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Abstract Many microbes and fungi acquire the essential ion Fe3+ through the synthesis and

secretion of high-affinity chelators termed siderophores. In Gram-negative bacteria, these ferric-

siderophore complexes are actively taken up using highly specific TonB-dependent transporters

(TBDTs) located in the outer bacterial membrane (OM). However, the detailed mechanism of how

the inner-membrane protein TonB connects to the transporters in the OM as well as the interplay

between siderophore- and TonB-binding to the transporter is still poorly understood. Here, we

present three crystal structures of the TBDT FoxA from Pseudomonas aeruginosa (containing a

signalling domain) in complex with the siderophore ferrioxamine B and TonB and combine them

with a detailed analysis of binding constants. The structures show that both siderophore and TonB-

binding is required to form a translocation-competent state of the FoxA transporter in a two-step

TonB-binding mechanism. The complex structure also indicates how TonB-binding influences the

orientation of the signalling domain.

DOI: https://doi.org/10.7554/eLife.48528.001

Introduction
Iron is one of the most abundant elements on earth and is essential for life. However, the bioavail-

ability of iron in the environment is extremely low, and under aerobic conditions iron is found mostly

as insoluble hydroxides. The demand for the ionic form of iron by all microorganisms growing in

iron-limited conditions has led to the evolution of several efficient iron scavenging strategies. One of

the predominant mechanisms by which microbes and fungi acquire iron is through the synthesis and

secretion of small, specific high-affinity chelators termed siderophores, which keep iron in a che-

lated, soluble state (Neilands, 1995). In Gram-negative bacteria, these ferric-siderophore complexes

are actively taken up into cells using highly specific TonB-dependent transporters (TBDTs) situated in

the bacterial outer membrane (OM) as well as specific transporters present in the bacterial inner

membrane (IM) (Ferguson and Deisenhofer, 2004). The energy for this uptake process is derived

from the proton motive force and relies on the energising complex consisting of TonB/ExbB/ExbD

situated in the bacterial IM (Celia et al., 2016; Noinaj et al., 2010). TonB acts as a physical link

between the transporters in the OM and the energising complex in the IM (Jordan et al., 2013).

Siderophore binding facilitates TBDT contact with the C-terminus of TonB through an allosteric

mechanism, which exposes the TonB-binding site within TBDT, known as the TonB box, to the peri-

plasm (Lundrigan and Kadner, 1986). Association of TBDTs with TonB establishes the main point of

contact with ExbB/ExbD and the proton motive force provides the energy needed for the transloca-

tion of siderophores through the lumen of the OM barrel. The precise mechanism of this
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translocation process is not yet fully understood but is thought to involve a mechanical extraction or

unfolding of the plug region from within the barrel lumen (Hickman et al., 2017). Furthermore, a

subclass of TBDTs possesses an N-terminal signalling domain, which regulates gene transcription of

target operons, often participating in siderophore uptake and processing (Enz et al., 2000). The

activation of these signalling cascades is both ligand- and TonB-dependent, however the molecular

details of this signalling process and its activation remain highly elusive (Ferguson et al., 2007;

Koebnik, 2005). It is speculated that the N-terminal pocket of the signalling domain is involved in

the interactions with the s-factor regulator proteins. To date, the crystal structures of the intact

TBDT FpvA with the fully-resolved signalling domain suggest that there is a high degree of flexibility

at the N-terminal region of the transporter (Brillet et al., 2007). However the putative site involved

in contacting the regulator protein is tucked away beneath the barrel lumen. Pseudomonas aerugi-

nosa is a Gram-negative bacterium and an opportunistic human pathogen, which is a major cause of

hospital-acquired infections in immunocompromised patients. In patients with cystic fibrosis P. aeru-

ginosa lung infections are usually associated with increased mortality rates. P. aeruginosa is able to

utilise a range of xenosiderophores, that is siderophores produced by other bacteria or fungi in

order to scavenge free iron. Such instances of so-called ‘siderophore piracy’ highlight bacterial

adaptability and potential for colonising in an extremely broad range of environmental niches. One

example of siderophore piracy is the uptake of ferrioxamine B, a hydroxamate siderophore pro-

duced by many Streptomyces species, by the specific OM transporter FoxA (Llamas et al., 2006).

FoxA belongs to the family of TBDTs (transducers) and is involved in ferrioxamine B transport as well

as modulation of transcriptional cascades in the bacterial cell. Ferrioxamine B uptake comes at a rel-

atively low energetic cost, when compared with the production of native siderophores such as pyo-

verdin and pyochelin (Dumas et al., 2013). Indeed, when grown in the proximity of Streptomyces

ambofacients, several Pseudomonas species do not produce their own siderophores and instead

parasitize on the siderophores of their neighbour by expressing the ferrioxamine B transporter,

FoxA (Galet et al., 2015).

