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Abstract

Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility,
and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse
growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity
and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter
the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or
neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain
of C. elegans alpha-tubulin, tba-1(ju89), that disrupts motor neuron synapse and axon development. Mutant ju89 animals
exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension.
Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals
lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89) affects synapse development independent of its role
in axon outgrowth. tba-1(ju89) is an altered function allele that most likely perturbs interactions between TBA-1 and specific
microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and
axon growth.
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Introduction

Microtubules play multiple essential roles in cells including

forming the mitotic spindle, transporting vesicles and organelles,

providing structural support as part of the cytoskeleton, and

serving as platforms for the assembly of signaling complexes. In

neurons, the transport functions of microtubules are especially

crucial for establishing neuron morphology and maintaining

synapses distant from the cell body. Evidence from genetic model

systems has revealed that microtubules also play key roles in

synapse growth and plasticity [1–4], although these mechanisms

are not fully defined.

Microtubules are composed of alpha- and beta subunits that are

assembled into heterodimers with the help of cofactors and are

then incorporated into microtubule polymers [5–6]. Like actin,

microtubules are dynamic polymers, and their assembly and

disassembly is highly regulated. Organization into complex

microtubule arrays and integration with the actin cytoskeleton

adds additional layers of complexity that are still poorly

understood. Misregulation of microtubules, loss of synapses and

breakdown of transport mechanisms have long been recognized as

common denominators in the pathology of neurodegenerative

diseases. The presence of hyper-phosphorylated tau in the

neurofibrillary tangles of Alzheimer’s patients is one of the most

intensely studied examples, but an increasing number of studies

have established that perturbing any of the major mechanisms that

regulate microtubule dynamics and transport can impact neural

development or contribute to neuronal disease. Examples include

mutations in tubulin folding co-factor E [7], the dynactin complex

[8–9] and the microtubule severing protein, spastin [10], which

have all been implicated in motor neuron degeneration.

Early studies of microtubule dynamics and function focused on

the beta-tubulin subunit because of its role in hydrolyzing GTP

during microtubule polymerization and position on the exposed,

plus-ends of microtubules [5]. Subsequent research has uncovered

important roles for the alpha-tubulin subunit in synaptic plasticity

and neuronal disease. Alpha-tubulin mRNA is enriched at Aplysia

synapses and translated locally in response to serotonin signaling

[11]. In vertebrates, alpha-tubulin is a target of the E3 ligase and

Familial Parkinson’s Disease protein Parkin [12–13]. Perturba-

tions of plus-end microtubule binding proteins of the ebp l family,

which can bind the alpha-tubulin subunit [14], have also been

linked to motor neuron degeneration [15]. Recently, mutations in

human and mouse TUBA1A(TUBA3) alpha-tubulins were

identified that block cell migration in the mammalian cortex,

possibly by altering interactions between the alpha-tubulin subunit

and the microtubule-nucleating and stabilizing protein double-

cortin [16].
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We describe here the isolation and characterization of a novel

gain-of-function allele of the C. elegans alpha-tubulin, tba-1. tba-

1(ju89) mutants exhibit a reduction in the number and size of

GABAergic and cholinergic motor neuron synapses, altered

locomotion and axon extension defects. We show similar axon

outgrowth defects also occur in mutants in which the C. elegans

beta-tubulin TBB-2 is deleted. Genetic analysis suggests that

many of the axon phenotypes observed in ju89 mutants are

likely mediated by altered or reduced function of microtubules

composed of TBA-1 and TBB-2 subunits. We propose that ju89

alters synapse and axon growth by interfering with specific

microtubule-associated proteins that control microtubule dy-

namics and stability and regulate transport of structural

components of axons and the presynaptic active zone.

Results

Isolation of ju89 and characterization of synapse and
axon defects

The GABAergic D motor neurons function as cross-inhibitors of

body wall muscle contractions in C. elegans and share a similar

unipolar morphology (Figure 1A). Each D neuron extends an

anterior process along the ventral cord, branches to form a

commissure and then branches again at the dorsal side and

extends in both directions along the dorsal nerve cord.

Reconstruction of adult synaptic connectivity from electron

micrographs show the six dorsal D neurons (DDs) receive synaptic

input from cholinergic motor neurons on the ventral side and form

chemical synapses en passant with dorsal muscles. The 13 ventral

Figure 1. GABAergic Motor Neuron Synapses are Defective in tba-1(ju89) Mutants. (A) Diagram of en passant neuromuscular synapses in C.
elegans. Dots represent synapses; dorsal D neurons (DDs) form synapses onto dorsal body-wall muscles, and ventral D neurons (VDs) synapse with
ventral muscles. Presynaptic termini of the inhibitory GABAergic type D motor neurons are visualized with the synaptic vesicle marker Punc-25SNB-
1::GFP. Each GFP puncta visible by fluorescence microscopy corresponds to the cumulative signal from all GFP-tagged vesicles at an individual
synapse. (B) Morphology of the six DD motor neurons. Cell bodies are located in the ventral nerve cord. Each D neuron extends a ventral process,
branches to form a commissure, and bifurcates at the dorsal nerve cord to form a dorsal process along the dorsal nerve cord. At the distal tip of each
process, gap junctions are formed with adjacent DD neurons [17]. Expression pattern of SNB-1::GFP in wild-type (C) and mutant (D) dorsal nerve cord.
Irregular size puncta and reduced numbers of puncta are evident in ju89 mutants. An arrow designates the position of a DD commissure. (E) SNT-1
(synaptotagmin) expression in the dorsal nerve cord of wild-type and (F) ju89 mutant animals. UNC-10::GFP expression along the dorsal nerve cord of
(G) wild-type and (H) ju89 worms. (I) Expression of the GABA-B receptor subunit, UNC-49::GFP, along dorsal muscles of wild-type animals and (J) ju89
mutant worms. Gaps in UNC-49::GFP expression demonstrate the lack of post-synaptic structures in these regions. Wild-type C. elegans (K) have a
larger body size than tba-1(ju89) (L). C. elegans move in a wavelike pattern. ju89 mutants are uncoordinated, and the amplitude of the wave pattern is
severely reduced compared to wild-type animals.
doi:10.1371/journal.pone.0009655.g001

Neural Defects in tba-1(ju89)
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D neurons (VDs) receive their input from dorsal cholinergic

neurons and synapse onto the ventral muscles [17].

Synapses can be visualized in the 19 D type GABAergic motor

neurons by driving expression of the synaptic vesicle marker

synaptobrevin::GFP (SNB-1::GFP) with the promoter of the C.

elegans GAD (glutamic acid decarboxylase) gene, unc-25 [18,19].

The Punc-25SNB-1::GFP marker (juIs1) appears as puncta of mostly

uniform size and spacing along the ventral and dorsal nerve cords

of wild-type animals (Figure 1C), corresponding to the GABAergic

synapses defined by EM analysis [17]. ju89 was isolated from a

genetic screen for mutations that alter the Punc-25SNB-1::GFP

expression pattern [20]. This approach successfully identified

synapse defective (syd) genes that function in active zone formation

and synapse morphology [21–22], neuronal polarity [20,23] and

vesicle transport [24].

ju89 worms exhibited multiple defects in the SNB-1::GFP

pattern along both the ventral and dorsal nerve cords that

suggested a failure to properly form or maintain synapses. The

number of SNB-1::GFP puncta was greatly reduced, and the SNB-

1::GFP puncta exhibited greater variability in size and spacing

than synaptic GFP-puncta of wild-type animals (Figure 1C & D).

The number of DD puncta along the dorsal nerve cord was

reduced by an average of 42% in young adult ju89 worms

cultivated at 20uC, and the number of VD puncta in the ventral

nerve cord was reduced by 34% (Table 1). Loss of SNB-1::GFP

appeared most severe at the distal tips of the dorsal D neurons,

although irregular size SNB-1::GFP puncta occurred all along the

dorsal cord. The majority of abnormal SNB-1 puncta were smaller

than wild-type puncta, but unusually large GFP puncta were

sometimes also observed along the dorsal cord. Weak diffuse GFP

was also observed along commissures (Figure 1D), a phenotype

that is associated with mislocalization of synaptic vesicles to these

regions and that has been observed in other syd mutants, such as

syd-2/liprin [21]. All ju89 adult worms showed uncoordinated

(unc) movement, consistent with defects in synaptic transmission in

the motor circuit (Figure 1L).

To determine whether the SNB-1::GFP localization represented

defects in synapse and axon differentiation and were not due

primarily to a failure in synaptic vesicle transport or docking at

otherwise normal presynaptic specializations, we examined the

distribution of a post-synaptic GFP-tagged-GABA receptor

subunit (UNC-49::GFP) in the body wall muscles [25]. UNC-

49::GFP is expressed by both ventral and dorsal body wall muscles

and appears as diffuse puncta adjacent to the ventral and dorsal

nerve cords (Figure 1I & J). Large gaps in UNC-49::GFP

expression were evident along both the dorsal and ventral muscles

of adult ju89 mutants, indicating that postsynaptic structures were

not present in these regions. In some ju89 mutant animals the

GFP-tagged receptor appeared diffused throughout the muscle

tissue, consistent with the failure of the receptor to completely

localize to synapses.

To assess if presynaptic specializations were still present in these

regions of the motor neuron axons, we examined the expression of

a GFP-tagged active zone protein, UNC-10(RIM). In the

presynaptic matrix, UNC-10 binds the scaffolding protein

ELKS/ERC and interacts with the RAB-3 GTPase to recruit

synaptic vesicles to the active zone [26]. Because the C. elegans

cholinergic motor neurons run closely parallel to the GABAergic

D motor neurons in the ventral and dorsal nerve cords, the

synapses of the two classes of motor neurons cannot be

distinguished from each other by immunohistochemistry and light

microscopy. To view UNC-10 expressed by only the GABAergic

neurons we crossed Punc-25UNC-10::GFP (hpIs61) [27] into ju89

mutants, and compared the localization of UNC-10::GFP puncta

in ju89 mutants to wild-type worms. Puncta for UNC-10::GFP

appeared as an orderly row along the dorsal and ventral nerve

cords in wild-type animals (Figure 1G). The pattern of UNC-

10::GFP puncta of ju89 mutants (Figure 1H) was similar to the

Table 1. SNB-1::GFP Expression by D Motor Neurons.

Genotype Ventral Nerve Cord (VDs) (n) Dorsal Nerve Cord (DDs) (n)

+/+ 189614 30 166610 30

tba-1/(ju89) 125622* 30 94614* 30

tba-1(ju89)/+ 169615* 30 14868* 30

qDf9/ju89 148615* 10 122612* 10

qDf9/+ 18766 15 168612 15

tba-1(ok1135) 19266 30 16767 30

tba-1(ok1135)/+ 18069 30 16469 30

tba-1(ok1135)/ju89 15567* 15 13068* 15

+: Extba-1(R414) nd 10763* 25

+; Extba-1 nd 16667 25

tbb-2(gk130) 153610* 30 131614* 30

tba-1/(ju89);tbb-2(gk130) 148616* 30 117613* 30

tbb-1(gk207) 17368* 30 15867* 30

tba-1(ju89); tbb-1(gk207) 76612** 30 65614** 30

Genetic analysis of tubulin mutant synaptic defects based on expression pattern of the synaptic vesicle marker Synaptobrevin::GFP (SNB-1::GFP). Young adult worms
were scored for the number of SNB-1::GFP puncta in the ventral and dorsal nerve cords. Animals carrying the ju89 mutant chromosome in trans to a wild-type (+/ju89) or
deficiency (Df9/ju89) chromosome or the tba-1 deletion allele (ok1135/ju89) exhibit partial defects. Deficiency/+ and ok1135/+ heterozygotes appear wild-type. Animals
that express an extrachromosomal array containing tba-1 amplified from ju89 animals, Extba-1(R414) resemble ju89 mutants. Animals homozygous for the null tbb-2
allele (gk207) have a similar decrease in total SNB-1::GFP as single mutants and in combination with tba-1(ju89). Mean 6 sd.
*p,.001, two-tailed T test.
**Synapse loss is strongly enhanced in tba-1(ju89); tbb-1 (gk207) animals due to loss of axons in the dorsal and ventral nerve cord.
doi:10.1371/journal.pone.0009655.t001

Neural Defects in tba-1(ju89)
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mutant SNB-1 pattern: UNC-10::GFP puncta were frequently

smaller than wild-type and irregularly spaced, and diffuse UNC-

10::GFP was visible in the commissures of adult ju89 animals.

Again, the most distal tips of the DD axons appeared to be thinner

and lacked full size UNC-10::GFP puncta. Thus, the presynaptic

regions of GABAergic synapses were defective in both synaptic

vesicles and the machinery required to recruit them.

To determine if all synapses were generally defective in ju89

mutants, we also examined mutant worms for the endogenous

expression of a second synaptic vesicle marker synaptotagmin

(SNT-1) (Figure 1E & F) and UNC-10/RIM. SNT-1 and UNC-10

antibodies detect all chemical synapses in the C. elegans nervous

system. In the most severe cases, anti-SNT-1 Ab revealed

occasional gaps and irregular size or position of SNT-1 puncta

in ju89 mutants (Figure 1F), but expression of SNT-1 in mutant

dorsal nerve cords appeared similar to wild-type SNT-1 (Figure 1E)

expression in most animals, indicating that cholinergic motor

neuron synapses are not globally disrupted in the mutants. Similar

results were obtained using antibodies against UNC-10/RIM

(data not shown).

Previous studies have shown that significant changes in

expression of SNB-1::GFP often reflect underlying morphological

changes at synapses [21–22]. Our GFP transgene expression data

indicated that synapse formation and size could be altered in ju89

mutants, and that GABAergic neurons were most severely

affected. To determine if the small SNB-1::GFP puncta in ju89

mutants correlated with morphological defects at synapses, we

analyzed ju89 animals by electron microscopy. Compared to wild-

type synapses (Figure 2A & B), a reduction in the number of

synaptic vesicles is apparent in electron micrographs of both

GABAergic (Figure 2C) and cholinergic synapses of the mutants

(Figure 2D). An average of 20–30% fewer vesicles/synapse and an

equivalent decrease in active zone size was measured in the

cholinergic synapses of one animal, (Figure 2E & F), but the

proportion of vesicles/active zone size was similar in wild-type and

mutant animals (Figure 2G). The loss of GABAergic synapses was

severe in the regions examined: the number of dorsal synapses in a

section of the dorsal cord in one animal was reduced by 2/3

compared to a similar sized region in the wild-type control (2

synapses in ju89 vs. 6 synapses in the wild-type animal). When we

examined the total number of GABAergic and cholinergic motor

neuron axons present in the dorsal and ventral nerve cords, the

number of axons in the ventral nerve cord was reduced by 8%

compared to wild-type worms (49 versus 53 axons), and the

number of axons in the dorsal nerve cord was reduced by 16% (9

versus 12 axons). This observation indicated that some of the

mutant motor neuron axons failed to reach or extend normally

along the dorsal nerve cord.

To determine if the decreased number of GABAergic synapses

in ju89 mutants was due solely to defects in initial axon outgrowth

and extension along the nerve cords, we examined the

morphology of the dorsal D (DD) motor neurons in more detail.

The six DD motor neurons are born and extend axons during

embryogenesis, and can be visualized in newly hatched L1 larvae

using Punc-25GFP. The cell body, axons and dendrites of DD

neurons can be visualized in adult animals expressing Pflp-13GFP

[28–29]. This GFP marker is expressed by the six dorsal D

neurons, but not by any of the cholinergic body wall motor

neurons or the ventral D (VD) GABAergic neurons that are born

at the end of the L1 stage. The number of DD axons in newly

hatched L1 mutant worms that failed to reach the dorsal nerve

cord increased by only 2% compared to wild-type controls, but

20% of mutant DD L1 axons (approximately 1 axon per animal)

failed to extend their full distance along the dorsal cord (Table 2;

Figure 3). The range of DD outgrowth defects observed in ju89

mutants is shown in Figure 3 (A–D). Sixteen% of ju89 L1s

exhibited no outgrowth defects, while one or two small dorsal gaps

were documented in an additional 62% of the L1 mutants sampled

(Figure 3B & C). When the length of the gaps in each L1 animal

was measured and compared to the total length of the DD axons

along the dorsal nerve cord, DD axon extension along the dorsal

nerve cord was reduced an average of 11.2% in tba-1(ju89)

mutants at the L1 stage compared to 1.1% in the wild-type

controls (Table 2). To analyze the extent of synapse loss due to

missing axons in adult worms, we examined worms that expressed

SNB-1::GFP exclusively in the DD neurons (Pflp-13SNB-1::GFP)

and also constructed wild-type and mutant strains that expressed

both an axon marker for the DD neurons (Pflp-13GFP) and the

presynaptic reporter gene Punc-25mCherry::rab-3 (Figure 4). Axo-

nal regions containing reduced numbers of mCherry::rab-3 were

present in all ju89 worms three days post-hatching (Figure 4D–F),

a phenotype not observed in the wild-type controls (Figure 4A–C).

DD axon extension along the dorsal nerve cord was reduced an

average of 17% (s.e.m. 66, n = 30) in young adult ju89 mutants.

These results were consistent with the decreased number of dorsal

GABAergic axons of ju89 adults observed by ultrastructure

analysis.

Lastly, we asked if the severity of synapse and axon loss

increases as mutant animals grow to adulthood. Between the L1

larval stage and the adult stage, C. elegans increases in size by

fourfold. During this period the DD motor neurons add new

membrane and grow in size but do not extend growth cones and

undergo new axon outgrowth. The dorsal synapses of the DD

neurons first form at the L1/L2 larval transition, after the initial

outgrowth of these neurons [17,20]; addition of new synapses and

membrane to enlarge the neurons occurs during subsequent larval

stages [27]. When we compared young adult wild-type and ju89

mutant worms, we observed an increase in the number of DD

axons with gaps in the dorsal nerve cord, and 7% of the DD axons

in adults exhibited defects in branching where the commissures

meet the dorsal cord that were not observed in the same animals at

the L1 stage (Table 2, Figure 3F).

The loss of GABAergic synapses in ju89 young adult worms thus

appears more severe than can be accounted for solely by defects in

initial axon outgrowth, suggesting that ju89 may disrupt synapse

formation and function independently of an earlier role in neuron

outgrowth or guidance. The increases in DD branching and gaps

in the dorsal cord observed in adult ju89 animals may represent

failure of the axon to grow (inserting new membrane and synaptic

components) as mutant animals mature to their adult size.

Alternatively, the DD motor neuron morphology may be unstable

in adults due to defective differentiation of the axon during the

earlier outgrowth phase.

ju89 alters a conserved residue between helix 11 and
helix 12 in alpha-tubulin TBA-1

We mapped the ju89 mutation between egl-33 and lin-11 on C.

elegans chromosome I by standard two- and three-factor mapping

(Figure 5A) (see Experimental Procedures). Both the SNB-1::GFP

defects and uncoordinated movement of ju89 mutants were

rescued with fosmid H01I17 and cosmid F26E4 (Figure 5B). We

subsequently narrowed the minimal rescuing region to a 10.5 kb

genomic clone that contained the two-gene operon encoding tba-

1(F26E4.10), and drsh-1 (F26E4.8). Genomic subclones that

contained only tba-1, the first gene of the operon, were sufficient

to rescue the ju89 mutant defects. Deletions in tba-1, but not drsh-1,

abolished the rescuing activity (Figure 5B).

Neural Defects in tba-1(ju89)
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tba-1 encodes one of nine predicted alpha-tubulins in C. elegans

[30]. TBA-1 and its close paralogue, TBA-2, are both required

maternally and are expressed by all cells of the early embryo [31].

TBA-1 continues to be expressed by neurons in adults [32].

Microtubules are composed of heterodimers of alpha-tubulin and

beta-tubulin that are preassembled before addition to the growing

plus ends of microtubule polymers. All alpha-tubulin isoforms are

highly homologous in sequence, with the greatest variation

occurring in the C terminal domain that binds motor proteins

and other microtubule-associated proteins. The crystal structure

for a human alpha-tubulin is defined [33]. Sequence analysis of

tba-1 in ju89 mutant worms identified a point mutation that

changes a conserved glycine to arginine (G414R) (Figure 5C & D).

Based on the crystal structure of the human tubulin dimer

[33–34], the ju89 mutation is located in the C-terminal domain of

alpha-tubulin in a loop near the final alpha-helix, H12 (Figure 5C

& D). The mutation is predicted to alter the external architecture

of the microtubule polymer and can thereby influence the binding

of motor proteins and other microtubule-associated proteins.

The tba-1(ju89) allele has altered gene function
Dominant mutations in a closely related human alpha-tubulin,

TUBA1A (TUBA-3), are associated with defects in neuron

migration and axon tract formation and are proposed to be due

to haploinsufficiency of TUBA1A/TUBA3 [16]. Because the ju89

mutation may cause a structural change in TBA-1, we asked if it

Figure 2. Ultrastructure of tba-1(ju89) Motor Neuron Synapses. The ultrastructure of one adult wild-type and two ju89 adult mutant worm
were examined by EM (see Methods). 1500 continuous sections of 50 nm each were collected from 1 wild-type adult animal and 400 sections from
each of two ju89 adult mutant worms. Sections were collected in the anterior of each animal between the nerve ring and the vulva. Inhibitory
GABAergic motor neurons form synapses directly onto dorsal and ventral muscles; excitatory cholinergic motor neurons form dyadic synapses with
muscles and a GABAergic motor neuron dendrite. Representative GABAergic motor neuron synapses with body wall muscle arms in (A) wild-type and
(C) mutant tba-1(ju89) animals, and cholinergic motor neuron synapses in (B) wild-type and (D) ju89 worms. Fewer synaptic vesicles are visible in both
types of synapses in the mutants. (E) The number of synaptic vesicles per active zone (p,.05), (F) length of the active zone in nm (p,.05), and (G)
number of synaptic vesicles/active zone length for the cholinergic motor neuron synapses in one animal are shown. Cholinergic synapse size is
reduced in the ju89 mutant. Error bars: S.E.M.
doi:10.1371/journal.pone.0009655.g002

Neural Defects in tba-1(ju89)
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Figure 3. Axon Outgrowth Defects in Tubulin Mutants. (A) Diagrams of defects in axon extension and commissure outgrowth observed in
newly hatched mutant worms (see Table 2). The morphology of the DD neurons in wild-type and mutant worms was visualized with the cytoplasmic
axon markers Punc-25GFP or Pflp-13GFP. Examples of axon defects in tubulin mutants: (B), (C) short regions (arrows) where axons fail to extend to their
full length along the dorsal nerve cord of tba-1(ju89) worms; (D) a commissure branches prematurely and fails to reach the dorsal nerve cord in a tbb-
1(gk207) mutant animal; (E) axon outgrowth or extension defects in all six DD neurons of a newly hatched L1 larvae. The DD6 commissure stalls
prematurely (arrow), and the DD2 cell body is also displaced anterior. (F) abnormal commissure branch (arrow) in a tba-1(ju89) mutant. Scale bar
20 mM.
doi:10.1371/journal.pone.0009655.g003

Table 2. DD Neuron Outgrowth and Stability.

Animals
affected

Axons
affected

% Dorsal cord
missing

Commissure
outgrowth defects

Commissure
branching defects

Axon outgrowth L1 larvae

wild-type 8/33 (24%) 10/198 (5%) 1.1 0/198 (0%) 0/198 (0%)

tba-1(ju89) 44/52 (85%)* 62/311 (20%)* 11.2 7/302 (2%) 0/312 (0%)

tbb-2(gk130) 54/57 (95%)* 59/342 (17%)* 8.2 2/342 (,1%) 0/342 (0(%)

tba-1(ju89);tbb-2(gk130) 47/54 (87%)* 55/324 (17%)* 7.6 3/324 (,1%), 1/324 (,1%)

tbb-1(gk207) 27/50 (54%)* 34/250 (13.6%)* 4.5 3/250 (,1%) 1/250(,1%);

tba-1(ju89);tbb-1(gk207) 43/50 (86%)* 79/250 (32%)* 20.5 15/250 (6%)* 1/250 (,1%)

Axon stability Young Adult

wild-type 6/100 (6%) 10/500 (2%) nd 2/500 (,1%) 2/500 (,1%)

tba-1(ju89) 11/45 (24%)* 18/225 (8%)* nd 6/225 (3%)** 15/225 (7%)*

The axon morphology of the six dorsal D (DD) motor neurons was visualized with Pflp-13GFP (juIs145) and Punc-25GFP (juIs76) transgenes in L1 larvae and with Pflp-13GFP in
young adults (see Methods). All 6 DD axons were evaluated in animals expressing juIs76, and DD1-DD5 axons were examined in worms that expressed the juIs145
reporter. Animals were scored for gaps along the dorsal nerve cord, commissures that stopped short of the dorsal nerve cord, and abnormal branching morphology
where commissures join the dorsal nerve cord (Figure 3). tbb-2(gk130) mutants and tba-1(ju89);tbb-2(gk130) animals exhibit similar DD axon defects, whereas axon
defects are increased in tba-1(ju89);tbb-1(gk207) double mutants.
*Two-tailed Z-test, p,.005.
**p,.05.
doi:10.1371/journal.pone.0009655.t002

Neural Defects in tba-1(ju89)
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behaved as a dominant, altered function mutation or exhibited

haploinsufficiency. Wild-type C. elegans move in a sinusoidal wave

pattern, whereas ju89 homozygotes were uncoordinated, and the

amplitude of the wave pattern was greatly reduced when animals

move forward (Figure 1K & L). This visible locomotion phenotype

differs from the shrinker phenotype of worms that have lost all

GABAergic synaptic function [18,35]. suggesting that GABAergic

synaptic transmission is only partially affected in ju89 mutants or

that alterations in the synaptic transmission of cholinergic motor

neurons or interneurons may also contribute to the locomotion

phenotype. We found that ju89 heterozygotes (ju89/+) moved in a

pattern intermediate between wild-type and homozygous mutant

worms and also exhibited weak variable defects in SNB-1::GFP

expression, including irregular spaced puncta and a reduction in

the number of dorsal puncta that varied between 10 and 20%

(Table 1). The tba-1(ok1135) deletion removes almost 900 bp

(70%) of the tba-1 coding sequence and is a likely null allele

(Figure 5B), ok1135 animals have wild-type locomotion and SNB-

1-GFP expression patterns (Table 1).

To determine if this weak dominant effect of ju89 was due to

gene dosage, we examined the SNB-1::GFP expression in worms

that were heterozyzgous for a deficiency chromosome, (qDf9) or

heterozygous for the ok1135 deletion. The number of synapses

based on SNB-1::GFP in qDf9/+ heterozygotes and ok1135/+
heterozygotes was the same as in wild-type worms (Table 1),

indicating that tba-1 is not haploinsufficient. Moreover, the SNB-

1::GFP defects of either ju89/qDf9 heterozygotes or ju89/ok1135

heterozygotes were less severe than ju89/ju89 homozygotes,

revealing that ju89 behaves genetically as an altered function

mutation. As further evidence that the ju89 allele of tba-1 can

dominantly disrupt synapse and axon development, we amplified

tba-1 genomic DNA from wild-type and mutant animals, and

injected it in parallel into wild-type worms (see Experimental

Methods). Worms from fourteen of twenty-seven extragenic lines

derived from tba-1 DNA amplified from ju89 mutants (Extba-

1R414) exhibited SNB-1::GFP defects and uncoordinated move-

ment similar to homozygous ju89 mutants (Table 1, Figure 6B &

D). We quantified the reduction in synapses for one ExMtba-1 line

and determined that the number of dorsal SNB-1::GFP puncta

was reduced by an average of 35%. In comparison, all lines that

expressed arrays of wild-type tba-1 DNA injected at the same

concentration were wild-type (Table 1; Figure 6A & C). Thus, the

presence of the ju89 tba-1 allele was sufficient to alter motor

neuron development and function.

Genetic interactions with loss-of-function tbb-1 and tbb-2
tubulin mutants

tba-1is one of two C. elegans alpha-tubulins and two beta-tubulins

expressed maternally during early embryogenesis [31]. RNAi

knockdown of pairwise combinations of tba-1, tba-2, tbb-1 and tbb-2

and analysis of deletion alleles demonstrated that each set

of tubulins have overlapping functions for embryonic viability

[36–37]. However, these tubulins are not completely redundant in

the embryo. The microtubule severing protein MEI-1 (katanin)

acts preferentially on microtubules containing alpha-tubulin tba-2

and the beta-tubulin tbb-2 [38–39]. Gene-specific RNAi targeting

of tbb-2 also results in defects in centrosome positioning and ability

of microtubules to interact properly with the cell cortex in early

embryos that were not observed in single gene RNAi knockdown

of the other three embryonic tubulins [26]. In later larval and

adult stages, the expression pattern of these tubulins is more

varied. tba-1 and tbb-2 are widely expressed throughout the C.

elegans nervous system [31,38], whereas neuronal expression of tba-

2 is restricted to a subset of cholinergic motor neurons (DB and VB

neurons), sensory neurons and interneurons [40].

When we examined deletion alleles of tba-1, tbb-1 and tbb-2

generated by the C. elegans Gene Knock-out Consortium for

Figure 4. Synapse Loss in DD Axons of tba-1(ju89) Animals. The DD neuron axon marker Pflp-13::GFP was coexpressed with a presynaptic
marker Punc-25 mCherry::RAB-3 in wild-type (A, C, E) and mutant (B, D, F) tba-1(ju89) animals (see Methods). Axon extension was similar in both the
wild-type (A) and mutant (B) axons depicted. mCherry::RAB-3 puncta were reduced or missing in the tba-1(ju89) mutant axon (D, F) compared to the
wild-type worm (C, E). The bracket in (F) delineates a region in which mCherry::RAB-3 puncta are missing or greatly reduced in size in the mutant.
Scale bar 20 mM.
doi:10.1371/journal.pone.0009655.g004
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viability and defects in D neuron development we found similar

results. We were unable to recover viable double mutant

combinations of any of these three genes (tba-2 deletion alleles

were not available to include in this analysis). By contrast, 72%

(169/235) of tba-1(ju89); tbb-2(gk130) and 68% (204/301) of tba-

1(ju89);tbb-1(gk207) animals were viable at 20uC and were

evaluated for expression of the SNB-1::GFP marker and DD

morphology (Tables 1 & 2). This result supports that TBA-1-

G414R subunits produced in ju89 mutants can be incorporated

into microtubules and retain essential functions in embryos.

Our analysis revealed that L1 larvae deficient for TBB-2 or

TBB-1 exhibited DD axon outgrowth defects similar to, but

weaker than, tba-1(ju89) mutants (Table 2):17% of tbb-2(gk130)

axons were defective compared to 13.6% of defective axons in tbb-

1(gk207) animals and 20% of axons that terminated prematurely

in tba-1(ju89) mutants (Table 2). The frequency of axon defects

was similar in the tbb-2(gk130) single and the tba-1(ju89);

tbb-2(gk130) double mutant. The lack of a strong additive axon

phenotype in the tba-1(ju89);tbb-2(gk130) double mutants suggested

that axon outgrowth defects in tba-1(ju89) may involve loss of

TBB-2 function. Indeed, when TBB-1 function was removed in

the tba-1(ju89); tbb-1(gk207) double mutant, increased synthetic

embryonic lethality was observed at 20uC, and DD motor neuron

development was more severely affected in the surviving L1 larvae.

32% did not extend completely along the dorsal nerve cord

(Tables 1 & 2), and DD neurons were mispositioned or missing in

10% (5/50) of the tba-1(ju89);tbb-1(gk207) double mutant animals

(Figure 3E). Unlike the more complex phenotype of the dominant

ju89 single mutants, the severe loss of synapses in the ju89; tbb-

1(gk207) double mutant and the decrease in synapses in tbb-

2(gk130) loss-of-function animals (Table 1) appears to be caused by

defective axon outgrowth.

Our genetic analysis indicates that the function of microtubules

containing TBA-1-TBB-2 heterodimers is compromised in ju89

Figure 5. ju89 is a Novel Allele of C. elegans Alpha-Tubulin tba-1. (A) location of ju89 on C. elegans chromosome I based on genetic map data,
(B) Transformation rescue of ju89 by F24E4.8 (tba-1). The minimal rescuing activity for ju89 was narrowed to an overlapping region of cosmid F26E4
and fosmid HO1I17 containing the tba-1-drsh-1 operon. pCZ485, a 4.5 kb subclone containing upstream sequence and only the tba-1 coding region
(F26E4.8) is sufficient to rescue the SNB-1:GFP and locomotion defects of ju89 mutants. (C) ju89 is a missense mutation that converts a conserved
glycine to arginine in the H11–H12 loop of the TBA-1 C-terminus. C-terminal domain structure based on Lowe et al., 2001. Sequences used for the
alignment are C. elegans TBA-1 (CAB03001), TBA-2 (CAB16856), human TUBA3/TUBA1A (NP006000), Mus musculus TUBA1A (AAH83344), and Danio
rerio (NP919369). (D) Crystal structure of alpha-beta tubulin dimer generated by Polyview based on Nogales et al, 1998 and Lowe et al., 2001
(PDB#1JFF). Red highlights the residue altered in ju89 mutants (G414 in TBA-1 and G416 in TUBA1A) located at the beginning of helix 12. Blue
highlights the R402 residue mutated in human lissencephaly (R400 in TBA-1) in the H11–H12 loop adjacent to H11.
doi:10.1371/journal.pone.0009655.g005
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mutants. DD neuron development may be less severely impaired

in ju89 single mutants because microtubules containing TBA-1/

TBB1 heterodimers are still able to compensate for most

alterations in TBA-1-TBB-2 heterodimer function during axon

and synapse growth, or TBB-1 may form functional microtubules

with another partially redundant alpha-tubulin expressed by the

DD neurons. Interestingly, although the axon defects of tbb-

2(gk130) single mutants were similar to ju89 mutants (Table 2),

most gk130 mutants were not severely uncoordinated. The

locomotion of tbb-1(gk207) single mutants was also similar to

wild-type (data not shown). The total number of axon defects in

tba-1(ju89); tbb-2(gk207) double mutants was also slightly improved

compared to ju89 single mutants (Table 2). These observations are

consistent with our model that locomotion and synapse pheno-

types in ju89 mutants are partly independent of function during

DD axon outgrowth.

Discussion

Over the past decade, many structural components of the

presynaptic active zone have been identified by biochemical or

genetic strategies. One unresolved question in axon and

presynaptic terminal differentiation is how the different compo-

nents of the presynaptic specialization are regulated and

transported to synaptic sites. Dynamic formation of nascent

presynaptic structures occurs during axon outgrowth prior to

synapse formation independent of contact with post-synaptic

partners and is an integral step in establishing the connectivity

pattern of a neuron [41]. Transport packets containing preassem-

bled components of the active zone cytomatrix have also been

detected in differentiating axons, and these transport packets

localize independently of neurotransmitter vesicles [42–44].

Extension of the axon and transport of synaptic components are

both dependent on the intricate regulation of microtubule

dynamics and interactions with retrograde and anterograde motor

proteins.

Maintenance of existing synapses and growth of new synapses

are thought to rely on similar transport mechanisms. Between the

late hatching and young adult stage, C. elegans goes through four

larval molts and increases in size four-fold. As the animal grows,

new membrane is added to existing motor neuron axons, and the

neurons must either add new synapses or increase the size of

existing synapses to maintain effective synaptic transmission. This

transition has been documented in detail for the C. elegans DD

neurons by Yeh and Zhen [27]. Using GFP markers and electron

microscopy, they determined that the number of new GABAergic

synapses increases by less than 30%, while each existing synapse

increases in size by at least threefold. The distance between

synapses also increases as new membrane is added to the axon.

Our analysis of tba-1(ju89) defects suggests that defects in

microtubule structure or dynamics in the mutants compromises

motor neuron axon and synapse growth. Our data indicates that

the tba-1(ju89) mutation perturbs initial axon outgrowth, and that

the mutants exhibit additional synapse defects. Many of the

synaptic phenotypes we have documented in ju89 mutants are

consistent with defects in the biogenesis or trafficking of vesicles

containing structural components of motor neuron synapses and

axons, rather than a defect solely in synaptic vesicle transport. In

Drosophila imac mutants, for example, synaptic boutons com-

pletely disappear from motor neurons due to loss of a kinesin-3

motor that is implicated in transport of active zone cytomatrix

proteins as well as synaptic vesicles [45]. When imac function is

removed, the distal tips of the axons also remain thin and

undifferentiated, and synaptic vesicles are mislocalized. We

identified quite similar, but weaker, phenotypes in the tba-1(ju89)

mutants. Both the synaptic vesicle marker, SNB-1:GFP and the

active zone marker, UNC-10::GFP, have reduced or absent

expression at the distal tips of the D neurons, even when a thin

neurite is still visible by epi-fluorescence microscopy. Indeed, the

expression pattern of the synaptic vesicle marker SNB-1::GFP and

active zone marker UNC-10::GFP in the GABAergic DD motor

neuron were identical in ju89 mutants. A small decrease in size of

active zones and the vesicle pool detectable at these synapses was

also observed in the cholinergic motor neurons by EM, while the

proportion of synaptic vesicles/size of active zone was similar in

wild-type and mutant animals. All of these data are consistent with

a failure of the axons and synapses to grow properly as animals

mature. The aberrant branching that increases with the age of the

mutants may also reflect defects in microtubule stability and

transport that slowly become more severe as axons grow to their

full adult size.

Our genetic analysis demonstrates that the ju89 mutation

dominantly alters tba-1 function. Heterozygous ju89 animals

display locomotion and SNB-1-GFP phenotypes intermediate

between wild-type and ju89 homozygotes. We were also able to

induce the mutant defects by expressing mutant TBA-1 protein in

wild-type animals. By contrast, the loss-of-function tba-1 allele

appears nearly wild-type, likely due to overlapping function with

other alpha-tubulins. Similar results have been observed during

early cell divisions, where altered function alleles of tubulin

mutations often have a more severe impact on microtubule

function than null alleles [39,46]. The genetic data that ju89; tbb-2

Figure 6. Expression of Mutant tba-1(ju89) from Extrachromo-
somal Arrays in Wild-Type C. elegans Phenocopies tba-1 (ju89)
Defects. PCR products corresponding to the tba-1 4.5 kb rescuing
region of tba-1 were amplified from wild-type (N2) or ju89 mutant
animals and injected into wild-type juIs1 hermaphrodites to generate
transgenic lines (see Methods). 14/27 lines expressing the mutant tba-1
gene, Extba-1(R414) exhibited uncoordinated movement defects and
altered SNB-1::GFP patterns similar to ju89 homozygotes. All seven lines
expressing wild-type tba-1 (Extba-1) were wild-type. Expression of the
juIs1 SNB-1::GFP transgene in the dorsal nerve cord of wild-type N2
worms expressing (A) Extba-1; or (B) Extba-1(R414). The body size and
locomotion of transgenic animals expressing wild-type tba-1 arrays (C)
was the same as wild-type worms, whereas N2 worms expressing arrays
of tba-1 amplified from the ju89 mutant (D) exhibited the smaller body
size and uncoordinated movement characteristic of ju89 mutants. Scale
bar 5 mM.
doi:10.1371/journal.pone.0009655.g006
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and ju89; tbb-1 double mutants are viable, while loss-of-function

tba-1 allele, ok1135 is lethal in combination with tbb-1 or tbb-2 null

alleles, argues that the mutant TBA-1 protein is incorporated into

microtubules and able to perform part of its wild-type functions.

The absence of zygotic TBA-2 expression by the GABAergic D

motor neurons and anterior cholinergic motor neurons [40] may

explain why the tba-1(ju89) allele has a more deleterious affect on

these neurons. Our genetic analysis indicates that TBA-1(R414)

interacts with both TBB-1 and TBB-2 during neuronal develop-

ment, but that MTs formed by TBA-1 and TBB-2 may be more

severely affected for some functions. This result is consistent with

another dominant allele of TBA-1, or346, that disrupts mitotic

spindle positioning and causes severe embryonic lethality [37].

However, the relative contribution of each beta-tubulin to the ju89

phenotypes may be more complex. Autoregulation and feedback

between tubulins has been observed in C. elegans embryos, and

could be a factor in later stages of development [46].

The ju89 mutation is located near the beginning of helix 12 of

the TBA-1 C-terminus near the alpha-beta tubulin heterodimer

boundary, but it is not part of the intradimer interface. Cryo-EM

studies indicate that H11 and H12 project to the outside of the

microtubule and contribute to ridge and groove structures on the

external face of microtubules, providing a binding surface for

structural MAPs and motor proteins [47] The ju89 mutation

occurs in a critical location on the microtubule surface that could

disrupt specific microtubule-associated proteins (MAPs). Motor

proteins and other MAPs can selectively bind either the alpha or

beta subunits of the microtubule polymer, and structural MAPs

that stabilize protofilaments into the typical13-protofilament

microtubule can potentially interact with both classes of tubulin.

Some of the proteins identified to bind the alpha-tubulin subunit

include the ebp family of microtubule plus-end binding proteins

[15], tubulin destabilizing proteins op50/stathmin [48] and spastin

[10], tubulin folding cofactor E [7,49], doublecortin [50,51] and

the kinesin-3 motor Kif1A [52]. Because the genetic analysis

suggests MTs containing TBA-1 and TBB2 may be especially

impaired in ju89 mutants, MAPs that specifically interact with

TBB-2 could also be affected.

Models for how tba-1(ju89) may affect microtubule
dynamics and axon transport

tba-1(ju89) mutants exhibit pleiotropic defects in synapse and

axon development that suggest TBA-1 interactions with several

motors and structural MAPS may be altered that could alter

microtubule dynamics or function. One likely candidate is the C.

elegans homologue of Kif1A and IMAC: UNC-104. Similar to the

phenotypes observed in Drosophila IMAC mutants, transport of

synaptic vesicles is severely affected by loss-of-function mutations

in unc-104 [53]. The decrease in synaptic vesicles at ju89 motor

neuron synapses is consistent with partial loss of UNC-104-

mediated transport. However, UNC-104 does not solely control

localization of synaptic components such as UNC-10/RIM, UNC-

13 and ELKS in C. elegans [26], and additional motors involved in

transport of these proteins or other active zone proteins could also

be perturbed in the tba-1 mutants.

A second possibility is that the kinetics of tubulin folding and

heterodimer formation is compromised by the ju89 mutation.

Mutations in tubulin-specific chaperonin E (TBCE), a key co-

factor in tubulin dimer assembly and disassembly, have been

shown to cause motor neuron axon defects and degeneration in

mice [7]. The loss of distal microtubules and retrograde dying

back of motor neuron axons in these mutants was subsequently

shown to involve loss of TBCE function at the golgi apparatus

where it regulates routing of axonal tubulin [49]. In a recent

investigation of TBCE function in Drosophila, RNAi knockdown of

either presynaptic or postsynaptic TBCE disrupted the distinctive

microtubule loop structures present at the fly neuromuscular

junction [54].

A third possibility is that ju89 disrupts TBA-1 interactions with a

specific MAP, such as doublecortin, that can stabilize MTS and

MT interactions with motor proteins. Mutations in human and

mouse alpha-tubulin, TUBA1A (TUB3A) cause lissencephaly [16].

Both the human lissencephaly R402H TUBA1A mutation and

tba-1(ju89) G414R mutations are predicted to alter the H11–H12

loop of alpha-tubulin. Lissencephaly results from the failure of

vertebrate cortical neurons to migrate properly during develop-

ment, and is frequently caused by mutations in doublecortin

(DCX) [55]. DCX is a potent microtubule stabilizer expressed by

post-mitotic neurons that binds between the protofilaments of the

MT polymer, promoting polymerization and stable microtubules

that can support kinesin and dynein activity [54–55]. Analysis of

the binding of DCX to microtubules indicates that the H11–H12

loop of alpha-tubulin can form an interface with DCX or the

closely related dclk(doublecortin related kinase) [55]. Vertebrate

DCX and Dclk are also present at axon termini in developing

neurons [56–57], and defects in axon extension and transport

occur in mice heterozygous for mutations in the Mouse

homologues of these proteins [58–59]. Axon outgrowth defects

and disorganized axon tracts were also identified recently in

studies of stillborn human TUBA1A embryos [60] and in a broad

spectrum of developmental brain disorders newly characterized in

mammalian beta-tubulin mutants [61]. It is noteworthy that

dominant mutations in the mammalian beta-tubulin TUBB3

result both in reduced microtubule dynamics and perturbed MT

binding to the kinesin Kif21A in in vitro experiments, and are

associated with defects in axon maintenance in addition to an

earlier developmental affect on axon outgrowth [61].

The C. elegans genome contains a single doublecortin family

member, the dclk protein ZYG-8. zyg-8 is a maternal effect lethal

gene in C. elegans; embryos from homozygous mutant hermaph-

rodites arrest due to defects in positioning the mitotic spindle [62].

It remains to be determined if TBA-1 interactions with TBCE,

ZYG-8 or specific kinesins are altered in ju89 mutants; these

questions can be addressed by direct biochemical experiments and

genetic modifier screens in the future. The similarity between the

tba-1(ju89) phenotypes and neurodevelopmental defects reported

in mammalian motor neuron diseases make the C. elegans tba-

1(ju89) mutant a useful genetic tool to study the microtubule-

mediated functions altered in these disorders and identify

mechanisms that can stabilize axons and reverse synapse loss.

Materials and Methods

C. elegans strains and genetics
All strains were cultured at 20uC as described by Brenner [63].

tba-1(ju89) was isolated from an ethylmethane sulfonate (EMS)

mutagenesis screen of N2 animals carrying the integrated

chromosomal array ju1s1 {P unc-25SNB::GFP; lin-15(+)}. The ju89

mutation was backcrossed multiple times. Linkage mapping placed

ju89 to chromosome one based on the uncoordinated and syd

(synapse defective) phenotype. Standard two and three factor

mapping was used to refine a map position between egl-33 and lin-

11: dpy-5 (9/10) ju89 (0/7) unc-29; dpy-5 (20/22) ju89 mom-5; unc-13

(6/16) ju89 (1/9) egl-33; unc-29(14/37) ju89 lin-11; unc29hp6 (7/27)

ju89 dpy-24.

Strains used in the study include RB1185: tba-1(ok1135)I;

CZ2569: tba-1(ju89)I; JK1553: ces-1qDf9/unc-29(e1072) lin-

11(n566)I; CB2167: dpy-5(e61)I unc-13(e1091 I; EU459 mom-
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5(zu193)unc-13(e1091)/hT2 I; +/hT2 lll; him-8(ec56) IV; MT151:

egl-33(n151); SP1726: unc-29(h1) hp6 dpy-24(s71)I; VC364: tbb-

1(gk207)III; VC167: tbb-2(gk130)III. The genotypes of other

markers used are: oxIs22 {UNC-49B::GFP}; juIs137 {Pflp-13SNB-

1::GFP}; juIs76 {Punc-25GFP}; juIs145 {Pflp-13GFP}; hpIs61 {Punc-25

UNC10-GFP; juEx1368 {Punc-25mCherry::RAB-3} [64]. Strains

carrying extragenic tba-1 arrays were generated as described

below.
Molecular biology. Cosmids and fosmids were provided by

the Sanger Center, Hinxton, UK. A 10.5 kb PstI and PvuII

fragment of genomic DNA derived from cosmid F26E4 was

cloned into pBluescript to generate pCZ483. pCZ483 includes

both genes of the tba-1 operon (tba-1 and drsh-1) and 2 kb of

upstream genomic sequence. All other genomic subclones were

deletion derivatives of pCZ483. pCZ485 was generated by

digesting pCZ483 with BstZi71 and religating, resulting in a

subclone in which exon 3 of tba-1 was deleted. pCZ486 contains a

deletion only in the drsh-1 coding region and was constructed by

digesting pCZ483 with SphI and religating. pCZ484 is a

pBluescript subclone containing a PVUII- AccIII fragment of

pCZ483 that encodes only tba-1(F26E4.8).

The ju89 lesion was identified by determining the genomic

sequence of all exons and introns of tba-1 and 1.2 kb of sequence

upstream of the 59 end of tba-1. Genomic DNA from ju89 mutants

was generated by standard PCR techniques, and PCR products

from three independent PCR reactions for each primer pair was

used to obtain sequence from both strands (UC-Berkeley

Sequencing Center). The following primer pairs were used to

confirm tbb-1 and tbb-2 deletion alleles: tbb-1: 59-CATTGATAT-

TACCGGCTCGAGAC-39 and 59GTAGACATCGATTCTC-

TCCAGCT39; tbb-2(gk130): 59TAGAAAGGTACTTGCGCTG-

A-39 and 59-GACAAGCTCAGCTCCTTCTGTG-39.
Transgenic strains. Germline transformation was

performed following standard C. elegans procedures [65]. Cosmid

and fosmid DNA and subclones were injected at .5–2 ng/ml along

with either 50 ng/ml of pRF4 or 20 ng/ml Pttx–3GFP as selectable

markers. The Expand Long PCR system (Roche) was used to

amplify the 4.5 kb tba-1 genomic region from N2 and ju89 worms.

Strains expressing either the PCR product amplified from wild-

type DNA {Extba-1} or from the mutant ju89 DNA {Extba-

1R414} were constructed by injecting wild-type worms with 1 ng/

ul of PCR product together with 20 ng/ml Pttx–3GFP as a

selectable marker [66].
GFP and immunocytochemical analysis. Live GFP

observation and imaging was performed with an HQ-FITC filter

setup (Chroma, VT, USA) and 63X objective on a Zeiss

AxioplanII with a Zeiss Axiocam imaging system and a Zeiss

Pascal Confocal Microscope. Additional images were recorded

using HQ-FITC and HQ-rhodamine filters and 60X objective on

a Nikon E800 microscope equipped with a Coolsnap ES camera

and Metamorph software. For imaging, adult animals were

anesthetized using phenoxy propanol or pretreated in 2%

parafomaldehyde for 20 minutes. L1 larvae were imaged

without anesthetic. Whole-mount staining for anti-SNT-1 used a

modification of paraformaldehyde fixation [67]. For anti-UNC-10

(Rim) staining, worms were prepared using Bouin’s fixative [68].

Rabbit anti-SNT-1 and anti-UNC-10 antibodies were provided by

Mike Nonet. Secondary mouse anti-rabbit antibodies were

obtained from Jackson Laboratories.

Analysis of axon outgrowth
The six dorsal D (DD) motor neurons were visualized with

Pflp-13GFP (juIs145); Pflp-13SNB-1::GFP (juIs137); and Punc-25GFP

(juIs76) transgenes. All 6 DD axons were evaluated in L1 larvae

expressing juIs76, and DD1-DD5 axons were examined in L1s and

adult worms that expressed the juIs145 or juIs137 reporter

transgenes. To quantify DD axon outgrowth defects along the

dorsal nerve cord, images were collected using a Coolsnap ES

CCD camera (Roper) and Metamorph software. Metamorph or

ImageJ software was used to measure the total dorsal nerve cord

length and any detectable break or gap(s) present in the dorsal

nerve cord for each animal. To assess changes in DD morphology

between L1 and adult stages, L1s with no defects in juIs145 GFP

expression were selected, grown for 2 days at 20–22uC, and were

then examined a second time by epi-fluorescence microscopy.

EM analysis. Young adult juIs1 (wild-type) and tba-1(ju89);

juIs1 animals were fixed in parallel using glutaraldehyde and

osmium as described previously [21]. Serial thin sections (45 nm)

were collected from the anterior of each animal, between the nerve

ring and the vulva. A JEOL-1200 electron microscope equipped

with a GATAN digital camera was used to photograph the ventral

and dorsal nerve cords. GABAergic NMJs were identified as

synapses made by the DD or VD neurons onto muscle arms.

Cholinergic NMJs were identified as dyadic synapses onto both

muscles and DD or VD neurons. The identity of the nerve

processes in the nerve cords was determined by comparison to EM

images from the C. elegans database [17]. Data was collected from

one juIs1 animals (1,500 sections) and two ju89; juIs1 animals (400

sections each).
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