slightly inhib-
ited TRAIL-induced apoptosis in the metastatic cells.
Similar results were obtained in KM12L4A cells. There-
fore, to correlate the inhibitory effects of anti-DR5 neu-
tralizing antibody on TRAIL-induced apoptosis in both
PC3-MM2 and KM12 L4A cells with cell surface
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expression of DR5, we determined the cell surface
expression of DR4 and DR5 in the metastatic cells.
After treatment with TRAIL, the surface expression of
DR5 was significantly up-regulated in both PC3-MM2
and KM12 L4A cells, whereas DR4 expression was not
modulated by TRAIL treatment (Figure 2B). These
results suggest that the increased susceptibility to
TRAIL of highly metastatic cells may be attributed to
TRAIL-induced up-regulation of DR5.
Since the expression of cellular FADD-like interleukin-

1b-converting enzyme (FLICE)-inhibitory proteins

(c-FLIPL and c-FLIPS) potently controls the susceptibil-
ity of cancer cells to TRAIL-induced apoptosis, we
assessed the mRNA and protein levels of c-FLIPL/S in
the metastatic cells treated with or without TRAIL using
quantitative real-time RT-PCR and Western blot analy-
sis, respectively. The results of quantitative real-time
RT-PCR showed that basal mRNA levels of c-FLIPL/S

were significantly down-regulated in PC3-MM2 and
KM12 L4A cells compared with PC3 and KM12 cells,
respectively, and after treatment with TRAIL the mRNA
levels of c-FLIPL/S were significantly decreased in PC3-

A

B

Figure 1 Differential TRAIL responsiveness of human prostate adenocarcinoma PC3 and colorectal carcinoma KM12 cells and their
respective highly metastatic PC3-MM2 and KM12L4A sublines. PC3 and PC3-MM2 cells (A) or KM12 and KM12L4A cells (B) were treated
with the indicated doses of TRAIL for 6 or 8 h, respectively, and the percentage of apoptotic cells in each cell population was determined using
Annexin V staining and flow cytometry (left). In addition, PC3 and PC3-MM2 cells or KM12 and KM12L4A cells were treated with the indicated
doses of TRAIL for 96 h, and cell survival (%) was determined using the MTT assay (right). Each value represents the mean ± SE of triplicate
determinants. *p < 0.05, **p < 0.01, ***p < 0.001.
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MM2 and KM12L4A cells (Figure 3A). These changes in
mRNA levels of c-FLIPL/S were followed by correspond-
ing changes in their protein levels (Figure 3B). We also
compared the expression level of myeloid cell leukemia
sequence 1 (Mcl-1) protein between two pairs of pri-
mary and their highly metastatic cells, because Mcl-1 as
well as c-FLIP is also the main determinant of acquired
TRAIL resistance [17]. Like c-FLIPL/S, the basal level of

Mcl-1 was lower in highly metastatic PC3-MM2 and
KM12L4A cells compared with their respective primary
PC3 and KM12 cells, and the down-regulation of Mcl-1
by treatment with TRAIL was more sensitive in highly
metastatic PC3-MM2 and KM12L4A cells compared
with their respective primary PC3 and KM12 cells
(Figure 3B). Therefore, our data indicated that high sus-
ceptibility to TRAIL of metastatic cancer cells is

Figure 2 Effects of neutralizing antibodies to TRAIL receptors on TRAIL-induced apoptosis and expression of TRAIL receptors on the
cell surface in PC3-MM2 and KM12L4A cells. (A) PC3-MM2 and KM12L4A cells were pretreated with the anti-DR4 or anti-DR5 antibodies (0.5
μg/ml) for 3 h and then PC3-MM2 and KM12L4A cells were treated with the indicated doses of TRAIL for 6 and 8 h, respectively. Goat IgG was
used as the control isotype antibody. Apoptosis was detected by annexin V binding assay. Each value represents the mean ± SE of triplicate
determinants. ***p < 0.001. (B) PC3-MM2 and KM12L4A cells were treated with 2.5 ng/ml TRAIL for 3 h. Thereafter, cells were stained with
control mouse IgG or anti-DR4/DR5 antibody (1:100), and subsequently labeled with FITC-conjugated secondary antibodies (1:200) to determine
the surface expression of DR4/DR5. The cell surface expression was measured by a flow cytometer. Shaded and unshaded peaks correspond to
control and specific stainings, respectively.
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associated with up-regulation of DR5 and concurrent
down-regulation of c-FLIP and Mcl-1 by TRAIL
treatment.

Increased expression of c-Myc in metastatic cancer cells is
associated with the increased susceptibility to TRAIL
It has been known that c-Myc renders cancer cells sen-
sitive to TRAIL-induced apoptosis by the up-regulation
of DR5, the activation of caspase-8, and the down-regu-
lation of c-FLIP and Mcl-1 [13,18,19]. Since the

metastatic PC3-MM2 cells showed the down-regulation
of c-FLIP and Mcl-1, we determined the level of c-Myc
expression in metastatic cancer cells. PC3-MM2 and
KM12L4A cells showed significantly higher basal level
of c-Myc than their primary PC3 and KM12 cells
(Figure 4A). Since DNA-PK can phosphorylate c-Myc at
several serine residues in vitro [20] and DNA-PKcs
modulates the stability of c-Myc [15], we compared the
level of DNA-PKcs between the primary and their cog-
nate metastatic cancer cells. The level of DNA-PKcs was

A

B

FLIPs

PC3 PC3-MM2

0 102 0 2 10

KM12 KM12L4A
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Mcl-1
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FLIPL

Figure 3 Down-regulation of c-FLIPL/S and Mcl-1 in TRAIL-treated metastatic cancer cells. PC3 and PC3-MM2 cells were treated with 2 or
10 ng/ml TRAIL for 6 h, and KM12 and KM12L4A cells were treated with 5 or 25 ng/ml TRAIL for 8 h. After TRAIL treatment, the mRNA
expression level of c-FLIPL/S (FLIPL/S) was measured by quantitative real-time RT-PCR (A), and protein levels of FLIPL/S and Mcl-1 were measured
by Western blot analysis (B), respectively. b-Actin (Actin) was used as a loading control.
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higher in metastatic PC3-MM2 and KM12L4A cells
than in their primary cells (Figure 4A). These results
were followed by the increased interaction between c-
Myc and DNA-PKcs in PC3-MM2 cells compared with
PC3 cells in immunoprecipitation assay (Figure 4B) and
the down-regulated levels of c-Myc and phospho-c-Myc
(pMyc) after knock-down of DNA-PKcs with specific
siRNA in PC3 cells (Figure 4C). These results suggest
that the increased level of DNA-PKcs may be contribu-
tory to the over-expression of c-Myc protein in meta-
static cancer cells.
To examine the effect of c-Myc on the sensitivity of

the metastatic cells to TRAIL, PC3-MM2 cells were
transfected with c-Myc siRNA or a scrambled siRNA.
TRAIL-induced cell death was decreased by transfection
of c-Myc siRNA in PC3-MM2 cells (Figure 5A). More-
over, siRNA against c-Myc prevented the TRAIL-

induced cell surface expression of DR5 (Figure 5B).
Therefore, these results suggest that the increased level
of c-Myc contributes to the hypersensitivity of meta-
static cells to TRAIL, possibly in part due to TRAIL-
induced surface expression of DR5.

Activation of pro-caspases is accelerated after treatment
with TRAIL in metastatic cancer cells over-expressing c-
Myc
c-Myc acts as a gatekeeper of the caspase feedback
amplification loop and c-Myc-mediated priming of the
mitochondrial pathway enables weak caspase-8 signals
to activate effector caspases and establish a death
executing caspase feedback amplification loop [12].
Therefore, we determined if the increased susceptibility
of metastatic cancer cells over-expressing c-Myc to
TRAIL-induced apoptosis was accompanied by the
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pMyc

Actin

DNA-PKcs

c-Myc
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Figure 4 Over-expression of c-Myc and the cross-talk between DNA-PKcs and c-Myc in metastatic cancer cells. (A) The levels of c-Myc
and DNA-PKcs proteins in PC3 and PC3-MM2 cells (left) and KM12 and KM12L4A cells (right) were determined using Western blot analysis. (B)
Immunoprecipitates (IP) of the DNA-PKcs or c-Myc antibody from PC3 and PC3-MM2 cells were subjected to Western blot analysis with c-Myc,
phospho-c-Myc (pMyc) or DNA-PKcs antibody to determine the interaction between DNA-PKcs and c-Myc. IgG was used as an internal control
for the immunoprecipitation. (C) PC3 cells were transfected with siRNA against DNA-PKcs or scrambled siRNA as a control. After 48 h, the cell
lysates of the transfectants were subjected to Western blot analysis with c-Myc or pMyc antibody.
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increased activation of caspases (Figure 6A). Consistent
with the hypersensitive response to TRAIL-induced cell
death of metastatic cancer cells over-expressing c-Myc,
the TRAIL-induced cleavage of procaspase-8, which is
an initiator caspase linked to the receptor-mediated
apoptotic pathway, was remarkably increased in the
metastatic PC3-MM2 and KM12L4A cells as compared

to the PC3 and KM12 cells, respectively. The proteolytic
processing of caspase-9, which has been linked to the
mitochondrial death pathway, was significantly induced
in the metastatic cells following treatment of with
TRAIL compared to their primary cells. In addition, the
cleavage of procaspase-3, an executioner caspase, and
PARP, a hallmark of caspase-3 activation, was

Figure 5 Targeted disruption of the c-Myc gene reduced the responsiveness to TRAIL and the expression of DR5 in PC3-MM2 cells. (A)
PC3-MM2 cells were transfected with siRNA against c-Myc or scrambled siRNA as a control. After 48 h, the transfectants were treated with TRAIL
(2 or 10 ng/ml) for 6 h, and the percentage of apoptotic cells was determined using Annexin V staining and flow cytometry (left). In addition,
the transfectants were treated with graded single doses of TRAIL (1~10 ng/ml), and percentage of cell survival was determined after 96 h
incubation using the MTT assay (right). Data represent the mean ± SE of triplicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001. (B) The
transfected cells incubated with anti-DR5 antibody (1:100), and subsequently labeled with FITC-conjugated secondary antibodies (1:200) to
determine the surface expression of DR5. Mouse IgG was also used as an isotype control. The shaded and unshaded peaks correspond to
control and specific staining, respectively.
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profoundly increased in metastatic cells compared with
their primary counterparts. We also investigated
whether the modulation of proapoptotic Bax and antia-
poptotic Bcl-2 proteins was involved in the TRAIL-
induced apoptosis of the metastatic cells. The expression
of Bax and Bcl-2 was up-regulated and down-regulated
following treatment with TRAIL, respectively, in the

PC3-MM2 and KM12L4A cells compared to their corre-
sponding counterparts, consistent with the activation
status of pro-caspase-9 in these cells. These results were
followed by reduction of TRAIL-induced caspase activa-
tion and PARP cleavage by depletion of c-Myc with c-
Myc siRNA in PC3-MM2 cells (Figure 6B). Therefore,
these data demonstrated that the high susceptibility of
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Figure 6 Increased activation of pro-caspases in TRAIL-treated metastatic cancer cells. (A) The cell lysates obtained from PC3 and PC3-
MM2 cells treated with 2 or 10 ng/ml TRAIL for 6 h (left) or KM12 and KM12L4A cells treated with 5 or 25 ng/ml TRAIL for 8 h (right) were
subjected to Western blot analysis to monitor the levels of caspase-8, -9 and -3, Bax and Bcl-2. The levels of PARP and its cleavage fragment (CF)
in TRAIL-treated cells were also determined. (B) PC3-MM2 cells were transfected with siRNA against c-myc or scrambled siRNA as a control. After
48 h, the transfectants were treated with TRAIL (1 or 5 ng/ml) for 6 h and were subjected to Western blot analysis to monitor the change in
activities of caspases and PARP. Actin was used as a loading control.
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metastatic cells to TRAIL was at least in part due to the
increased expression of c-Myc, suggesting that TRAIL
effectively may induce caspase-dependent apoptosis in
metastatic cells over-expressing c-Myc.

The amplified TRAIL-induced caspase activation by
overexpressed c-Myc counteract the anti-apoptotic
activity of DNA-PKcs by increasing proteolytic cleavage in
the metastatic cancer cells
It has been known that a constitutively active Akt is an
important regulator of TRAIL sensitivity [21,22], and
inhibition of Akt activation by its pharmacological inhi-
bitor or knockdown of its expression by siRNA sensi-
tizes TRAIL-resistant cells to TRAIL [23,24]. The
activation of Akt by phosphorylation of Ser-473 is
mediated by DNA-PKcs [25]. However, the metastatic
cancer cells were sensitive to TRAIL, despite that the
metastatic cells have higher level of DNA-PKcs com-
pared with their primary cells, as shown above. There-
fore, we determined the levels of DNA-PKcs and pAkt
in the metastatic cells after treatment with TRAIL
(Figure 7A). In metastatic PC3-MM2 and KM12L4A
cells, DNA-PKcs was cleaved and consequently the level
of DNA-PKcs was decreased after exposure to TRAIL
and this result was accompanied with decrease of pAkt
level, whereas the levels of DNA-PKcs and pAkt were
maintained in the primary PC3 and KM12 cells after
exposure to TRAIL.
Since c-Myc could control the TRAIL sensitivity, and

DNA-PKcs is a substrate of caspase-3 [26], we deter-
mined whether depletion of c-Myc could block degrada-
tion of DNA-PKcs. When PC3-MM2 cells were
transfected with c-Myc siRNA, TRAIL-induced cleavage
of DNA-PKcs was reduced compared with transfection
with scrambled siRNA. These results were followed by
prevention of cleavage of DNA-PKcs as well as PARP in
the TRAIL-treated cells by pretreatment with Z-DEVD-
FMK, a caspase-3-specific inhibitor (Figure 7B). These
results suggest that the amplified TRAIL-induced cas-
pase activation by over-expressed c-Myc may curtail the
anti-apoptotic activity of DNA-PKcs by increasing its
proteolytic cleavage in the metastatic cancer cells.

Suppression of DNA-PKcs is associated with
hypersensitivity to TRAIL-induced cytotoxicity
To investigate the direct role of DNA-PKcs in the sus-
ceptibility of the metastatic cells to TRAIL, we used
siRNA to knockdown DNA-PKcs expression and deter-
mined its effect on TRAIL sensitivity. After transfection
of PC3 or KM12 cells with siRNA against DNA-PKcs or
scrambled siRNA, the expression of DNA-PKcs was effi-
ciently suppressed by DNA-PKcs siRNA as compared to
the control cells and its expression was further decreased
by TRAIL treatment (Figure 8A). This result was

followed by the hypersensitivity to TRAIL-induced
reduction of DNA-PKcs/pAkt levels, activation of cas-
pases, PARP cleavage, and up-regulation of Bax in PC3
and KM12 cells after transfection with DNA-PKcs siRNA
as compared to the cells transfected with scrambled
siRNA. Furthermore, the knockdown of DNA-PKcs with
specific siRNA significantly increased TRAIL-induced
apoptosis in PC3 and KM12 cells (Figure 8B).
Since knockdown of c-Myc suppressed the TRAIL-

induced cleavage of DNA-PKcs and knockdown of
DNA-PKcs increased TRAIL-induced activation of cas-
pases, c-Myc overexpressed in the metastatic cancers
may increase TRAIL-induced cleavage of DNA-PKcs
and consequently caspase-mediated apoptosis. We then
determined whether the knockdown of DNA-PKcs leads
to the enhancement of TRAIL sensitivity via the up-reg-
ulation of the cell surface expression of death receptors.
The suppression of DNA-PKcs with specific siRNA in
the PC3 and KM12 cells resulted in an increase in the
cell surface expression of DR5 (Figure 9A), but not DR4
(data not shown), and this up-regulation was increased
further by TRAIL treatment. Moreover, we also showed
that the cell surface expression of DR5 in PC3 and
KM12 cells was induced by treatment with 4,5-
dimethoxy-2-nitrobenzaldehyde (DMNB) [27], a specific
inhibitor of DNA-PK (Figure 9B). These results indicate
that the inhibition of the DNA-PKcs/Akt signaling path-
way may contribute to the sensitization of PC3 or
KM12 cells to TRAIL-induced apoptosis through the
up-regulation of DR5 cell surface expression and the
activation of caspase cascade.

Combination of DMNB and TRAIL renders PC3 and KM12
cells highly susceptible to TRAIL-induced apoptosis
Since the suppression of DNA-PKcs level with siRNA
induced the up-regulation of DR5 and the activation of
caspases, we determined whether DMNB could potenti-
ate TRAIL-induced cytotoxicity and apoptosis in
TRAIL-resistant PC3 and KM12 cells and function as a
TRAIL sensitizer. DMNB in combination with TRAIL
sensitized PC3 cells (Figure 10A) and KM12 cells
(Figure 10B) to TRAIL-induced cytotoxicity and apopto-
sis in a dose-dependent manner. We next examined
whether the enhanced susceptibility of PC3 and KM12
cells to TRAIL following DMNB treatment was asso-
ciated with caspase activation and the up-regulation of
Bax through the inactivation of the DNA-PKcs/Akt sig-
naling (Figure 11A). Co-treatment of PC3 or KM12 cells
with TRAIL and DMNB resulted in a decrease in the
levels of both DNA-PKcs and pAkt when compared to
cells treated with TRAIL alone. The combination of
DMNB and TRAIL was more effective for the activation
of caspases, the inactivation of the DNA-PKcs/Akt sig-
naling pathway, PARP cleavage, and the up-regulation of
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Bax than the treatment with TRAIL alone. In addition,
combined treatment of DMNB and TRAIL increased
surface expression of DR5 in both PC3 and KM12 cells,
which did not respond to TRAIL alone (Figure 11B).
These results suggest that the inactivation of the DNA-
PKcs/Akt signaling pathway with siRNA or small mole-
cules may be a useful strategy to increase the suscept-
ibility of TRAIL-resistant solid tumor cells to TRAIL-
induced cell death.

Discussion
It is unclear why some cells are sensitive to TRAIL-
induced apoptotic stimuli, whereas other cell types

survive after exposure to TRAIL. Therefore, it is neces-
sary to characterize the molecular mechanisms underly-
ing this apoptotic sensitivity. Furthermore, the
molecular determinants regulating TRAIL sensitivity in
metastatic cancer cells are still poorly understood. In
this study, we demonstrated the differential TRAIL
responsiveness of primary human prostate adenocarci-
noma PC3 and colorectal carcinoma KM12 cells and
their respective highly metastatic PC3-MM2 and
KM12L4A sublines. Interestingly, PC3-MM2 and
KM12L4A cells were more susceptible to TRAIL than
their primary counterparts. We found that DR5 could
be the major receptor involved in TRAIL-mediated
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Figure 7 Down-regulation of DNA-PKcs/pAkt in TRAIL-treated metastatic cancer cells and prevention of caspase-3 dependent DNA-
PKcs cleavage by suppression of c-Myc in the cells. (A) The cell lysates obtained from PC3 and PC3-MM2 cells (left) treated with TRAIL (2 or
10 ng/ml for 6 h) or KM12 and KM12L4A cells (right) treated with TRAIL (5 or 25 ng/ml for 8 h) were subjected to Western blot analysis to
monitor the levels of DNA-PKcs and its CF, phosphorylated Akt Ser473 (pAkt) and total Akt (tAkt). Actin was used as a loading control. (B) PC3-
MM2 cells were transfected with siRNA against c-myc or scrambled siRNA as a control. After 48 h, the transfectants were treated with TRAIL (1 or
5 ng/ml) for 6 h and were subjected to Western blot analysis to monitor the changed levels of c-Myc and DNA-PKcs (left). The cell lysates of
PC3-MM2 cells treated with TRAIL (5 ng/ml) for 4 h were subjected to Western blot analysis to monitor levels of caspase-3, DNA-PKcs, PARP and
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pathway and enhances responsiveness to TRAIL. (A) PC3 (left) and KM12 cells (right) were transfected with siRNA against DNA-PKcs or
scrambled siRNA as a control. After 48 h, the transfected PC3 and KM12 cells treated with the indicated doses of TRAIL for 6 and 8 h,
respectively, and were subjected to Western blot analysis to monitor the levels of DNA-PKcs, pAkt, tAkt, caspases (caspase-8, -9, and -3) and Bax.
The levels of PARP and its cleavage fragment (CF) in the transfectants were also determined. Actin was used as a loading control. (B) PC3 (left)
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apoptosis of these highly metastatic cells. Previously, we
and other group reported that the expression of DR5 in
MDR cells was up-regulated following TRAIL treatment
[28,29]. In case of our results, cell surface expression of
DR5, but not DR4, in PC3-MM2 and KM12L4A cells
was up-regulated after TRAIL treatment whereas DR4/
DR5 expression in primary PC3 and KM12 cells was not
modulated by TRAIL treatment (data not shown).

Moreover, pre-treating PC3-MM2 and KM12L4A cells
with a neutralizing antibody against the DR5 receptor
strongly reduced the degree of apoptosis induced by
TRAIL. However, DR4 neutralizing antibody did not sig-
nificantly affect TRAIL-triggered apoptosis in these
highly metastatic cells, indicating that TRAIL induced
apoptosis occurs preferentially via DR5, and therefore,
DR5 could be the major receptor involved in increased

Figure 9 Suppression of DNA-PKcs leads to an increase of cell surface expression of DR5. (A) PC3 and KM12 cells were transfected with
siRNA against DNA-PKcs or scrambled siRNA as a control. After 48 h, the transfected cells were treated with the indicated doses of TRAIL for 2
h. Thereafter, the transfected cells were incubated with anti-DR5 antibody (1:100), and subsequently labeled with FITC-conjugated secondary
antibodies (1:200) to determine the surface expression of DR5. (B) PC3 (upper) and KM12 cells (lower) were treated with 5 μM DMNB for 4 and 6
h, and then incubated with an anti-DR5 antibody (1:100), and subsequently labeled with FITC-conjugated secondary antibodies (1:200) to
determine the surface expression of DR5. Mouse IgG was used as an isotype control. The shaded and unshaded peaks correspond to control
and specific staining, respectively.
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susceptibility of metastatic cells to TRAIL. We also
found that the levels of c-FLIPL/S and Mcl-1, the major
factors for resistance to TRAIL-induced apoptosis, were
significantly decreased in PC3-MM2 and KM12L4A
cells compared to their primary counterparts. Therefore,
our data suggest that high susceptibility to TRAIL of
metastatic cancer cells is associated with up-regulation
of DR5 and concurrent down-regulation of c-FLIPL/S

and Mcl-1.

It has been reported that TRAIL-resistant cells can be
resensitized by c-Myc, which induces DR5 expression, and
represses the transcription of both c-FLIP and Mcl-1 [30].
Consistently, in our data the expression of c-Myc was sig-
nificantly increased in PC3-MM2 and KM12L4A cells
with high metastatic potency compared to their primary
cells. c-Myc is deregulated in a wide range of human can-
cers, including breast, colon, cervical and small-cell lung
carcinomas, osteosarcomas, glioblastomas, melanoma and

A

B

Figure 10 Effect of DMNB on TRAIL-induced cytotoxicity and apoptosis. PC3 (A) and KM12 (B) cells were treated with the indicated doses
of TRAIL in the presence or absence of DMNB (1, 5, or 10 μM), and cell survival was determined after 96 h of incubation using the MTT assay
(left). PC3 and KM12 cells were treated with the indicated doses of TRAIL in the presence or absence of 5 μM DMNB for 6 or 8 h, respectively.
Thereafter, the percentage of apoptotic cells was determined using Annexin V staining and flow cytometry (right). Each point is the average of
triplicate determinants. *p < 0.05, **p < 0.01, ***p < 0.001.
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myeloid leukaemias, and c-Myc over-expression is fre-
quently correlated with aggressive metastasis, poor differ-
entiation and poor prognosis [31]. Paradoxically, in
addition to promoting proliferation, c-Myc inhibits survi-
val signals, resulting in apoptosis, if the apoptotic signal
is sufficiently strong [11]. On the other hand, activation
of c-Myc renders primary and non-transformed cells sen-
sitive to TNF-a, CD95L, and TRAIL-induced apoptosis
[13,18,19,32,33]. It is known that c-Myc can alter the
expression of several key players of the death receptor
pathway, such as up-regulation of DR5 [13] and down-
regulation of c-FLIP [19], promoting the activation of
death receptors and DISC and, thus, renders cells sensi-
tive to TRAIL-induced apoptosis [31]. In addition, it was
demonstrated that c-Myc suppresses Mcl-1 transcription,
and is constitutively bound to the Mcl-1 promoter [18].
Therefore, our results suggest that increased sensitivity to
TRAIL in metastatic cancer cells may be in part due to
increased expression of c-Myc in the cells, which is asso-
ciated with up-regulation of DR5 cell surface expression
and down-regulation of c-FLIP and Mcl-1. In addition to
enhancement of death-receptor signaling, c-Myc also
amplifies the death signal at the mitochondria for syner-
gistic induction of apoptosis by activating Bak, enabling
TRAIL to fully activate the caspase machinery in human
cells [10,12]. We found that after treatment with TRAIL
activity of caspases including caspase-8, -9, and -3 were
higher, and up-regulation of Bax and down-regulation of
Bcl-2 were more significant in PC3-MM2 and KM12L4A
cells than in their primary cells. Since c-FLIPL and Mcl-1
were known as substrates of caspases [34,35], it could be
possible that TRAIL-induced potent activation of cas-
pases in metastatic cancer cells led to accelerated down-
regulation of c-FLIPL and Mcl-1. Therefore, these
increased proapoptotic responses to TRAIL in the highly
metastatic cancer cells might be attributed to the
increased level of c-Myc.
Moreover, PC3-MM2 and KM12L4A cells showed the

enhanced constitutive expression of DNA-PKcs as well
as c-Myc compared to the corresponding primary cells.
DNA-PK, a complex consisting of the regulatory subu-
nits Ku70/80 and the catalytic subunit DNA-PKcs, plays
a central role in the repair of DNA double-strand breaks
(DSB). Over-expression of DNA-PKcs was reported in
various human tumors [36-38], and the activity and pro-
tein/mRNA levels of DNA-PKcs were significantly
higher in tumor tissues than in normal tissues [39]. Pre-
viously we demonstrated that the DNA-PK activity is
remarkably increased in metastatic cancer cells [14].
Although DNA-PKcs was primarily defined as a compo-
nent of the DNA DSB repair complex, DNA-PKcs is
implicated, directly and indirectly, in various cellular
metabolic processes, since DNA-PKcs may be able to
phosphorylate the oncoproteins c-Myc, c-fos, and c-abl

[40]. DNA-PKcs activity may contribute to the overex-
pression of c-Myc, probably via its critical role in main-
taining the stability of c-Myc [15,40]. DNA-PKcs also
activates Akt via phosphorylation of Ser473, which in
turn inactivates GSK-3b via phosphorylation of Ser9,
resulting in the stabilization of c-Myc [15]. We showed
a prominent interaction between DNA-PKcs and c-Myc
and an increased level of phosphorylated c-Myc levels in
PC3-MM2 cells compared to PC3 cells, suggesting the
possibility that the overexpressed DNA-PKcs might con-
tribute to the overexpression c-Myc in metastatic cancer
cells via its stabilization. As previously described, c-Myc
can participate in cell death as a pro-apoptotic factor
[10,12]. In our experiment, we demonstrated that
siRNA-mediated depletion of c-Myc in metastatic cancer
cells suppressed TRAIL-induced up-regulation of DR5
and activation of caspase, and these phenomena could
be associated with decreased cytotoxic effect of TRAIL
on PC3-MM2 and KM12L4A cells.
It is known that the inhibition of Akt in gliomas

enhances their susceptibility to TRAIL [41] and TRAIL
down-regulates Akt levels by caspase-dependent degra-
dation [42]. In addition, DNA-PKcs, an upstream regula-
tor of Akt, is cleaved by caspase-3 and, thus, the
inactivation of these molecules occurs during apoptosis
[43,44]. Our data showed that the cleavage of DNA-
PKcs and the subsequent reduction of DNA-PKcs and
pAkt levels occurred in the PC3-MM2 and KM12L4A
cells after TRAIL treatment, but not in their primary
counterparts, even though the metastatic cells exhibited
higher basal levels of DNA-PKcs and pAkt than their
primary counterparts. This TRAIL-induced suppression
of DNA-PKcs/Akt signaling pathway in metastatic can-
cer cells seemed to be at least in part due to overexpres-
sion of c-Myc, since it was prevented by knockdown of
c-Myc. Therefore, our results suggest that the amplified
TRAIL-induced caspase activation by overexpressed c-
Myc may suppress the anti-apoptotic activity of DNA-
PKcs by increasing its proteolytic cleavage and conse-
quently promote apoptosis in the metastatic cancer
cells. Finally, we found that suppression of DNA-PKcs
by siRNA and DNMB significantly increased TRAIL-
induced growth inhibition and apoptosis in TRAIL-
insensitive PC3 or KM12 cells, which was accompanied
by the inhibition of Akt S473 phosphorylation, the acti-
vation of caspases (caspase-8, -9, and -3), and the up-
regulation of the cell surface expression of DR5. Indeed,
it has been reported that inhibitors of DNA-PK have a
great potential to enhance the efficacy of chemotherapy
and radiotherapy [45-47].

Conclusions
This study showed the positive relationship between c-
Myc expression in highly metastatic human prostate and
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colon cancer cells and susceptibility to TRAIL-induced
apoptosis, which indicated that TRAIL might be used as
an effective therapeutic modality for advanced meta-
static cancers overexpressing c-Myc. In addition,
DMNB, a specific inhibitor of DNA-PK, potentiated
TRAIL-induced cytotoxicity and apoptosis in relatively
TRAIL-insensitive KM12 and PC3 cells and therefore
functioned as a TRAIL sensitizer, which might be clini-
cally useful for the treatment of relatively TRAIL-insen-
sitive human cancers.

Methods
Cell culture and Reagents
The poorly metastatic primary human colorectal carci-
noma KM12 cells were originally derived from a Dukes’
B2 colon cancer. The highly liver-metastatic KM12L4A
cells were derived from KM12 cells. Human androgen-
independent PC3 prostate adenocarcinoma cells and
PC3-MM2 cells, a variant of PC3 selected for their
highly metastatic potential were used in this study.
These four cell lines were provided by Professor IJ Fidler
(MD Anderson, TX, USA). The cells were maintained in
culture (5% CO2 and 95% at 37°C) as adherent mono-
layers in DMEM supplemented with 10% fetal bovine
serum (FBS), sodium pyruvate, nonessential amino
acids, L-glutamine, and vitamin solution. The recombi-
nant human soluble TRAIL was obtained from R&D
Systems (Minneapolis, MN, USA). 4,5-dimethoxy-2-
nitrobenzaldehyde (DMNB) was purchased from Merck
KgaA (Darmstadt, Germany).

Cell Proliferation Assay (MTT assay)
Cell proliferation was measured by counting viable cells
by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT; Sigma Chemical Company,
St. Louis, MO, USA) colorimetric dye-reduction
method. Exponentially growing cells (5 × 103 cells/well)
were plated in a 96-well plate and incubated in growth
medium treated with the indicated concentration of
TRAIL and/or DMNB at 37°C. After 96 h, the medium
was aspirated using centrifugation and MTT-formazan
crystals solubilized in 100 μl DMSO. The optical density
of each sample at 570 nm was measured using ELISA
reader. The optical density of the medium was propor-
tional to the number of viable cells. Inhibition of prolif-
eration was evaluated as a percentage of control growth
(no drug in the medium). All experiments were repeated
in at least two experiments in triplicate.

Flow cytometry analysis
Cells (5 × 105 cells/well) treated with or without TRAIL
(or DMNB) were centrifuged at 500 × g, washed with
phosphate-buffered saline (PBS), and resuspended in
500 μl PBS. The cells were then incubated with 5 μl

mouse IgG, or anti-DR4 or -DR5 monoclonal mouse
antibody (1:100; R&D Systems, Minneapolis, MN, USA)
for 2 h. After washing with PBS, FITC-conjugated rabbit
anti-mouse IgG (1:200; Sigma Chemical Co., St. Louis,
MO, USA) was added to the cell suspension and incu-
bated for 2 h on ice followed by washing with PBS.
After rinsing, the samples were analyzed by flow cyto-
metry using a FACSCalibur flow cytometer (Becton
Dickinson, San Jose, CA, USA). The data were analyzed
using the CellQuest program.
To determine whether TRAIL-induced apoptosis

occurs through the death receptors, cells were pre-
treated with the TRAIL-R1 (anti-DR4) or TRAIL-R2
(anti-DR5) antibody (0.5 μg/ml, R & D Systems, Min-
neapolis, MN) 3 h before treatment with 2 and 10 ng/
ml TRAIL for 6 h. In control experiments, cells were
treated normal goat IgG (Sigma-Aldrich Corp., St Louis,
MO, USA) before TRAIL treatment. Apoptosis was the
measured by annexin V assay.

Quantitative real-time RT-PCR
Quantitative analysis of FLIPL/S mRNA levels was per-
formed by the SYBR Green real time PCR method using
2X Power SYBR® Green PCR Master Mix (Applied Bio-
systems, CA, USA) in a Bio-Rad iCycler & iQ Real-time
PCR systems (Bio-Rad, Hercules, CA, USA). An increase
in the fluorescence of the reporter dye, SYBR green,
during quantitative real-time RT-PCR is due to the
SYBR green binding to double-stranded DNA. The
sequences of forward and reverse primers for FLIPL,
FLIPS and b-actin (as loading control) are the following:
FLIPL (forward) 5’-TTCCAGGCTTTCGGTTTCTT-3’
and (reverse) 5’-GTCCGAAACAAGGTGAGGGT-3’;
FLIPS (forward) 5’-ACCCTCACCTTGTTTCGGAC-3’
and (reverse) 5’-CTTTTGGATTGCTGCTTGGA-3’; and
b-actin (forward) 5’-CAGAGCAAGAGAGGCATCCT-3’
and (reverse) 5’-TTGAAGGTCTC AAACATGAT-3’.
After initial denaturation step at 95°C for 10 min, each
amplification step was repeated 60 cycles with the fol-
lowing condition: denaturation at 95°C for 30 sec,
annealing at 55°C for 60 sec and extension at 60°C for
60 sec. Each sample was tested in triplicate, and gene
expression levels were normalized to b-actin mRNA.

Western blot and immunoprecipitation analysis
Protein samples were separated by SDS-PAGE and
blotted onto a nitrocellulose membrane (Hybond-ECL;
GE Healthcare, Buckinghamshire, UK). The membrane
was incubated with antibody as specified, followed by a
secondary antibody conjugated with horseradish peroxi-
dase. Specific antigen-antibody complexes were detected
using enhanced chemiluminescence (PerkinElmer Life
Sciences, MA, USA). Western blot analysis was per-
formed with the following antibodies: Bax, caspase-3,
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PARP and Bcl-2, (Santa Cruz Biotechnology, CA, USA),
Akt, phospho-Akt (Ser 473), caspase-8, caspase-9 (Cell
signaling Technology, MA, USA), DNA-PKcs (Thermo
Fisher Scientific, CA, USA), c-Myc, phospho-c-Myc
(pMyc, Epitomics, CA, USA), and b-actin (Sigma-
Aldrich, St. Louis, MO, USA). Secondary antibodies
were obtained from GE Healthcare (Buckinghamshire,
UK). For immunoprecipitation, whole cell or nuclear
extracts from PC3 and PC3-MM2 cells were incubated
with anti-DNA-PKcs or c-Myc antibody overnight at 4°
C, and then protein G-Sepharose beads (Sigma-Aldrich
Corp., St Louis, MO, USA) were added and constantly
mixed for 4 h. The beads were collected by centrifuga-
tion for 5 min at 15,000 × g and 4°C, and washed 3
times with cold extraction buffer. The beads with
immune complexes were boiled and electrophoresed on
8% SDS-PAGE gels and analyzed by Western blotting
using antibodies against c-Myc, pMyc or DNA-PKcs.

siRNA Transfection
The DNA-PKcs (5’-CAGUCUUAGUCCGGAU-
CAUdTdT-3’), c-Myc (5’-GACAGUGUCAGAGUCCU-
GAdTdT-3’), and control scrambled (5’-CUUCCCGA
AAACUUGAGACdTdT-3’) siRNAs were used in this
study. Cells were transfected with 0.1 μM siRNA for 48 h
using oligofectamine according to the manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA). In brief, the
siRNA/oligofectamine complex was added to cells (2 × 105

cells/well) that were seeded in 6-well plate. The cells were
incubated for 4 h at 37°C in serum free DMEM medium
and then FBS was added. After 48 h, the cells were treated
with TRAIL and collected for Western blot analysis to
determine the levels of DNA-PKcs, c-Myc, and the indi-
cated proteins.

Apoptosis assay
Untransfected control cells or transfected with the var-
ious siRNAs cells (2 × 105 cells/ml) were treated with
or without TRAIL and/or DMNB for the indicated
times. The cells were centrifuged and resuspended in
500 μl of a staining solution containing Annexin V
fluorescein (FITC Apoptosis Detection Kit; BD Phar-
mingen, San Diego, CA, USA) and propidium iodide in
PBS. After incubation at room temperature for 15 min,
the cells were analyzed by flow cytometry. Annexin V
binds to cells that express phosphatidyl serine on the
outer layer of their cell membrane, and propidium
iodide stains the cellular DNA of cells with a compro-
mised cell membrane. This allows for the discrimina-
tion of live cells (unstained with either fluorochrome)
from apoptotic cells (stained only with Annexin V)
and necrotic cells (stained with Annexin V and propi-
dium iodide).

Statistical analysis
The results obtained were expressed as the mean ±
standard error (SE) from at least three independent
experiments. The data were analyzed using the Student’s
t-test. *p <0.05, **p <0.01, and ***p <0.001 were consid-
ered statistically significant in all experiments.

Abbreviations
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