Here, we determined several crystal structures of FoxA from P. aeruginosa, in the apo state as

well as in complex with the siderophore ferrioxamine B and TonB. Using a hybrid approach combin-

ing X-ray crystallography with biophysical interaction studies, we provide insights into TonB-medi-

ated siderophore uptake across the bacterial OM as well as TonB-dependent signalling. Our results

indicate that the transporter can exist in several different conformations, and that both substrate-

and TonB-binding is required to form a translocation-competent state of the FoxA transporter in a

two-step TonB-binding mechanism necessary for transport function.

Results and discussion

Ternary structure of FoxA bound to ferrioxamine B and TonBCt

Active uptake of siderophores such as ferrioxamine B across the outer membrane (OM) relies on the

establishment of a physical contact between the specific transporter and inner membrane (IM)-teth-

ered TonB. In order understand the mechanism of complex formation between FoxA and TonB we

determined the crystal structure of the ternary complex consisting of FoxA bound to ferrioxamine B

and the C-terminal TonB domain (residues 251-340, referred to hereafter as TonBCt). Two complexes

were present in the asymmetric unit, with crystal contacts generated through the exposed soluble

regions of both proteins (Figure 1—figure supplement 1A,B). We could resolve almost an entire

FoxA molecule including the signalling domain (residues 53-820, with 11 amino acids missing from

the N-terminus after the signal peptide) as well as the full TonBCt. We can identify two main modes

of contact between FoxA and TonBCt. Similar to the FhuA and BtuB-TonB complexes

(Pawelek et al., 2006; Shultis et al., 2006) the primary interaction site between FoxA and TonBCt

occurs through b-augmentation with parallel strands forming between residues 332-337 of TonB and

residues 142-146 of FoxA (Figure 1A,B). In addition to the observed b-augmentation, the unstruc-

tured polypeptide segment upstream of the TonB box (residues 135-141) forms complementary con-

tacts with the surface of TonB molecule mediated by backbone H-bond interactions as well as side-

chains Leu137, Met139 and Val142 located in a small cavity on the surface of TonB (Figure 1C). Most

of the TBDTs do no harbour this extra binding motif upstream of the TonB box since it would only

be present in TBDTs involved in regulating signalling events at the OM via the additional N-terminal
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domain in the periplasm. The secondary point of contact involves the side chains of residues in the

periplasmic loops and barrel interior of FoxA with several residues in the loops of TonB facing the

barrel. These contacts are mediated by electrostatic forces between TonBR271 and FoxAD352, and

between TonBR266 and FoxAD355 as well as a side-chain (FoxAE316) to the backbone carbonyl

(TonBS300) via a hydrogen bond (Figure 1—figure supplement 2). These contacts provide a second-

ary site of attachment for the TonB fragment and tether the C-terminal region of TonB to the barrel.

This tethering locks the orientation of TonB against the barrel and the membrane plane. An overlay

of the two complexes found in the asymmetric unit reveals that TonBCt and the signalling domain

are rotated by 9˚ with respect to the barrel and the membrane plane (Figure 1—figure supplement
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Figure 1. Complex formation between ferrioxamine B-bound FoxA and TonB is driven by multiple binding sites. (A) Overview of the ferrioxamine

B-bound FoxA-TonBCt complex. TonBCt (green) interacts with the TonB box (blue) of FoxA (grey). (B) Parallel b–strands formed between the TonB box

of FoxA (blue) and TonBCt (green) through b-augmentation. All contacts are mediated predominantly by backbone hydrogen bonds between the two

proteins. (C) Polypeptide stretch (pink) upstream of the TonB box (blue) forms additional contacts with the surface of TonB (green).

DOI: https://doi.org/10.7554/eLife.48528.002

The following figure supplements are available for figure 1:

Figure supplement 1. Crystal packing of the FoxA-ferrioxamine B-TonBCt complex.

DOI: https://doi.org/10.7554/eLife.48528.003

Figure supplement 2. Flexibility in the FoxA-TonB complex.

DOI: https://doi.org/10.7554/eLife.48528.004

Figure supplement 3. Comparison of different TBDT-TonB complex structures reveals distinct mechanisms of TonB capture and positioning.

DOI: https://doi.org/10.7554/eLife.48528.005
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2). It is evident that TonBCt and the signalling domain experience some degree of flexibility in the

distal part of the complex, whereas the proximal part of the complex is most likely stabilised by the

contacts at the secondary site. In the previous structural models (Pawelek et al., 2006;

Shultis et al., 2006), TonB sits in close proximity to the b-barrel, almost parallel to the putative lipid

bilayer plane. In our crystal structure, the TonB fragment is located almost perpendicular to the b-

barrel and the membrane plane highlighting the potentially dynamic nature of TBDR-TonB com-

plexes, which has been suggested by recent EPR experiments (Sarver et al., 2018) (Figure 1—fig-

ure supplement 3). Overall, the structure of the ternary FoxA-ferrioxamineB-TonBCt complex

presented in this work reveals both the structure of the N-terminal signalling domain as well as a

markedly different orientation of the TonBCt relative to the TBDT compared to previously deter-

mined ternary structures of FhuA and BtuB (Pawelek et al., 2006; Shultis et al., 2006).

To understand the conformational changes occurring in FoxA in response to ferrioxamine B and

TonBCt we also determined the crystal structure of FoxA in its apo state (Figure 2A). In this structure

a large solvent-exposed lumen faces the extracellular side of the membrane and is filled with solvent

molecules. No electron density was present for the last two amino acids of the TonB box region and

the N-terminal signalling domain of FoxA (residues 45-143), most likely due to the high flexibility of

the linker connecting the plug domain and the signalling domain, as previously observed in the

structures of FecA (Ferguson et al., 2002; Yue et al., 2003) and FpvA (Brillet et al., 2007;

Greenwald et al., 2009; Wirth et al., 2007). Inspection of both apo as well as ligand- and TonBCt-

bound crystal structures of FoxA revealed that in the apo state the TonB box is predominantly

occluded in the interior of the barrel domain. A comparison of the plug domain conformations in

both of our FoxA structures indicates that the TonB box must be displaced by approximately 22 Å

from the folded plug domain in order to allow for b-augmentation to occur with TonB (Figure 2B,

Video 1).

Compared to the apo FoxA structure the ternary complex of FoxA-FoaB-TonBCt also reveals sub-

stantial loop movements. Displacement of loops 7 and 8 by approx. 7 Å on the extracellular side of

the membrane leads to the closure of the barrel lumen on both sides of the membrane, limiting the

access to the barrel lumen (Figure 2C, Video 1). Mechanistically, this would prevent the dissociation

of the siderophore during translocation and opening of the entry channel within the barrel.

Biophysical characterisation of the interactions between FoxA and
TonBCt

Previous structural and biochemical investigations into the mechanisms of TBDT activation and sub-

strate uptake have shown that siderophore binding usually leads to an unwinding of either an N-ter-

minal helix or a stretch of polypeptide within the plug domain bearing the TonB box motif. This

mechanism of polypeptide unwinding, initiated by concerted small motions throughout the plug,

allows the C-terminus of TonB to make contact with the loaded transporter molecule. Moreover,

insights into TBDT association with TonB paint a very complex, and often conflicting picture of sub-

strate-dependent transporter activation and TonB binding. One model suggests a constitutively

bound TonB-TBDT complex (Adams et al., 2006; Kim et al., 2007), whilst another proposes a coop-

erative mode of transporter-TonB interactions that is driven by initial substrate capture by the TBDT

(Cadieux and Kadner, 1999; Merianos et al., 2000).

Therefore, we sought to understand the nature of FoxA-TonB interactions using isothermal titra-

tion calorimetry (ITC) to characterise the thermodynamics of FoxA-TonB interactions. For this pur-

pose, we have reconstituted FoxA into MSP1D1 nanodiscs in order to minimise the detergent

mismatch (Fanucci et al., 2003; Mills et al., 2014). Additionally, nanodiscs (ND) provide a lipidic

scaffold and alleviate the deleterious effects detergents might have on the conformation of the

transporter. Titration of TonBCt into apo FoxA-ND complexes resulted in strong, saturable exother-

mic heats indicative of protein association. ITC data were fitted to a single binding site model and

yielded a Kd of 111 ± 6 nM. The binding process is enthalpically driven with a large, negative DH of -

10.1 ± 0.8 kcal mol-1 (Figure 3A and Supplementary file 1). No binding was observed when TonBCt

was titrated into empty nanodiscs. The observation of tight binding between TonBCt and apo FoxA

in nanodiscs is in contrast to similar experiments performed with FhuA and TonBCt, for which no

binding could be observed (Mills et al., 2014). We speculate that the presence of the N-terminal

domain and the interacting region upstream of the TonB box in FoxA is responsible for the differen-

ces in the binding modes between these two transporters.
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Next, we analyzed the interactions between TonBCt and ferrioxamine B-bound FoxA in lipid nano-

discs. The data were also fitted to a single binding site model. Our ITC experiments showed that in

the presence of ferrioxamine B the binding affinity is increased 17-fold yielding a Kd value of 6.6 ±

1.2 nM. The thermodynamic parameters of the association reaction also differ such that the DH value

decreases drastically to -18.1 ± 0.9 kcal mol-1 with an entropically unfavourable contribution of TDS

= -6.62 kcal mol-1 (Figure 3B and Supplementary file 1).
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Figure 2. Conformational changes in the plug domain and extracellular loops of FoxA in response to ferrioxamine B and TonB binding. (A) The overall

fold of apo FoxA consists of a 22-stranded b-barrel lined by the small globular plug domain within the lumen. The structure is colour-coded from blue

(N-terminus) to red (C-terminus). (B) Structural rearrangements within the plug domain necessary to accommodate interactions with TonBCt. The region

of the polypeptide being part of the TonB box common to both FoxA structures is highlighted in pink. This region is displaced by approximately 22 Å

into the periplasm. Slight conformational changes are also observed throughout the rest of the plug domain (blue: ternary complex/brown: apo state).

(C) Loops 7 and 8 enclose the bound siderophore within the hydrophobic cavity to prevent its dissociation and reduce permeation across the bacterial

membrane during the process of siderophore uptake. Loop closure is only evident once the FoxA is bound with ferrioxamine B and the TonBCt

fragment (loops coloured brown), indicative of allosteric communication between the extracellular and periplasmic regions of the transporter (blue

loops correspond to the apo FoxA).

DOI: https://doi.org/10.7554/eLife.48528.006
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We speculate that the decrease in the entropy

of TonBCt binding in the presence of ferrioxamine

B most likely arises from large conformational

restrictions of the flexible and highly mobile TonB

and signalling domains as well as folding/desolva-

tion events involved in association with TonBCt.

The difference in thermodynamics between the

two binding reactions also suggests several dis-

tinct binding modes between TonBCt and FoxA,

which rely on the siderophore capture. The nega-

tive entropy is compensated for by a large

decrease in the enthalpy of binding, which is driv-

ing the association reaction. Our ITC data sug-

gest that in the presence of ferrioxamine B, FoxA

is able to form a much tighter complex with

TonBCt. Since b-augmentation between the TonB

box of FoxA and TonBCt is driven predominantly

by hydrogen-bonded interactions, the stark

decrease in the enthalpy of binding in our ITC

could be explained by the formation of these

additional contacts. The increased affinity and drastically reduced enthalpy of association is indica-

tive of a much larger surface area participating in the complex formation process compared with the

thermodynamics of apo FoxA-TonBCt complexes. Altogether, the interaction studies presented here

strongly support a cooperative mechanism of siderophore-dependent TonB capture by FoxA and

that two distinct TonB-binding events can occur at the FoxA transporter.

To delineate the interactions between FoxA and TonB we generated FoxA variants with trunca-

tions in the signalling domain and analysed complex formation using analytical size-exclusion chro-

matography. Full-length FoxA exhibits three distinct elution profiles corresponding to apo protein,

FoxA-TonBCt complex and the ternary complex FoxA-ferrioxamine B-TonBCt confirming our ITC

Video 1. Visualising the conformational changes

occurring in FoxA in response to ferrioxamine B and

TonBCt binding. We observe the closure of extracellular

loops 7 and 8 as a prerequisite for translocation of

ferrioxamine B. At the periplasmic side, TonB box is

expelled from the plug domain in order to make

contacts with the TonB molecule.

DOI: https://doi.org/10.7554/eLife.48528.007
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Figure 3. Two distinct modes of association between FoxA and TonB as revealed by the thermodynamics of complex formation. ITC profiles showing

titration of TonBCt (150 mM) into 15 mM apo FoxA nanodisc complexes (A) and 15 mM ferrioxamine B-FoxA nanodisc complexes (B). Insets show the

integrated heats of binding with a single-site fit to the data.

DOI: https://doi.org/10.7554/eLife.48528.008

The following figure supplement is available for figure 3:

Figure supplement 1. Delineation of the constitutive TonB-binding motif in FoxA using analytical size-exclusion chromatography.

DOI: https://doi.org/10.7554/eLife.48528.009
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findings of two distinct TonBCt-bound states, with and without the siderophore (Figure 3—figure

supplement 1A). Deletion of residues 64-130, which correspond to the majority of the signalling

domain, yet retaining the sequence upstream of the TonB box observed in our crystal structure, had

no effect on the constitutive and cooperative binding of TonBCt to FoxA (Figure 3—figure supple-

ment 1B). However, the deletion of residues 64-143, which also include the upstream binding motif

of the TonB box, abrogated the constitutive binding of TonBCt to FoxA, whilst retaining the ability

to cooperatively form the ternary complex between FoxA, ferrioxamine B and TonBCt (Figure 3—fig-

ure supplement 1C). In combination with our structure of the ternary complex, we propose a two-

step binding mechanism: The constitutive mode of TonBCt binding is mediated by the stretch of

amino acids located upstream of the TonB box, and the interaction with ferrioxamine B would result

in the allosteric release of the TonB box from within the barrel interior allowing the formation of a

very tight complex between ferrioxamine B-bound FoxA and TonB, which is necessary for down-

stream translocation events leading to siderophore uptake.

Loop movements establish additional contacts with the bound
siderophore
Siderophore capture by a specific TBDT is an integral part of establishing the necessary contacts

with the TonB/ExbB/ExbD complex, which provides the energy for substrate translocation. As we

have demonstrated, the full engagement of TonB by FoxA is dependent on the presence of ferriox-

amine B. To understand how FoxA interacts with its substrate ferrioxamine B, we co-crystallised and

determined the structure of FoxA with ferrioxamine B in absence of TonBCt and compared this struc-

ture with apo FoxA as well as the ternary complex. Our ferrioxamine B–bound structures of FoxA

revealed a common siderophore binding mode similar to other TBDTs. The electron density for the

bound ferrioxamine B in both structures allowed us to unambiguously model the conformation of

the ligand as judged by the Polder omit maps. (Figure 4—figure supplement 1A,B). Ferrioxamine B

occupies a highly hydrophobic cavity and is stabilized predominantly through hydrophobic and van

der Waals interactions via the aromatic residues found in the surrounding loops and the plug domain

inside the cavity (Figure 4A,B). Several hydrogen bonds are observed between Tyr805 and FoaBO23,

Tyr218 and FoaBN12, and His374 and FoaBO22. The His374 residue, located on the 3rd extracellular

loop, faces the octahedrally-coordinated Fe(III) and allows the imidazole side chain to form a hydro-

gen bond with the hydroxamate groups of the siderophore. Additionally, a number of hydrogen

bonds are observed between ferrioxamine B and the surrounding water molecules. One of the water

molecules involved in the coordination is stabilized through hydrogen bonds by Gln441 (Figure 4B).

The inward movement of loop 8, which is seen in the ternary complex with TonBCt, places Lys657
into close proximity of the bound ferrioxamine B with its e-amino group protruding towards the

hydroxamate groups coordinating Fe3+ on the opposite side of His374 (Figure 4C). These interac-

tions presumably enforce the directionality of siderophore passage in the instance where the high-

affinity site on the plug domain is modified during the partial unfolding and provides additional sta-

bilising contacts to the siderophore prior to steps leading to its transport through the lumen of the

barrel.

We measured the interaction between ferrioxamine B and purified FoxA using tryptophan fluores-

cence quenching experiments and ITC. Titration of ferrioxamine B to FoxA purified in nonyl gluco-

pyranoside lead to concentration-dependent quenching of Trp fluorescence and allowed us to

calculate the dissociation constant (Kd) of 100 ± 10 nM, with a 1:1 stoichiometry (Figure 4—figure

supplement 1C). Our ITC experiments titrating ferrioxamine B into FoxA yielded a Kd value of 210 ±

44 nM, which agrees well with our fluorescence experiments (Figure 4—figure supplement 1D).

Such strong association is also observed in other widely studied TBDT-siderophore complexes

(Mislin et al., 2006) and reflects the highly specific nature of these transporters at capturing

extremely scarce siderophore-iron chelates from the extracellular milieu. Our crystal structures of

apo FoxA and the ferrioxamine B-bound states revealed only minor conformational perturbations of

the extracellular loops and the periplasmic side of the plug domain in FoxA upon binding with the

siderophore. However, when ligand-loaded, FoxA association with TonBCt leads to the closure of

the extracellular loops, shielding the bound siderophore inside the barrel. It is worth mentioning

that the ability of FoxA to bind ferrioxamine B is unaffected by the bound TonBCt (Figure 4—figure

supplement 2), meaning that the movement of the loops is not initiated by the binding of TonB to

the apo state of the transporter.
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Conclusions
Our structures enable us to postulate a mechanistic model for the TonB-mediated uptake of ferriox-

amine B by the TBDT FoxA. FoxA can sequester free ferrioxamine B from solution and remain side-

rophore-bound until it is able to engage with TonB for transport of the siderophore inside the

periplasm (Figure 5, left half). Likewise, FoxA can form a constitutive complex with TonB, even in

the absence of ferrioxamine B. Ferrioxamine B binding to this constitutive state of FoxA-TonB would

!"

#" $"

%&'("
)*+'"

,-.!/01223-.45361"7"

,-.!/01223-.45361"7/8-67#9"

7"

:;<="

:;<*"

>+?&"

:((+"
:((&"

@((<"

,=?&"

:=?+"
,;(*"

:'AA"

B;<?"

,(?+"

%&'("

Figure 4. Ferrioxamine B interactions with FoxA reveal the basis for high-affinity siderophore capture. (A) and B) Interaction of ferrioxamine B by

hydrophobic and aromatic residues lining the binding pocket of FoxA. Several hydrogen bonds are also observed between ferrioxamine B and residues

His374 and a Gln441-H2O network, respectively. (C) The closure of loop eight results in additional hydrogen bonds between ferrioxamine B and the e-

amino group of Lys657 facing the siderophore, which becomes locked from both sides by hydrogen bonds. (D) Large hydrophobic cavity facing the

extracellular milieu occupied by ferrioxamine B. In the apo/ferrioxamine B structures the cavity and ferrioxamine B are solvent exposed (top), whereas in

the ternary complex (bottom) the loop closure sequesters ferrioxamine B inside the barrel.

DOI: https://doi.org/10.7554/eLife.48528.010

The following figure supplements are available for figure 4:

Figure supplement 1. Characterisation of ferrioxamine B binding to FoxA.

DOI: https://doi.org/10.7554/eLife.48528.011

Figure supplement 2. ITC measurement titrating 500 mM ferrioxamine B into 15–20 mM of pre-assembled FoxA-TonBCt in nanodiscs shows that

constitutive binding of TonBCt does not lead to the closure of extracellular loops in apo FoxA.

DOI: https://doi.org/10.7554/eLife.48528.012
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then lead to the ternary high-affinity complex with TonB via b-augmentation and initiate a cascade

of structural re-arrangements within the plug domain to allow for the passage of the substrate

through the barrel lumen (Figure 5, right panel).

Previous studies into ferrioxamine B uptake suggested that the expression levels of FoxA, com-

pared with other TBDTs like FpvA and FptA, are non-detectable (Llamas et al., 2006). Yet, in the

presence of ferrioxamine B and under iron-limiting conditions the levels of FoxA in the OM reach

those of other TBDTs, which can reach 100-fold the TonB concentration (Klebba, 2003). This fact

indicates that the “left half” of the proposed mechanism of TonB-mediated ferrioxamine B uptake

via the FoxA transporter as shown in Figure 5 might be the dominating path in vivo under iron-limit-

ing conditions and in the presence of ferrioxamine B. This path is also favoured by the significantly

higher affinity of TonBCt towards “activated” FoxA/FoaB.

The physiological function for the formation of a constitutive FoxA-TonB complex in the absence

of ferrioxamine B is currently unclear, but may relate to the basal detection of environmental ferriox-

amine B. This would subsequently amplify the fox operon leading to efficient uptake of ferrioxamine

B from the environment, with little cost of native siderophore production.
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Figure 5. Proposed mechanism of TonB-mediated ferrioxamine B uptake via the FoxA transporter. Our studies suggest that FoxA can exist in several

states depending on the abundance of ferrioxamine B in the environment and the occupancy of TonB by other TBDRs. FoxA is able to interact with

ferrioxamine B or engage with TonB with near-equal affinity (Kd» 100 nM) in a constitutive fashion. The presence of ferrioxamine B, however, is

necessary for the expulsion of the TonB box into the periplasm and the formation of the full, translocation-competent ternary complex through b-

augmentation (Kd» 6–10 nM). This very high-affinity interaction provides the necessary contacts in the complex for subsequent steps of the plug domain

re-modelling or expulsion, necessary for siderophore translocation through the lumen of the barrel.

DOI: https://doi.org/10.7554/eLife.48528.013
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Our structure also offers potential insight into signal transduction necessary for the regulation of

transcription of the FoxA operon. The signalling domain, visible in the ternary complex, is exposed

N-terminally to the periplasmic space, allowing it to engage with the sigma factor regulator protein

FoxR situated in the IM. The observed orientation of the signalling domain differs starkly from previ-

ous structural studies involving FpvA (Brillet et al., 2007; Wirth et al., 2007).

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Gene
(Pseudomonas
aeruginosa)

FoxA (Pseudomonas
aeruginosa strain
PAO1)

PA2466

Strain, strain
background (E.
coli)

Lemo 21 New England
Biolabs

C2528J

Strain, strain
background
(E. coli)

BL21 Gold (DE3) Agilent 230132

Chemical
compound,
drug

desferrioxamine B Sigma-Aldrich D9533

Chemical
compound,
drug

octyl glucopyranoside (OG) Anatrace O311

Chemical
compound,
drug

nonyl glucopyranoside (NG) Anatrace N324

Chemical
compound,
drug

C8E4 Anatrace T350

Software,
algorithm

XDS (Kabsch, 2010) http://xds.mpimf-
heidelberg.mpg.de/

Software,
algorithm

AIMLESS (Evans, 2011) http://www.ccp4.ac.
uk/html/aimless.html

Software,
algorithm

Phaser (McCoy et al., 2007) http://www.ccp4.ac.
uk/html/phaser.html

Software,
algorithm

PHENIX 1.14 (Adams et al., 2010) https://www.phenix-online.org/

Software,
algorithm

Coot 0.8.9.1 (Emsley et al., 2010) https://www2.mrc-
lmb.cam.ac.uk/
personal/pemsley/coot/

Software,
algorithm

REFMAC5 (Murshudov et al., 2011) http://www.ccp4.ac.
uk/html/refmac5.html

Software,
algorithm

Buster-TNT (Blanc et al., 2004) https://www.
globalphasing.com/buster/

Materials
The detergents used for purification were from Anatrace (Maumee, OH, USA). Desferrioxamine B

was purchased from Sigma-Aldrich. All other chemicals were of analytical grade and obtained from

Roth (Karlsruhe, Germany) or Sigma Aldrich / Merck (Darmstadt, Germany).

Protein expression and purification
Full-length FoxA gene from Pseudomonas aeruginosa strain PAO1 was cloned into a modified

pET28a vector bearing a C-terminal TEV cleavage site prior a His6-tag. Protein overexpression was

carried out in Escherichia coli Lemo21 cells (Schlegel et al., 2012) in 2xTY media supplemented with

Josts et al. eLife 2019;8:e48528. DOI: https://doi.org/10.7554/eLife.48528 10 of 15

Research article Structural Biology and Molecular Biophysics

http://xds.mpimf-heidelberg.mpg.de/
http://xds.mpimf-heidelberg.mpg.de/
http://www.ccp4.ac.uk/html/aimless.html
http://www.ccp4.ac.uk/html/aimless.html
http://www.ccp4.ac.uk/html/phaser.html
http://www.ccp4.ac.uk/html/phaser.html
https://www.phenix-online.org/
https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
http://www.ccp4.ac.uk/html/refmac5.html
http://www.ccp4.ac.uk/html/refmac5.html
https://www.globalphasing.com/buster/
https://www.globalphasing.com/buster/
https://doi.org/10.7554/eLife.48528


NPS (50 mM Na2HPO4, 50 mM KH2PO4, 25 mM (NH4)2SO4) and 5052 mix (0.05% glucose, 0.2% lac-

tose, 0.5% glycerol) and 0.5 mM L-rhamnose. Cells were grown to an OD600 of 1 at 37 ˚C, the tem-

perature was reduced to 20 ˚C and 0.1 mM IPTG was added for further 16 hours. Cells were lysed in

30 mM Tris pH7.5, 200 mM NaCl, 10% glycerol using the high-pressure homogenizer (EmulsiFlex-

C3, Avestin) and cell debris was removed by centrifugation at 22,000 g for 30 min. 1% Triton X-100

was added to the clarified cell lysate and incubated for 1 hr at 4 ˚C. The outer membrane fraction

was isolated by a second centrifugation step at 100,000 g and the resuspended pellet was solubi-

lised overnight in 1% octyl glucopyranoside (OG). Insoluble material was removed by another centri-

fugation step at 100,000 g for 20 min. Solubilised OM fraction was applied to the Ni-NTA resin

followed by subsequent washes with buffer containing 25 mM imidazole and 0.4% nonyl glucopyra-

noside (NG) or 0.4% C8E4. Protein was eluted with 250 mM imidazole in buffer with 0.4% NG or

C8E4 and tobacco etch virus protease (1:10 w/w) was added to the eluted fractions overnight. After

reverse Ni-NTA purification, the protein was concentrated and passed over a Superdex S200 10/300

size exclusion column.

TonBCt (TonB1 from from Pseudomonas aeruginosa strain PAO1, residues 251-340) was overex-

pressed in Escherichia coli BL21 Gold cells, grown at 37 ˚C in LB medium. Cells were induced with

0.2 mM IPTG at OD600 of 0.6-0.8 and the temperature was reduced to 20 ˚C. After 12 hours cells

were spun down and lysed in 30 mM Tris pH 7.5, 500 mM NaCl, 10% glycerol using the EmulsiFlex-

C3 (Avestin) homogeniser and cell lysate was centrifuged at 40,000 g to remove the cell debris.

Cleared cell lysate was supplemented with 20 mM imidazole and loaded onto the 5-ml HisTrap Ni-

NTA column. After several washes the protein was eluted with resuspension buffer supplemented

with 300 mM imidazole. TEV was added to the pooled fractions containing TonBCt and reverse-puri-

fication was performed the next day to remove the TEV and cleaved His6 tag. TonBCt was concen-

trated and stored at -80 ˚C until further use.

MSP1D1 was expressed and purified as previously described (Josts et al., 2018; Ritchie et al.,

2009) (Nitsche et al., 2018). Briefly, MSP1D1 in pET28a vector was transformed in E. coli strain

BL21 (DE3) and grown in terrific broth (TB) media at 37 ˚C. At an OD600 of 1.5 the protein expression

was induced by adding 1 mM isopropyl ß-D-1-thiogalactopyranoside (IPTG) and cells were grown

for 4 h at 37 ˚C. Cells were harvested by centrifugation at 3000 g, resuspended in lysis buffer (50

mM Tris pH 8.0, 500 mM NaCl) with 1% Triton X–100 and broken using sonication. The cleared

lysate was loaded onto a HisTrap column and washed with ten column volumes each of lysis buffer

containing 1% Triton X-100 and 50 mM cholate, respectively. MSP1D1 was eluted with buffer con-

taining 500 mM imidazole, and fractions containing pure protein were pooled and incubated with

TEV protease overnight. Subsequently, the protease and cleaved His-tag were separated by apply-

ing a second IMAC chromatography step and MSP1D1 without His-tag was concentrated up to 400

mM and stored at -80 ˚C until further use.

Analytical size-exclusion chromatography (SEC)
Truncation mutants of FoxA (D64-130 and D64-143 residues) were generated using the standard

QuikChange PCR mutagenesis protocols. Analytical SEC analyses of complex formation between

FoxA, truncated FoxA and TonBCt were performed using a Superdex S200 10/300 column. The

buffer in these experiments consisted of 25 mM HEPES pH7.4, 150 mM NaCl, 0.4% NG. In all cases,

15-25 mM FoxA or its truncated forms were mixed with 5-fold excess TonBCt and 10-fold excess fer-

rioxamine B (where appropriate) and injected onto the analytical SEC column.

Crystallisation
Crystals of apo FoxA purified in C8E4 were grown by the sitting drop vapour diffusion technique. 1

ml of purified protein (5-10 mg/ml) was mixed with 1 ml of 1.8-2 M ammonium sulfate solution and

0.1 M HEPES pH 7. Crystals appeared overnight and grew out of phase separation liquid clusters

with crystal sizes, limited by the liquid phase, reaching approximately 30-70 mm. For crystallisation of

FoxA with ferrioxamine B in NG detergent, the ligand was added in excess to the protein solution

and incubated for at least 30 min on ice prior to setting up crystallisation trays. Crystals were cryo-

protected by a step-wise addition of glycerol to a final concentration of 18-20% (v/v). For the crystal-

lisation of the FoxA-FoaB-TonBCt complex, FoxA-FoaB was incubated with 2-fold excess TonBCt, and

passed through the size-exclusion column. Fractions corresponding to the complex were pooled and
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set up in crystallisation screens. The complex crystallised in the same condition as the apo FoxA and

FoxA-FoaB, containing 1.8-2.0 M ammonium sulfate, 0.1 M HEPES pH 7. These crystals were cryo-

protected by soaking the crystals in the crystallisation condition supplemented with 20% ethylene

glycol for 2-3 min.

Structure determination
All X-ray diffraction data were collected at 100 K. Data were collected at the PETRA III/EMBL P14,

ESRF ID30B and BESSY 14.1 beamlines. All datasets were processed with XDS (Kabsch, 2010) and

merged with AIMLESS (Evans, 2006; Evans, 2011). All final data were merged from two individual

datasets. Unit cell parameters and space groups are given in Table 1 (Supplementary file 1). We

used the FhuA model from Escherichia coli (PDB:1BY3) as a molecular replacement candidate (40-

45% sequence identity to FoxA). After the successful placement of the model using Phaser

(McCoy et al., 2007), the FoxA model was completed using a combination of phenix.autobuild

(Terwilliger et al., 2008) and manual building in Coot (Emsley and Cowtan, 2004). Apo FoxA was

refined using phenix.refine and REFMAC5 (Afonine et al., 2012) (Murshudov et al., 2011). For the

FoxA-FoaB complex, refinement was performed initially using phenix.refine, followed by TLS and

jelly-body refinement in REFMAC5 (Murshudov et al., 2011). For modelling the FoxA-FoaB-TonBCt

complex, apo FoxA was used as a search model in Phaser. Once the MR solution was identified,

clear density corresponding to the TonBCt and the N-terminal signalling domain became evident

and they were manually built into the electron density using Coot. Refinement was carried out ini-

tially using phenix.refine at the early stages of model building. Once all the backbone poly-Ala

stretches were built, Buster-TNT (Blanc et al., 2004) was used for all the subsequent refinement pro-

cedures. The final models correspond to residues 44-820 of FoxA with residues 119-124 and 138-

155 being disordered. The TonBCt model comprises residues 251-340. All data collection and refine-

ment statistics are summarised in Table I (Supplementary file 1).

Isothermal titration calorimetry (ITC)
FoxA was incorporated into MSP1D1 nanodiscs. Briefly, FoxA was mixed with purified MSP1D1 and

POPC lipids in 1:2:70 ratio and biobeads were added to initiate the nanodisc assembly. After

approximately 4-5 hours, the mixture was concentrated and purified by gel size exclusion chroma-

tography using a Superdex S200 10/300 column. All proteins were extensively dialysed against 20

mM HEPES, 150 mM NaCl, pH 7.5 overnight. 15 mM FoxA or FoxA-FoaB incorporated into MSP1D1

nanodiscs were loaded into the ITC cell, 150 mM TonBCt was placed in the syringe. For the “pre-

loaded” FoxA-FoaB complex, FoxA in nanodiscs was dialyzed against 1 mM FoaB. All binding reac-

tions were measured at 26 ˚C. TonBCt was also titrated against empty nanodiscs as a control. