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A B S T R A C T   

Water quality index (WQI) plays a crucial role in guiding water resource management. However, 
WQI calculation methods are not uniform, especially the selection of water parameters and the 
weighting given to each water parameter (Pi). To optimize WQI calculation, 132 water samples 
from seven rivers and from Chaohu Lake (33 sampling sites in Chaohu Lake Basin) in four seasons 
were collected, and the water parameters and microbiota composition were analyzed using high- 
throughput sequencing of 16 S rDNA. The correlation coefficient R2 between water parameters 
and microbiota composition using redundancy analysis with the Monte Carlo method were 
calculated, and the water parameters that significantly correlated with the microbiota composi-
tion were selected to calculate WQImin. The results showed that TP, COD, DO, and Chl a correlated 
significantly with water microbiota composition. WQIb calculated by substituting R2 for Pi was 
more consistent with the similarity between the microbiota compositions. WQIminb calculated 
using TP, COD, and DO was consistent with WQIb. The results of WQIb and WQIminb were more 
consistent than those of WQI and WQImin. These results imply that using R2 instead of Pi could 
help obtain a more stable WQIb that could better reflect the biological characteristics of the 
Chaohu Lake Basin.   

1. Introduction 

Rivers and lakes are important components of the Earth’s ecosystem, acting as primary links between terrestrial and ocean habitats 
[1]. Rivers and lakes provide important water resources for irrigation, and for industrial and domestic purposes [2,3]. Therefore, rivers 
and lakes play an essential role in maintaining the geochemical cycle and human civilization [4]. Serious water quality degradation 
events occur commonly worldwide due to numerous stresses, including natural processes, and anthropogenic activities [3,5,6]. 
Although water quality assessment in rivers and lakes is important [6], and water quality index (WQI) and minimum WQI (WQImin) 
have been widely used to indicate water quality [3,7–12], when calculating WQI, there is no unified weighting factor for each water 
physicochemical parameter, leading to nonuniformity of conclusions. For instance, regarding the calculation of WQI, Mathuthu et al. 
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[7] set weights for DO, fecal coliforms, pH, BOD, NO3
− , PO4

3− , temperature, suspended solids, and total solids to 0.17, 0.15, 0.12, 0.10, 
0.10, 0.10, 0.10, 0.08, and 0.08, respectively. Debels et al. [13] set weights for DO, BOD5, ammonia, nitrates, nitrites, orthophosphate, 
temperature, pH, conductivity, and COD to 0.18, 0.17, 0.13, 0.07, 0.07, 0.12, 0.10, 0.10, 0.06, and 0.17, respectively. Pesce and 
Wunderlin [14] introduced a subjective constant k, and when calculating the subjective WQI, set weights for DO, total solids, and 
surfactants to the maximum value (4); ammonia nitrogen, BOD-5, COD, and total coliforms to 3; nitrates, nitrites, oil and grease, 
dissolved solids, sulfates, and turbidity to 2; and calcium, chloride, hardness, magnesium, pH, phosphorus, and temperature to 1. 
Therefore, establishment of a unified calculation method of the weighting factor for each water physicochemical parameter is of great 
significance for optimizing calculation of WQI and WQImin and avoiding artificial deviation. 

The microbiota in rivers and lakes is a diverse functional assemblage of microorganisms, including viruses, prokaryotes, and 
microeukaryotic phototrophs and heterotrophs that influence key processes in river and lake nutrient cycles [15,16]. These microbes 
are vital to the river food web, and changes in their composition can vary temporally, resulting in unintended consequences for river 
ecosystem health [17]. Seasonal fluctuations in flow, water temperature (WT), input of inorganic compounds, and suspension and 
deposition of allochthonous and autochthonous organic materials have the potential to alter the structure of microbial communities in 
rivers and lakes [18,19], thereby affecting the circulation of geochemical substances and the flow of energy through water micro-
organisms. By analyzing the correlation between environmental factors and the microbiota in water, the weights of environmental 
factors can be calculated, potentially increasing the environmental indicative value and objectivity of WQI and WQImin. 

The Chaohu Lake Basin (30◦52′25′′-32◦7′53′′N, 116◦23′59′′-118◦22′5′′E) with 1.35 × 104 km2 of drainage area belongs to the water 
system on the left bank of the downstream region of the Yangtze River. The area has a subtropical humid monsoon climate, with four 
distinct seasons [2]. There are 33 rivers in the Chaohu Lake Basin that belong to 7 river systems, namely Zhegao River (ZGR), 
Nanfei-Dianbu River (NFR), Pai River (PR), Hangbu-Fengle River (HBR), Baishishan River (BSSR), Zhao River (ZR), and Yuxi River 
(YXR). In this system, YXR flows out of the lake and connects with the Yangtze River, and the other six rivers are tributaries to the lake 
[20]. Zhang et al. [21] divided the seven rivers into different river types according to the landscape composition of the river basin: HBR 
is a forest river, NFR and PR are urban rivers, BSSR and ZR are agricultural rivers, ZGR is a mixed type river, the YXR estuary and 
upstream region of the river are mixed type rivers, while its midstream and downstream regions are forest rivers. 

To verify that WQI and WQImin can be calculated based on reliable correlations between microbiota and physicochemical pa-
rameters, the water physiochemical parameters of the rivers and lake water samples collected in the Chaohu Lake Basin over a year 
were measured, and the water microbiota composition were analyzed through high-throughput sequencing of 16 S rDNA amplifi-
cation. The correlation coefficient R2 between each physicochemical parameter and the microbiota composition were calculated, and 
the physicochemical parameters that significantly correlated with microbiota composition were identified using redundancy analysis 
(RDA) and Monte Carlo methods. WQIb and WQIminb were calculated based on R2 and the significantly correlated physicochemical 
parameters. These results provide a methodological reference for the subsequent optimization of river and lake water quality as-
sessments, and assessment of the impact of water quality on the composition and metabolism of freshwater microbiota. 

2. Materials and methods 

2.1. Sample collection and determination of water physicochemical properties 

A total of 33 fixed sampling sites were chosen in Chaohu Lake (eight sampling sites including four sampling sites in West Chaohu 
Lake [WCL], four sampling sites in East Chaohu Lake [ECL], and 25 sampling sites in the seven rivers). The sampling sites were set in 
the upstream, midstream, downstream, and estuary segments of the NFR, HBR, ZR, and YXR and in the midstream, downstream, and 
estuary segments of the PR, BSSR, and ZGR. All sampling sites were located using GPS [20]. 

Water samples were collected on October 14, 2019 (autumn), January 3 (winter), April 24 (spring), and July 10, 2020 (summer) as 
previously described [20]. Water was collected every 0.5 m depth using a 1-L water collector, and 1000 mL of the mixed water sample 
was filtered using a GF/C filter membrane with 0.22 μm pore size for collecting microorganisms. Water physicochemical properties 
were measured according to a previously described [20]. 

2.2. DNA extraction and high-throughput sequencing of 16 S rDNA 

Water microbiota DNA was extracted using a DNeasy PowerSoil kit (QIAGEN, Hilden, Germany). The V4–V5 hypervariable region 
of prokaryotic 16 S rDNA was amplified using primers 515 F and 909 R, and high-throughput sequencing was performed using a HiSeq 
3000 platform (Illumina, San Diego, CA, USA) at Guangdong Meilikang Bio-Science Ltd. (Dongguan, China), as previously described 
[22,23]. 

Sequenced raw reads were merged into tags using FLASH 1.2.8 [24]. Low-quality tags (length <300 bp, containing an ambiguous 
base or an average base quality score <30) were filtered to obtain high-quality tags using QIIME 1.9.0 [25]. Subsequently, chimeric 
sequences were identified and removed from the high-quality tags to get effective tags using the UCHIME algorithm for further analysis 
[26]. Effective tags were clustered into operational taxonomic units (OTUs) at 97% similarity using UPARSE [27]. Taxonomic 
assignment of each OTU was determined using the RDP classifier [28]. Subsequently, all samples were randomly resampled using the 
same effective tags for further analysis [29]. 
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Fig. 1. Phylum composition of water microbiota (A) and RDA profile illustrating the correlation between water physicochemical properties and 
microbiota composition (B) in Chaohu Lake Basin. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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2.3. WQI calculation 

The objective water quality index, WQI was calculated as follows: 

WQI=

∑

i
CiPi

∑

i
Pi

(1)  

where Ci is the value assigned to each parameter after normalization, and Pi is the relative weight assigned to each parameter [13,14]. 
To ensure that Pi is closer to the impact of various water parameters on microbiota, the correlation coefficient R2 between the water 
parameters and microbiota compositions were calculated used RDA and Monte Carlo methods, and WQIb was calculated using R2 

instead of Pi and compared with the WQI. 
To simplify the water parameters used for the WQI calculation, the water parameters that significantly correlated with the 

microbiota compositions obtained using RDA with the Monte Carlo method were screened to calculate WQImin and WQIminb, and 
compared them with WQI and WQIb. 

2.4. Data analysis 

Regression analysis was conducted using R 4.2.0 software with the basicTrendline package. RDA with the Monte Carlo method was 
performed using R 4.2.0 software with vegan and ade4 packages. 

3. Results 

To obtain water microbiota composition information in the Chaohu Lake Basin, 12, 044, 556 high-quality sequences in 132 samples 
collected over the four seasons were measured. Next, 29,606 sequences were randomly selected from each sample for subsequent 
analyses. These sequences were clustered into 236,280 OTUs, of which 185,130 (78.35%) were singletons. Except for a few OTUs, most 
OTUs were divided into 75 phyla (three archaeal phyla and 72 bacterial phyla), in which Acidobacteria, Actinobacteria, Bacteroidetes, 
Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Fusobacteria, Gemmatimonadetes, Nitrospirae, OD1, Planctomycetes, Proteobac-
teria, Synergistetes, TM7, and Verrucomicrobia dominated (Fig. 1A). Furthermore, these OTUs were divided into 2076 prokaryotic 
genera, including 408 dominant genera (Table S2). 

The results of RDA using the Monte Carlo method based on water parameters and genus composition of the microbiota showed that 
TP, COD, DO, and Chl a correlated significantly with water microbiota composition (Fig. 1B). Simultaneously, R2 for each water 
parameter was calculated (Table 1). The WQI was calculated according to Pi and Ci described by Pesce and Wunderlin [14], and WQIb 
was calculated using R2 instead of Pi. Pearson correlation analysis of the water parameters showed that COD correlated significantly 
with Chl a (Fig. S1). Therefore, TP, COD, and DO were used as water parameters for calculating WQImin and WQIminb, and compared 
these parameters with WQI and WQIb. Although the fluctuation trends of the four WQI were basically the same, and the WQIs of NFR 
and PR were lower than those of the other rivers, WCL, ECL, and WQImin were higher than the other three WQI values in most samples, 
while WQI was lower than the other three WQI values in most samples. The results for WQIb and WQIminb were more consistent than 
those for WQI and WQImin (Fig. 2A). Regression analysis also showed that the consistency between WQIb and WQIminb was the best, 
followed by that between WQI and WQIb. Consistency between WQI and WQImin was the worst (Fig. 2B–G). 

4. Discussion 

The WQI plays a crucial role in water resource management and is widely used to assess surface water and groundwater [3,11,12, 

Table 1 
Correlation between water physicochemical properties and microbiota composition. *, p < 0.05; **, p < 0.01; ***, p < 0.001.  

Water physicochemical properties RDA1 RDA2 R2 Pr (>r) 

WT − 0.03918 0.99923 0.0264 0.185 
DO 0.7306 − 0.68281 0.0444 0.049* 
pH 0.73764 0.67519 0.0291 0.144 
Cond 0.73575 − 0.67726 0.0315 0.118 
Trans − 0.46087 − 0.88747 0.0256 0.223 
TN 0.87299 0.48774 0.0071 0.61 
TP 0.2606 0.96545 0.0803 0.001*** 
PO4–P 0.69768 0.7164 0.0121 0.475 
NH4–N − 0.84026 0.54218 0.0004 0.979 
NO3–N 0.89462 − 0.44683 0.0212 0.229 
NO2–N 0.96885 − 0.24764 0.0121 0.433 
COD 0.54291 0.83979 0.0429 0.042* 
BOD5 0.17524 0.98453 0.0179 0.308 
Chla 0.4597 0.88807 0.0656 0.004**  
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30]. However, the methods used to calculate WQI lack uniformity. These differences are mainly reflected in the fixing of weight values 
Pi for different water parameters and the number of water parameters used to calculate WQI [2,10,13,31,32]. Given that water pa-
rameters that exert the greatest impact on aquatic organisms should be given maximum weight when calculating WQI and water 
parameters that have no obvious impact on aquatic organisms should be given minimum weight [14], it is reasonable to directly 
analyze the correlation between water parameters and aquatic organisms and weight these water parameters according to their 
correlation coefficients. In this study, the correlations between water parameters and bacterioplankton community compositions were 
analyzed using RDA with the Monte Carlo method, and calculated their correlation coefficients R2. Then R2 were used instead of Pi to 
optimize the calculation of WQI to obtain WQIb, and WQImin and WQIminb were calculated according to the screened water parameters 
that significantly correlated with the microbiota structure. In the present study, the results showed that WQIb and WQIminb were more 
stable than WQI and WQImin, and were more consistent with the similarity in microbiota composition between samples. The above 
results imply that WQIb and WQIminb better reflect the water microbiota structure than WQI and WQImin. 

Transparency and chlorophyll a concentration are two important water parameters that are closely related to river and lake pri-
mary productivity [33–36], and are used to assess the degree of eutrophication of rivers and lakes [37–40]. However, they are usually 
excluded when calculating WQI [14,32,40]. Although using the trophic level index calculated using chlorophyll a, total phosphorus, 
total nitrogen, transparency, and permanganate index can compensate for their absence in WQI calculation, including the two water 
parameters, especially transparency, in the WQI calculation possibly enables WQI to better reflect water’s biological characteristics. In 
the present study, the results showed that transparency had no significant correlation with other water parameters, while chlorophyll a 
concentration exhibited a very significant correlation with COD (Fig. S1). Therefore, the impact of chlorophyll a concentration on 
aquatic organisms may be partially represented by the COD during data analysis. 

Although it was confirmed in this study that using the correlation coefficient R2 between water parameters and microbiota 

Fig. 2. Differences in WQI values obtained by different calculation methods (A) and correlations between WQI values obtained by different 
calculation methods (B–G) in Chaohu Lake Basin. (B)–(G) show correlations between WQI and WQIb, WQI and WQImin, WQI and WQIminb, WQIb and 
WQImin, WQIb and WQIminb, and WQImin and WQIminb, respectively. 
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composition instead of Pi could help obtain a more stable WQIb that could better reflect the biological characteristics of rivers and 
lakes, it was still failed to improve the standard conversion method for each water parameter in this study. The standard conversion 
method should be optimized according to the impact of the water parameters on aquatic organisms. In addition, in this study, the 
compositions of prokaryotic communities were used as a biological characteristic for analysis. Although prokaryotic communities play 
an important role in the biological metabolism and energy flow of rivers and lakes, the inclusion of eukaryotic communities in the 
evaluation system may improve the indicative value of the WQI for the biological characteristics of the river or lake ecosystem. 

Furthermore, in this study, we provide a method to optimize the calculation of WQI rather than a WQI standard that can be used in 
different scenarios. In different application scenarios of WQI, the biological community information used in this method should also be 
different. For example, if WQI is concerned about the indication of water self-purification capacity, it is recommended to use 
planktonic bacterial community as biological community information, because the bacterioplankton community has the major impact 
on the water self-purification capacity [41]. If the WQI is concerned about its indicative effect on aquatic vertebrates, it is recom-
mended to use aquatic vertebrate communities as biological community information. Another issue should be clarified is that we had 
adopted the DNA high-throughput sequencing technology of 16 S rRNA gene to analyze the bacterioplankton community composition 
in this study, mainly because this method is widely used to analyze the composition of bacterioplankton community (such as [1, 
42–45]. However, this does not mean that other analysis methods of plankton community, such as morphological identification [20, 
46,47], are not applicable to the calculation of WQIb and WQIminb that described in this study. 

5. Conclusion 

Using the correlation coefficient R2 between water parameters and microbiota composition instead of Pi could yield a more stable 
WQIb that could better reflect the biological characteristics. 

Author contribution statement 

Li Wu: conceived and designed the experiments; performed the experiments; analyzed and interpreted the data; contributed re-
agents, materials, analysis tools or data; wrote the paper. 

Yan Zhang:analyzed and interpreted the data; contributed reagents, materials, analysis tools or data. 
Ziying Wang: conceived and designed the experiments; performed the experiments; analyzed and interpreted the data; contributed 

reagents, materials, analysis tools or data. 
Ming Geng: conceived and designed the experiments; performed the experiments. 
Yajun Chen: performed the experiments. 
Fangyan Zhang: performed the experiments. 

Data availability statement 

Data associated with this study has been deposited at NCBI Sequence Read Archive database under the accession number 
PRJNA868422. 

Additional information 

Supplementary content related to this article has been published online at [URL]. 

Funding 

This research was funded by the National Natural Science Foundation of China [grant number, 51909051]. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e16697. 

References 

[1] Q. Liu, Z. Lai, C. Wang, J. Ni, Y. Gao, Seasonal variation significantly affected bacterioplankton and ecukaryoplankton community cimposition in Xijiang River, 
China, Environ. Monit. Assess. 194 (2022) 55, https://doi.org/10.1007/s10661-021-09712-9. 

L. Wu et al.                                                                                                                                                                                                             

https://doi.org/10.1016/j.heliyon.2023.e16697
https://doi.org/10.1007/s10661-021-09712-9


Heliyon 9 (2023) e16697

7

[2] Z.S. Wu, X.J. Lai, K.Y. Li, Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index, Ecol. Indicat. 121 (2021), 107021, https:// 
doi.org/10.1016/j.ecolind.2020.107021. 

[3] E. Mutlu, A.A. Uncumusaoglu, Assessment of spatial and temporal water pollution patterns in Aydos River (Turkey) by using water quality index and 
multivariate statistical methods, Desalination Water Treat. 246 (2022) 196–211. 

[4] E. Mutlu, A. Kurnaz, Determination of seasonal variations of heavy metals and physicochemical parameters in Sakiz Pond (Kastamonu-Turkey), Fresenius 
Environ. Bull. 26 (2017) 2807–2816. 

[5] A.S. Todd, A.H. Manning, P.L. Verplanck, C. Crouch, D.M. McKnight, R. Dunham, Climate-change-driven deterioration of water quality in a mineralized 
watershed, Environ. Sci. Technol. 46 (17) (2012) 9324–9332, https://doi.org/10.1021/es3020056. 

[6] W. He, Y. Xu, J. Zhang, J. Zhu, H. Dong, F. Zhong, H. Li, Characteristics analysis of water pollutants in Cihu Lake, China, based on a multivariate statistical 
analysis method, Environ. Monit. Assess. 195 (2023) 151, https://doi.org/10.1007/s10661-022-10762-w. 

[7] A.S. Mathuthu, F.M. Zaranyika, S.B. Jonnalagadda, Monitoring of water quality in upper mukuvisi river in harare, Zimbabwe, Environ. Int. 19 (1993) 51–61. 
[8] S.B. Jonnalagadda, G. Mhere, Water quality of the odzi river in the eastern highlands of Zimbabwe, Water Res. 35 (10) (2001) 2371–2376. 
[9] P. Zhao, X. Tang, J. Tang, C. Wang, Assessing water quality of Three Gorges Reservoir, China, over a five-year period from 2006 to 2011, Water Resources 

Mangement 27 (2013) 4545–4558, https://doi.org/10.1007/s11269-013-0425-x. 
[10] Z. Wu, X. Wang, Y. Chen, Y. Cai, J. Deng, Assessing river water quality using water quality index in Lake Taihu Basin, China, Sci. Total Environ. 612 (2018) 

914–922, https://doi.org/10.1016/j.scitotenv.2017.08.293. 
[11] X.Z. Nong, D.G. Shao, H. Zhong, J.K. Liang, Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index 

(WQI) method, Water Res. 178 (2020), 115781, https://doi.org/10.1016/j.watres.2020.115781. 
[12] L. Liu, X. You, Water quality assessment and contribution rates of main pollution sources in Baiyangdian Lake, northern China, Environ. Impact Assess. Rev. 98 

(2023), 106965, https://doi.org/10.1016/j.eiar.2022.106965. 
[13] P. Debels, R. Figueroa, R. Urrutia, R. Barra, X. Niell, Evaluation of water quality in the Chilián River (Central Chile) using physicochemical parameters and 

modified water quality index, Environ. Monit. Assess. 110 (2005) 301–322, https://doi.org/10.1007/s10661-005-8064-1. 
[14] S.F. Pesce, D.A. Wunderlin, Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River, Water Res. 34 (11) (2000) 2915–2926. 
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