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Abstract: Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells
and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone
and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP)
complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor
25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-
mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally,
and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D
homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland
megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated
cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid me-
galin functionality has not been assessed in the context of vitamin D. Within various models of chronic
kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory
results have been observed between human and rodent models. This review aims to provide an
overview of the current knowledge of megalin function in the context of vitamin D metabolism, with
an emphasis on extrarenal megalin, an area that clearly requires further investigation.
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1. Introduction

Vitamin D is a steroid hormone that plays several critical roles in the body, includ-
ing the regulation of systemic calcium and bone metabolism. It can be produced by the
skin or ingested from the diet, after which it undergoes two consecutive hydroxylation
steps. Firstly, in the liver, to 25(OH)D3 by mitochondrial or microsomal 25-hydroxylases
cytochrome P450 (CYP) 2R1 or CYP27A1. Secondly, 25(OH)D3 is transported to the
kidney, where it is hydroxylated to 1,25(OH)2D3 via the 1α-hydroxylase CYP27B1 [1].
The levels of 25(OH)D3 and 1,25(OH)2D3 in circulation appear to be primarily regulated
by the 24-hydroxylase CYP24A1, which catabolizes them to 24,25 dihydroxyvitamin D3
(24,25(OH)2D3) or 1,24,25 trihydroxyvitamin D3 (1,24,25(OH)3D3) allowing for further
catabolism into calcitroic acid and subsequent excretion in the urine [2,3] (Figure 1).
Circulating vitamin D3 metabolites are transported by the 58 kDa vitamin D Binding
Protein (DBP). DBP possesses the greatest affinity for 25(OH)D3, followed by 24,25(OH)2D3,
1,25(OH)2D3, and unhydroxylated vitamin D3 in order of greatest to least affinity [4–6].
As a result of DBP’s high circulating concentration and affinity for 25(OH)D3, virtually
all circulating 25(OH)D3 molecules are DBP-bound [6]. Although the affinity of DBP
for 1,25(OH)2D3 is lower than 25(OH)D3, the exceptionally high concentration of DBP
in circulation also suggests that most circulating 1,25(OH)2D3 is DBP-bound. As such,
the free concentrations of 25(OH)D3 and 1,25(OH)2D3 are 10 pM and 1 pM, respectively,
representing <0.1% and ~1% of their total circulating concentrations [7,8].
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Figure 1. General overview of vitamin D metabolism. Vitamin D3 can be obtained after ultraviolet-
mediated conversion of 7-dehydrocholesterol or from dietary sources. It then undergoes 
hydroxylation at the 25-position primarily through the enzymes cytochrome P450 (CYP) 2R1 or 
CYP27A1 to generate 25 hydroxyvitamin D3 (25(OH)D3). Maintenance of circulating levels of 1,25 
dihydroxyvitamin D3 (1,25(OH)2D3) is primarily achieved after CYP27B1-mediated 1α-
hydroxylation of 25(OH)D3 in the kidney, and CYP24A1 promotes catabolism of vitamin D 
compounds. Recent evidence shows that CYP27B1 and CYP24A1 are expressed in extrarenal 
calciotropic tissues, such as the parathyroid gland, raising possibilities for local, tissue-specific 
vitamin D activation, action, and inactivation. 

Megalin, an endocytic receptor abundantly expressed in the proximal tubular 
epithelial cells (PTEC) of the kidney, functions in the uptake of DBP complexed to 
25(OH)D3. This uptake facilitates the intracellular conversion of the 25(OH)D3 precursor 
to the active form, 1,25(OH)2D3. This role of megalin in the reabsorption of DBP-bound 
vitamin D metabolites from the renal proximal tubule in the kidney has been well 
established. 1,25(OH)2D3 or calcitriol, is the most biologically active form of vitamin D; 
however, other vitamin D metabolites have been implicated in conferring various 
biological functions [9].  

Figure 1. General overview of vitamin D metabolism. Vitamin D3 can be obtained after ultraviolet-
mediated conversion of 7-dehydrocholesterol or from dietary sources. It then undergoes hydroxyla-
tion at the 25-position primarily through the enzymes cytochrome P450 (CYP) 2R1 or CYP27A1 to
generate 25 hydroxyvitamin D3 (25(OH)D3). Maintenance of circulating levels of 1,25 dihydroxyvita-
min D3 (1,25(OH)2D3) is primarily achieved after CYP27B1-mediated 1α-hydroxylation of 25(OH)D3

in the kidney, and CYP24A1 promotes catabolism of vitamin D compounds. Recent evidence shows
that CYP27B1 and CYP24A1 are expressed in extrarenal calciotropic tissues, such as the parathyroid
gland, raising possibilities for local, tissue-specific vitamin D activation, action, and inactivation.

Megalin, an endocytic receptor abundantly expressed in the proximal tubular epithelial
cells (PTEC) of the kidney, functions in the uptake of DBP complexed to 25(OH)D3. This
uptake facilitates the intracellular conversion of the 25(OH)D3 precursor to the active form,
1,25(OH)2D3. This role of megalin in the reabsorption of DBP-bound vitamin D metabolites
from the renal proximal tubule in the kidney has been well established. 1,25(OH)2D3 or
calcitriol, is the most biologically active form of vitamin D; however, other vitamin D
metabolites have been implicated in conferring various biological functions [9].

The kidney was initially thought to be the sole organ responsible for producing ac-
tive 1,25(OH)2D3, but it is now recognized that the expression of CYP27B1 is widespread,
including in calciotropic tissues, such as the parathyroid gland [10]. Thus, although the
kidney is the primary source for 1,25(OH)2D3 in the circulation, the presence of extrarenal
CYP27B1 underscores the potential for local, tissue-specific 1,25(OH)2D3 production [11,12].
The actions of vitamin D can be broadly divided into two categories: (1) those that regulate
calcium and phosphate homeostasis, termed the ‘classical’ actions, and (2) the ‘non-classical’
actions, which can affect inflammation, immune function, anti-oxidation, and anti-fibrosis,
among many others [13–16]. Given its importance in nutrition, Vitamin D homeostasis has
been studied in many diseases where low levels of serum DBP, 25(OH)D3, or 1,25(OH)2D3
have been implicated in various conditions including cancers, cardiovascular diseases,
diabetes, inflammatory and autoimmune diseases [17–20]. Vitamin D primarily exerts its
actions through the nuclear vitamin D receptor (VDR), which is expressed in nearly all tis-
sues, with genomic screens identifying thousands of vitamin D response elements (VDREs)
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throughout the genome controlling hundreds of genes [21]. CYP27B1 expression has been
identified in numerous epithelia, the placenta, various bone cells, various cells of the im-
mune system, and endocrine glands, such as the parathyroid and thyroid glands [22–26].
A complete list has been summarized by Bikle et al.; however, the physiological relevance
of extrarenal tissues expressing CP27B1 has not been fully elucidated, and it is unclear
if 1,25(OH)2D3 influences hormone release in the thyroid gland [12]. Megalin is also ex-
pressed in all of these tissues, suggesting an interconnected role between megalin-mediated
uptake of vitamin D and the action of vitamin D-metabolizing enzymes in extrarenal tissues,
such as the parathyroid gland [27]. The role of megalin in the metabolism of vitamin D in
the kidney and extra-renal tissues is the focus of this review.

2. Megalin and Cubilin
2.1. Megalin Overview

Megalin is a large transmembrane glycoprotein of approximately 600 kDa (4665 amino
acids) with homology to the human low-density lipoprotein receptor family [28–30]. The
extracellular domain of human megalin has ligand-binding properties, due to the following
three kinds of repeats: (1) four clusters of cysteine-rich complement-type repeats, rep-
resenting the ligand-binding domains; (2) 16 growth factor repeats separated by eight
spacer sequences containing the tetrapeptide YWTD (Tyr-Trp-Thr-Asp), functioning in the
pH-dependent release of ligands; and (3) one epidermal growth factor (EGF) repeat [30].
Megalin possesses a single transmembrane domain of 23 amino acids and a C-terminal
cytoplasmic tail of 209 amino acids [31]. Of interest are three NPXY (Asn-Pro-X-Tyr) motifs
found in the cytoplasmic tail. Upon deletion of the second NPXY-like motif, megalin
trafficking is impaired, and deletion of the first and third NPXY motifs diminishes ef-
fective megalin-mediated endocytosis [31]. Binding of the NPXY motifs to cytoplasmic
adaptor proteins, such as ARH, AP-2, clathrin, Dab2, and GIPC, may promote the proper
assembly of endocytic compartments, megalin trafficking and ligand-selectivity, and signal
transduction, among other essential functional roles [32–36] (Figure 2).
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tail but is anchored to the membrane via a complex with the membrane protein 
amnionless (AMN) and megalin [55–57]. The binding of cubilin to megalin has been 
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Figure 2. Schematic of megalin and cubilin structure and associated molecules. The structure of
megalin plays an essential role in its function, performing receptor-mediated endocytosis. The
extracellular domain contains complement-type repeats with ligand-binding properties, YWTD-
containing spacer sequences which function in the pH-dependent release of ligands, and other
cooperating repeat sequences. The C-terminal cytoplasmic tail contains several motifs, such as NPXY,
which are essential for proper megalin trafficking. Megalin trafficking may be enhanced through the
interaction of intracellular adaptor proteins like GIPC, AP-2, Dab2, clathrin, and ARH with motifs
in the cytoplasmic tail of megalin. Megalin function may also be enhanced through cooperative
interaction with cubilin and amnionless (AMN).
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In the kidney, megalin is abundantly expressed in the brush border of apical mem-
branes of PTECs, endocytic vessels, microvilli, dense apical tubules, glomerular podocytes,
and within lysosomes to a lesser extent [37–41]. However, megalin is also widely dis-
tributed and has been identified in several extrarenal absorptive epithelia, including the
choroid plexus, the visceral yolk sac, the ciliary body and retinal pigment epithelium of
the eye, gall bladder, placenta, ependymal cells, the epididymis, type II pneumocytes
within the lung alveoli, the epithelium of the small intestine, and within the thyroid and
parathyroid glands [38,42–46]. The widespread expression of megalin is consistent with its
purported role as a multiligand scavenger receptor, as several physiologically relevant sub-
strates have been identified as ligands for megalin, including albumin, hemoglobin, insulin,
retinol-binding protein (RBP), and, of direct importance to this review, vitamin D-binding
protein (DBP) [47–51]. A comprehensive list of megalin ligands has been summarized by
Nielsen et al. [27]. This review focuses on the role of extrarenal megalin in the context of vita-
min D metabolism, and how parathyroid megalin may have direct implications for disease.

2.2. Cubilin and Associated Molecules in Endocytosis

Cubilin, although not the primary focus of this review given the limited literature
regarding its role in vitamin D metabolism, is a 460-kDa proximal tubular endocytic receptor
that binds DBP and cooperates closely, and colocalizes with megalin [52]. Cubilin and
megalin are co-expressed in apical epithelial cells and colocalize in the endocytic apparatus
of absorptive epithelia in the intestine, kidney, yolk sac and gallbladder, among other
tissues [44,46,53,54]. The structure of cubilin suggests an essential functional relationship
to megalin, as cubilin has neither a transmembrane domain nor a cytoplasmic tail but is
anchored to the membrane via a complex with the membrane protein amnionless (AMN)
and megalin [55–57]. The binding of cubilin to megalin has been shown by in-vitro and
in-vivo studies to be Ca2+-dependent, with binding significantly reduced in the presence of
EDTA, a Ca2+-chelating agent. Functional cubilin was immunoprecipitated in complex with
AMN and megalin from renal brush border membranes, and silencing of either megalin
or AMN showed an 85–90% reduction in cubilin expression and a 2-fold decrease in its
half-life, suggesting that the interaction of cubilin with both megalin and AMN is essential
for its intracellular stability [57].

2.3. Megalin and Cubilin Interactions

Megalin-knockout mice demonstrate decreased cubilin expression and ligand uptake,
and antibodies against megalin inhibit cubilin membrane association and increase degra-
dation by 50–60%, reflecting a meaningful functional relationship between megalin and
cubilin [58,59]. However, as indicated by a case study on a patient with a cubilin deficiency,
cubilin dysfunction does not impair megalin-mediated endocytosis but exacerbates the loss
of shared ligands, such as DBP [60]. Interestingly, thyroidectomized rats showed a 70% re-
duction in kidney levels of cubilin, and mucosal membrane cubilin associated with megalin
was reduced by ~66% relative to controls, independent of megalin levels. These effects were
reversed upon thyroxine treatment, where cubilin associated with megalin increased by
100% relative to controls, suggesting a thyroxine-mediated mechanism of regulation of me-
galin and cubilin association [45]. Cubilin has reduced function in the absence of megalin,
as indicated by a kidney-specific knockout, where the cubilin-AMN complex promoted en-
docytosis of intrinsic factor-vitamin B12 and albumin, but megalin considerably increased
this uptake by driving internalization of cubilin-ligand complexes [46,61]. As such, megalin
and cubilin form a coreceptor complex in which cubilin likely sequesters specific ligands
on the cell surface, enabling megalin-mediated internalization of the cubilin-bound ligand
complex [62]. This has immediate relevance to vitamin D metabolism, as megalin, similarly
to cubilin, demonstrates Ca2+-dependent binding to DBP, with Kd values of 110 ± 15 nM
and 120 ± 27 nM for cubilin, and megalin, respectively [62]. As such, cubilin in dogs
with impaired cubilin biosynthesis did not effectively colocalize with megalin and had
reduced, but not abolished, endocytosis of DBP [62]. Conversely, megalin knockout mice
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showed no DBP endocytosis despite intact expression of cubilin. Nevertheless, circulating
vitamin D metabolites (25(OH)D3 and 1,25(OH)2D3) were reduced by approximately 50% in
the cubilin-deficient dogs, highlighting a potentially important role of cubilin in vitamin D
homeostasis [62]. Similar disruptions in DBP and circulating vitamin D handling were
observed in human patients with cubilin mutations [62,63].

3. Megalin and Vitamin D Metabolism in the Kidney

In the kidney, 25(OH)D3 conversion to 1,25(OH)2D3 occurs primarily within the mi-
tochondria of PTECs [64,65]. Megalin is abundantly expressed in the brush border of
apical membranes of PTECs, endocytic vessels, microvilli, dense apical tubules, glomerular
podocytes, and within lysosomes to a lesser extent [37–41]. For PTECs to sense and respond
to systemic changes and demands for 1,25(OH)2D3 production, the precursor 25(OH)D3
must gain intracellular access. One theory, the free hormone hypothesis, states that the
biological activity of vitamin D metabolites, including 25(OH)D3 and 1,25(OH)2D3, are
mediated by their unbound (DBP-free) forms in circulation, which enter target cells through
passive diffusion and not via an active transport mechanism [66]. Support for the free
hormone hypothesis comes from a DBP knockout mouse model in which calcium home-
ostasis was not significantly altered despite there being severe circulating 1,25(OH)2D3
deficiency [67]. However, CYP27B1 and CYP24A1 activities were significantly upregu-
lated and downregulated, respectively, in the kidneys of DBP-null mice, suggesting a
compensatory mechanism for the lack of DBP to maintain 1,25(OH)2D3 levels [67].

While the free hormone hypothesis purports vitamin D metabolites enter PCT cells
through passive diffusion, this was challenged by the findings of Nykjaer et al. (1999),
who demonstrated that the 25(OH)D3-DBP complex is filtered through the glomerulus
and reabsorbed in PTECs by megalin [51]. Endocytosis was required to preserve the
systemic DBP concentration, as urinary DBP was exclusively observed in megalin-knockout
animals but not controls [51]. The absence of renal megalin abolished any binding or
uptake of endogenous DBP in the kidney, underscoring megalin as the primary renal
DBP receptor [51]. Exposure to receptor-associated protein (RAP), a specific inhibitor of
megalin-mediated endocytosis [68,69], decreased DBP uptake into the kidney to 8.2% of
untreated controls, with the remainder excreted into the urine, suggesting that megalin has a
functionally relevant role in the uptake of DBP and vitamin D-DBP complexes [51]. Further,
endocytosis was required to preserve the systemic 25(OH)D3 concentration, as levels of
plasma 25(OH)D3 were reduced by 80% and accompanied by severe bone disease [51].
These results suggest a significant and interconnected role for DBP-bound 25(OH)D3,
megalin, and possibly RAP.

Additional knockout mouse models have further highlighted the importance of me-
galin as an endocytic receptor for vitamin D. The absence of megalin was associated with
increased proteinuria, with increased urinary levels of albumin, major urinary protein 6,
α1-microglobulin, RBP, and DBP compared to control mice, which corresponded to in-
creased excretion of vitamin A (retinol) and 25(OH)D3 [50,70]. Further, the Ca2+-dependent
binding mechanism of megalin appears to be essential, as EDTA treatment abolished lig-
and binding to megalin [70]. This has direct implications for diseases in which calcium
homeostasis is disrupted, such as chronic kidney disease (CKD) and secondary hyper-
parathyroidism (SHPT), which will be discussed below.

More specific insight towards the contribution of renal megalin was provided through
a kidney-specific conditional knockout model. Consistent with global megalin-knockout
models, these mice showed enhanced urinary loss of RBP and DBP, and a sixfold reduction
in the uptake of 25(OH)D3-DBP complexes. This coincided with a 50% reduction in plasma
25(OH)D3 and 1,25(OH)2D3 [71]. Due to reduced vitamin D levels, these mice developed
hypocalcemia, dysregulated bone mineralization and severe bone abnormalities [71]. Inter-
estingly, on a vitamin D-normal diet, the kidney-specific megalin knockout mice showed
an increase in CYP27B1 and a twofold decrease in CYP24A1 mRNA levels. When placed
on a low vitamin D diet, these numbers changed to a 10-fold increase and decrease, respec-
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tively [71]. These findings not only suggest that megalin is essential for the retrieval of
glomerular filtered vitamin D-DBP complexes, but that compensatory changes in vitamin
D-metabolizing enzymes occur to increase circulating and/or tissue levels of 1,25(OH)2D3
in the absence of functional vitamin D uptake.

Taken together, these results indicate that renal megalin primarily serves two purposes:
(1) preventing urinary loss of vitamin D-DBP complexes and (2) supplying kidney cells with
precursor 25(OH)D3 for production of the active 1,25(OH)2D3 (Figure 3). However, some
evidence suggests that renal megalin may serve a third purpose related to vitamin D-related
gene regulation [72]. Megalin binding protein (MegBP) is an intracellular protein that
interacts with the megalin cytoplasmic tail and SKI-interacting protein (SKIP), a component
of the VDR transcriptional regulatory complex [72]. As such, May et al. speculate that
megalin-mediated endocytosis of vitamin D metabolites may modulate VDR-dependent
gene transcription through MegBP and SKIP [73]. Megalin also participates in cell-signaling
through regulated intramembrane proteolysis (RIP) [74]. As a result of ligand binding
to megalin, the megalin ectodomain is shed, generating a megalin C-terminal fragment
(MCTF) that activates γ-secretase, releasing a free C-terminal intracellular megalin domain
into the cytosol that is targeted to the nucleus [74]. As this RIP process can be activated
by DBP binding to megalin, it is hypothesized that this pathway regulates genes involved
in vitamin D metabolism [74]. A more nuanced investigation detailing the physiological
relevance of this mechanism or the specific genes affected has yet to be completed.
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Figure 3. Role of megalin and cubilin in renal vitamin D homeostasis. (A) Proximal tubular epithelial
cells take up vitamin D-binding protein (DBP)-bound vitamin D metabolites from the glomerular
ultrafiltrate through a megalin and cubilin-mediated mechanism [75]. (B) After endocytosis within
megalin-expressing cells, DBP is degraded and recycled, and 25-hydroxyvitamin D3 (25(OH)D3) can
undergo 1α-hydroxylation to the active 1,25(OH)2D3 for subsequent vitamin D receptor (VDR) ago-
nism through interactions with the retinoid X receptor (RXR) and VDR response elements (VDREs).
Alternatively, endocytosed 25(OH)D3 or synthesized 1,25(OH)2D3 can be secreted to maintain circu-
lating vitamin D homeostasis.

While the transcriptional impact of direct megalin-mediated intracellular signaling is
somewhat unclear, it is well-established that megalin-mediated uptake of vitamin D can
modulate vitamin D-metabolizing enzymes, as previously mentioned in DBP-null mice
and kidney-specific megalin-null mice [67,71]. These results have been recapitulated in a
human cell-derived micro-physiological system, whereby co-administration of 25(OH)D3
and 1,25(OH)2D3 resulted in a dose-dependent increase in 24,25(OH)2D3 levels, which
was significantly impaired by RAP, suggesting that megalin-mediated uptake induces
CYP24A1-mediated 24-hydroxylation [76]. Further, megalin may have a minor effect on the
semi-selectivity of side-chain 19-nor analogs of 1,25(OH)2D3, as various forms of vitamin D
differentially induced CYP24A1 expression in the absence of renal megalin [77].
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The majority of studies regarding the role of megalin in vitamin D metabolism have
either focused on global disruptions in megalin, which is problematic due to severe devel-
opmental defects allowing only 1–2% of receptor-deficient animals to be viable, or focused
solely on renal megalin [51,78]. The contribution of extrarenal megalin towards vitamin D
metabolism is discussed below, but it has received less attention, despite lines of evidence
suggesting it may be as essential as renal megalin in the context of local, tissue-specific
vitamin D action.

4. Extrarenal Megalin and Vitamin D Metabolism

The literature surrounding the role of extrarenal megalin in local vitamin D metabolism
is limited. However, the studies that have been conducted demonstrate that megalin-
mediated endocytosis is essential to functions unrelated to vitamin D in various ep-
ithelia, including the testes, vagina, thyroid gland, epididymis, uterus, oviduct, and
gallbladder [44,79–83]. As the literature unfolds regarding the multiple functions of ex-
trarenal megalin, many questions arise regarding the specific physiological contribution
of these mechanisms and where vitamin D metabolism ranks among them. Functional
studies underscore intriguing possibilities for megalin facilitating autocrine and paracrine
actions of vitamin D at target tissues. We review all studies to date assessing the functional
role of megalin in extrarenal vitamin D metabolism. The existing evidence is suggestive,
although somewhat limited to date, in highlighting a clear need for megalin studies fo-
cusing on extrarenal target tissues of vitamin D, such as the parathyroid gland, and more
physiologically relevant animal models.

4.1. Parathyroid Gland

Megalin is expressed in the parathyroid gland and demonstrates functionally important
Ca2+-binding ability [84–87]. As megalin is specifically expressed on the surface of parathy-
roid hormone (PTH)-secreting cells of the parathyroid gland, it may serve as a potential
calcium sensor in addition to the calcium-sensing receptor (CaSR) [88]. Whether a possible
interaction exists between CaSR and megalin-mediated signaling has not been established,
despite the fact that they share Ca2+ and vitamin D-related signaling properties [89,90].
A functional calcium-sensing role of megalin in the parathyroid gland may have been uncov-
ered through the mouse monoclonal anti-parathyroid antibody G11, which targets megalin,
since exposure to G11 led to the insensitivity of parathyroid cells to extracellular changes in
Ca2+ for PTH release [91–93]. A phosphorylated form of megalin can be immunoprecipi-
tated from cultures of primary human parathyroid cells, underscoring an additional, albeit
speculative, role of megalin in phosphate sensing [29,84]. The expression of parathyroid
megalin mRNA and protein is reduced in pathological parathyroid adenomas in patients
with primary hyperparathyroidism, and is associated with aberrant Ca2+ regulation, high-
lighting the immediate relevance of parathyroid megalin in pathologies, such as CKD and
SHPT [42,94]. The role of parathyroid gland megalin in vitamin D metabolism has not yet
been investigated. The parathyroid gland is significantly involved in the pathogenesis of
CKD and SHPT, as well as a target of vitamin D receptor agonist (VDRA) therapy; thus, it is
important that further studies focused on parathyroid megalin be undertaken.

4.2. Mammary Gland, Prostate, and Colon

Mammary epithelial cells express vitamin D-metabolizing enzymes such as CYP27B1
and CYP24A1, and have been shown to metabolize 25(OH)D3 to 1,25(OH)2D3 [22,95]. Rowl-
ing et al. sought to elucidate how 25(OH)D3-DBP complexes gain access to mammary cells.
Using temperature-shift techniques, they observed the uptake of fluorophore-conjugated
DBP into mammary cells at 37 ◦C, a temperature conducive to endocytosis, which was
abolished at 4 ◦C, a microtubule-disrupting temperature. The essential role of megalin
was confirmed using RAP, which significantly blunted DBP uptake into mammary cells at
37 ◦C. These data suggest that the internalization of DBP into mammary cells may occur
via megalin-mediated endocytosis. Furthermore, endocytosed 25(OH)D3-DBP activated
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a CYP24A1 reporter gene, demonstrating that megalin-mediated endocytosis of vitamin
D-DBP induces vitamin D-metabolizing enzyme activity in extrarenal tissues [96].

These findings have been recapitulated by Chlon et al., who showed physiologically-
relevant megalin-mediated endocytosis in mammary cells, and modulation of megalin
expression and action by retinoids [97]. Treatment of mammary cells with 10 µmol/L
all-trans-retinoic acid (RA), or RA and 100 nmol/L 1,25(OH)2D3 in combination resulted
in a 1.8-fold and 4.2-fold increase in megalin mRNA levels, respectively. Interestingly,
RA did not significantly increase cubilin mRNA but elevated Dab2 mRNA, an essen-
tial intracellular protein for renal megalin function, by 6.2-fold [98]. The induction of
megalin and Dab2 mRNA was consistent with significantly enhanced uptake of DBP in
RA-supplemented media, supporting a meaningful role for both megalin-mediated uptake
in the mammary gland alongside retinoid stimulation of megalin mRNA and function. This
data also underscores a relationship between vitamin D and megalin, as 1,25(OH)2D3 alone
enhanced megalin mRNA, which may correspond to stimulated uptake of vitamin D into
target tissues [97]. Similar findings have been observed in prostate and colon epithelial cells.
Following treatment with 10 µmol/L RA, megalin and Dab2 mRNA expression increased
by approximately 3-fold in the tested prostate and colon cell lines [99]. RA-mediated
increases in megalin and Dab2 expression coincided with enhanced megalin-mediated
uptake, which again was inhibited at 4 ◦C. Immunofluorescence assays demonstrated punc-
tate colocalization of DBP and megalin around the perimeter of prostate cells, suggesting
the subcellular localization of megalin is physiologically relevant to its function. These
results provide evidence that prostate and colon megalin are functional in internalizing
vitamin D-DBP complexes and that its activity is inducible by RA [99].

4.3. Muscle and Fat

Megalin and cubilin expression were identified in differentiated muscle cells but not in
undifferentiated myoblasts [100]. Interestingly, the time-dependent uptake of isotopically-
labelled 25(OH)D3 was 2- to 3-fold higher in differentiated myotubes than in myoblasts,
suggesting that megalin promotes the uptake of vitamin D into differentiated muscle cells,
and that differentiation itself may moderate megalin function [100]. The function of megalin
in myotubes was confirmed via RAP inhibition of megalin, which reduced the uptake of
25(OH)D3 into myotubes by 66% over a 16-h incubation [100]. These results were recapitu-
lated by the same group, who again observed a significantly higher uptake of 25(OH)D3
in myotubes than undifferentiated myoblasts at 4 or 16 h, consistent with their high and
low megalin expression, respectively [101]. In their analysis of fat cells, pre-adipocytes
demonstrated significant uptake of 25(OH)D3 at 4 and 16 h, and differentiated adipocytes
did not, which paralleled their strong and negligible megalin expression, respectively [101].
As skeletal muscle consists primarily of differentiated muscle cells and adipose tissue pri-
marily of differentiated fat cells, these results suggest that megalin-mediated endocytosis
of vitamin D-DBP complexes is a predominant mechanism of vitamin D uptake in muscle,
but not in fat tissue.

4.4. Mesenchymal Stem Cells

As both muscle and fat cells are derived from mesenchymal stem cells, it is of inter-
est to uncover the role of megalin within them. Gao et al. demonstrated that megalin
is essential for the biosynthesis of 1,25(OH)2D3 and stimulation of VDR and osteoblas-
togenesis target genes in human mesenchymal stem cells (hMSCs) [102]. In comparing
hMSCs with high or low constitutive megalin expression, the biosynthesis of 1,25(OH)2D3
in hMSCs with low megalin was shown to be 46% of hMSCs with high megalin [102]. This
corresponded to osteoblastogenesis induction, whereby incubating hMSCs with 25(OH)D3
induced expression of osteoblast signature genes Runx2 and ALP in hMSCs with high me-
galin, but not with low megalin, suggesting that megalin is required for both intracellular
synthesis of 1,25(OH)2D3 from substrate 25(OH)D3, and 25(OH)D3-mediated induction
of osteoblastogenesis [102]. These results were further supported by siRNA-mediated
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knockdown of megalin, whereby 1,25(OH)2D3 synthesis from 25(OH)D3 was reduced by
77% in siRNA-exposed hMSCs [102]. Correspondingly, 25(OH)D3 stimulated Runx2, ALP,
and BSP expression in control hMSCs, but not in hMSCs exposed to megalin siRNA [102].
Similar results were observed for CYP24A1 after exposure to 25(OH)D3, suggesting that
megalin is required to induce VDR target genes by the 25(OH)D3-DBP complex. It is
of interest that exposure of hMSCs to 1,25(OH)2D3 in either the low megalin or siRNA-
mediated knockdown experiments did not lead to differential effects on osteoblastogenesis
or induction of VDR target genes, suggesting that the actions of 1,25(OH)2D3 in hMSCs
are independent of megalin-mediated endocytosis. The differences in megalin handling of
25(OH)D3 and 1,25(OH)2D3 were also observed in mammary epithelial cells [96]. Thus, the
expression of megalin in hMSCs and mammary epithelial cells appears necessary for the
uptake and conversion of 25(OH)D3 to 1,25(OH)2D3.

4.5. Bone

Primary human osteoblast cells have been found to express CYP27B1 mRNA and
secrete detectable levels of 1,25(OH)2D3 in response to 25(OH)D3 exposure [103]. Exposure
of these cells to physiological levels of 25(OH)D3 (20–100 nM) coincided with stimulation
of CYP24A1 mRNA and VDR target genes related to osteogenesis, such as osteocalcin,
osteopontin and RANKL [103]. Further, siRNA-mediated knockdown of CYP27B1 almost
wholly abolished the response of osteoblasts to 25(OH)D3, supporting local 25(OH)D3
conversion and activation to 1,25(OH)2D3. While this study did not assess the functional
role of megalin in facilitating these actions, megalin mRNA was detected in the human
osteoblast cells [103]. These results not only parallel those discussed earlier in terms of
the stimulatory capacity of 25(OH)D3 in extrarenal tissues but also suggest that megalin-
mediated endocytosis of 25(OH)D3 promotes the autocrine synthesis of 1,25(OH)2D3 at
target tissues, which has functional regulatory consequences for these tissues. A receptor-
mediated mechanism for DBP uptake has also been observed for human B-lymphoid cells;
however, whether megalin is the receptor involved remains unclear [104].

5. Megalin in Chronic Kidney Disease

Many diseases have been associated with maladaptive alterations in megalin expression
or function, or the opposite, where megalin dysfunction leads to various pathological states,
summarized by Nielsen et al. [27]. The scope of this section will henceforth be focused on
the vitamin D-related implications of altered megalin expression in kidney diseases.

5.1. Chronic Kidney Disease Overview

CKD is a disease of great interest, given its enormous costs to patient well-being
and health care systems; consequently, its intimate relationship with abnormal vitamin D
metabolism has been extensively explored. CKD is clinically defined by a chronic reduction
in kidney function and is associated with the pathogenesis of SHPT, the pathological rise in
PTH. CKD is associated with decreased levels of the active form of vitamin D, 1,25(OH)2D3,
leading to reduced VDR-mediated suppression of PTH secreted by the parathyroid gland
and contributing to SHPT development [105]. Treatment of SHPT commonly involves the
administration of VDRAs, such as 1,25(OH)2D3. However, these treatments can become
problematic in patients, either indirectly mediating off-target effects, such as left ventricular
hypertrophy or, most notably, the emergence of VDRA resistance [106]. Approximately
20–30% of SHPT patients become resistant to treatment with VDRAs, as serum PTH does
not decrease despite increasing doses of VDRAs, representing a state of ‘active vitamin D
failure,’ that may exacerbate cardiovascular toxicity [107]. The mechanisms of treatment-
acquired vitamin D resistance are incompletely understood, with contributions potentially
arising from impaired function or expression of VDR, retinoid X receptor (RXR), increased
uremic toxins, elevated parathyroid calreticulin, alterations in vitamin D-metabolizing
enzymes (CYP2R1, CYP27A1, CYP27B1) or DBP [108,109]. The contribution of megalin to-
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wards vitamin D resistance as a receptor for vitamin D substrate supply for the parathyroid
gland has, to date, received little attention in the literature.

5.2. Megalin in Chronic Kidney Disease

A partial nephrectomy rat model of CKD demonstrated a gradual decrease of megalin
mRNA in the remnant kidney as early as week 2, which continued to decline through-
out the study [110]. This was accompanied by an increase and decrease in CYP27B1 and
CYP24A1 mRNA, respectively. By week 8, the levels of CYP27B1 mRNA were significantly
elevated, VDR mRNA was reduced, and the ratio of CYP27B1 to CYP24A1 and megalin
mRNA was more pronounced [110]. As indicated above, the up and downregulation of
vitamin D activating and deactivating enzymes suggest a compensatory mechanism to
enhance 1,25(OH)2D3 biosynthesis and preservation in the absence of megalin-mediated
endocytosis. Interestingly, the plasma levels of calcium, phosphate, and 1,25(OH)2D3 were
not significantly different from controls in the study duration, while PTH was elevated
considerably [110]. Thus, it is unclear whether this was due to compensatory up and down-
regulation of CYP27B1 and CYP24A1, a non-megalin-mediated mechanism of 1,25(OH)2D3
synthesis, or an early state of SHPT attempting to compensate for impaired mineral and
vitamin D handling [111,112]. In a transgenic mouse model overexpressing renin to recapit-
ulate CKD, megalin protein expression in proximal tubules was significantly decreased but
returned to normal levels following angiotensin II type 1 (AT1) receptor antagonism [113].
These results were concordant with angiotensin II-mediated suppression of megalin mRNA
and protein in another CKD model, followed by impaired megalin-mediated uptake [114].
As angiotensin II levels are elevated in CKD, this data suggests a potential mechanism
by which megalin expression and function are inhibited in kidney diseases, potentially
leading to detrimental effects on vitamin D metabolism [115]. In a 5/6 nephrectomy rat
model of CKD, megalin expression was significantly reduced in the renal cortex after
8 weeks, but the expression of cubilin remained unchanged [116]. The physiological rel-
evance of a differential renal expression of megalin and cubilin is unclear, however, as
uptake functionality was not assessed. Human kidney biopsies from patients with CKD
and Fabry nephropathy also show reduced megalin and cubilin expression compared to
healthy controls [117]. However, reports of decreased renal megalin expression in CKD are
not consistent. In another nephrectomy rat model of CKD, the megalin and cubilin protein
levels were increased relative to controls [118]. As these findings were based on a qualita-
tive assessment of an immunohistochemical characterization of kidney tissue, they should
be interpreted cautiously. Nonetheless, they suggest that further studies must be conducted
to elucidate the pathophysiologic role of decreased megalin expression in a CKD setting.

A recent study suggests that megalin dysfunction may, in itself, contribute to CKD
progression; in a kidney-specific knockout model of megalin, the glomerular filtration
rate (GFR) decreased, and plasma creatinine increased, both being clinical indicators
of CKD [119,120]. Similar findings were observed in a clinical cohort of patients with
pathogenic megalin mutations, where, in addition to classical signs of renal decline, en-
hanced proteinuria of DBP and other megalin ligands, and glomerular and tubulointerstitial
pathohistological lesions, were observed [119,121].

5.3. Vitamin D Regulation

As CKD seems to induce alterations in megalin expression, vitamin D-mediated reg-
ulation of megalin becomes relevant, given the relationship between CKD and reduced
1,25(OH)2D3 levels. Megalin mRNA and protein were stimulated after exposing rat PTECs
to 1,25(OH)2D3 and RA [97,122], suggesting a “vicious cycle” hypothesis in the context
of CKD. Assuming 1,25(OH)2D3 can stimulate renal megalin expression, this would en-
sure maintenance of systemic vitamin D levels via megalin-mediated endocytosis. In
CKD, where levels of 1,25(OH)2D3 levels are reduced, this would lead to decreased me-
galin expression, reducing the capacity of renal 25(OH)D3 uptake and further reducing
1,25(OH)2D3 production, propagating the cycle and exacerbating vitamin D deficiency
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(Figure 4) [123]. This may, partially, explain the phenotype of abnormalities in CKD-mineral
and bone disorder (CKD-MBD), in which reduced levels of 1,25(OH)2D3 promotes hypocal-
cemia, stimulating excessive PTH production and, in turn, accelerated bone turnover [124].
Other reviews by Dusso, Kim and Kim, and Bosworth and de Boer have discussed this
concept [125–128]. This hypothesis has been challenged by a more recent study using a
human cell-derived micro-physiological system, in which exposure to 1,25(OH)2D3 did not
induce upregulation of megalin but instead demonstrated a significant downward trend
of megalin mRNA expression [76]. While these results are interesting, statistically signif-
icant suppression of megalin mRNA was only achieved at a supraphysiological dose of
1,25(OH)2D3 at 500 nM. This dose is well above the upper limit of circulating levels and at a
level consistent with 1,25(OH)2D3 toxicity, where pro-apoptotic effects, angiogenesis, inva-
sion, and metastasis are observed [129–132]. Precluding the possibility that it was high-dose
exposure of 1,25(OH)2D3 mediating toxic effects on megalin mRNA, these results highlight
potential interspecies variability involving megalin regulation within humans and rodents
and challenge the relationship of 1,25(OH)2D3 regulation of megalin expression. The con-
cept of interspecies variability in vitamin D handling is not foreign, as differences between
humans and rodent models have also been demonstrated with urinary DBP excretion. For
example, urinary DBP excretion was not found to be increased in cubilin-deficient mice;
however, it was raised in both megalin-deficient and cubilin-deficient patients [60,61,121].
Although limited, these data suggest that reabsorption of DBP in mice can occur without
cubilin, whereas it may play a more significant role in humans.
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Figure 4. Involvement of megalin in vitamin D metabolism and proposed effect of kidney disease or
loss of function. After megalin-mediated endocytosis, 25-hydroxyvitamin D3 (25(OH)D3) may be
sent to the mitochondria for cytochrome P450 (CYP)-mediated inactivation or CYP27B1-mediated
activation. 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), either endocytosed or intracellularly generated,
may be inactivated via CYP24A1, or interact with the vitamin D-receptor (VDR) to exert intracrine
genomic effects such as upregulating megalin gene expression. Alternatively, vitamin D metabolites
may re-enter the circulation to exert endocrine effects. Evidence from knockout models and models
of kidney disease suggests megalin function or expression is decreased, leading to a reduced capacity
for endocytosis. In a setting of vitamin D deficiency, this leads to the compensatory up and downreg-
ulation of CYP27B1 and CYP24A1, respectively, modifying the synthesis of vitamin D metabolites.
Low levels of 1,25(OH)2D3, due to decreased uptake, may cause lower VDR activation and reduced
megalin expression. For visual clarity, only the VDR genomic effect on megalin expression has been
displayed, but it is conceivable that many other expression profiles would be altered due to impaired
megalin endocytosis.
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5.4. Diabetic Nephropathy

A major cause of CKD in patients is diabetic nephropathy, which develops in ap-
proximately 40% of patients with diabetes [133]. Diabetic nephropathy induces a similar
inhibition of megalin and Dab2 mRNA to CKD, with approximately 50 and 80% reductions
in mRNA, respectively, whereas cubilin mRNA remains unchanged [134]. Reductions
in megalin and Dab2 mRNA correspond to increased DBP, 25(OH)D3, and 1,25(OH)2D3
urinary excretion in diabetic fatty rats, concomitant with reduced serum levels of both
25(OH)D3 and 1,25(OH)2D3 [134]. Dysregulation of intrarenal vitamin D metabolism has
been similarly reported in a mouse model of diabetic nephropathy, consistent with in-
creased excretion of DBP, 25(OH)D3, megalin itself, and elevated CYP27B1 mRNA [135].
Other animal studies have also reported decreased proximal tubule megalin protein ex-
pression in rat models of diabetic nephropathy [136,137]. In patients with type 1 diabetes,
a significant elevation in the urinary excretion of low molecular weight proteins, DBP
and megalin was observed that paralleled the magnitude of vitamin D deficiency in these
patients, linking megalin dysfunction to impaired vitamin D homeostasis [138,139]. The
findings of increased urinary megalin excretion raise meaningful implications for kidney
disease, as full-length urinary megalin (C-megalin) excretion is related to the pathogenesis
of diabetic nephropathy [140,141]. The significance of urinary C-megalin excretion in vi-
tamin D metabolism was assessed in pre-dialysis CKD patients, where it was negatively
associated with serum levels of 25(OH)D3, 1,25(OH)2D3, and 24,25(OH)2D3 [142]. These
results suggest that impaired megalin-mediated endocytosis of 25(OH)D3-DBP complexes
contributes to dysregulated systemic vitamin D homeostasis. Both diabetic nephropathy
and CKD likely impair the reabsorption of 25(OH)D3-DBP complexes via decreased me-
galin protein and mRNA expression, or increased urinary excretion, ultimately comprising
hypovitaminosis D.

6. Summary and Outlook

The role of the endocytic receptor megalin in reabsorbing DBP-bound vitamin D
metabolites from the renal proximal tubule has been well established, confirming its sig-
nificance in the metabolism and homeostasis of circulating vitamin D. It is well known
that vitamin D-metabolizing machinery is widely expressed in the body and can take up
25(OH)D3 for local conversion into 1,25(OH)2D3 via CYP27B1. However, little attention has
been given to the mechanisms of extrarenal 25(OH)D3 uptake and how these mechanisms
are modified in diseases. In addition to the kidney, megalin is widely expressed in several
cell types, including mammary cells, osteoblasts, muscle, fat, mesenchymal stem cells,
thyroid, and parathyroid cells, among many others. Not only does this expression coincide
with the expression of vitamin D-metabolizing enzymes, but functional studies have demon-
strated through knockout models, or RAP-mediated inhibition, that megalin-mediated
endocytosis is essential for the uptake of vitamin D into cells, and its impairment leads
to maladaptive alterations in vitamin D metabolism. However, the understanding of ex-
trarenal megalin is quite incomplete, with essential calciotropic tissues expressing megalin,
such as the parathyroid gland, not having been investigated sufficiently, thereby leaving
gaps in knowledge regarding the contribution of megalin to tissue-specific 1,25(OH)2D3
production. More studies about the role of megalin in these tissues are needed, as megalin
dysfunction has been associated with vitamin D deficiency, and evidence suggests that
megalin is critical to the progression of dysregulated vitamin D metabolism in CKD and
other kidney diseases. The specific contribution of megalin in the pathogenesis of CKD
remains elusive, however, as not all findings of megalin expression and regulation by
1,25(OH)2D3 are consistent. As analogs of vitamin D are given as treatments for conditions
like SHPT in CKD, the complications arising from the free hormone hypothesis, inconsis-
tent 1,25(OH)2D3 regulation of megalin and the incompletely understood mechanisms of
megalin regulation in disease and extrarenal tissues all suggest the need for additional
research assessing the role of megalin in vitamin D homeostasis. Megalin is very likely an
important player in local networks of vitamin D metabolism within extrarenal tissues.
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Abbreviations

1,25(OH)2D3 1,25 dihydroxyvitamin D3
25(OH)D3 25 hydroxyvitamin D3
24,25(OH)2D3 24,25 dihydroxyvitamin D3
1,24,25(OH)3D3 1,24,25 trihydroxyvitamin D3
ALP Alkaline phosphatase
AMN Amnionless
AP-2 Adaptor protein-2
ARH Autosomal recessive hypercholesterolemia
AT1 Angiotensin II type 1
CaSR Calcium-sensing receptor
CKD Chronic kidney disease
CYP24A1 Cytochrome P450 24A1
CYP27B1 Cytochrome P450 27B1
Dab-2 Disabled-2
DBP Vitamin D-binding protein
EGF Epidermal growth factor
GIPC GAIP interacting protein
GAIP G alpha interacting protein
hMSC Human mesenchymal stem cell
MegBP Megalin binding protein
PTEC Proximal tubular epithelial cells
PTH Parathyroid hormone
RA All-trans-retinoic acid
RAP Receptor-associated protein
RBP Retinol-binding protein
RIP Regulated intramembrane proteolysis
RXR Retinoid X receptor
SHPT Secondary hyperparathyroidism
SKIP SKI-interacting protein
VDR Vitamin D receptor
VDRA Vitamin D receptor agonist
VDRE VDR response element
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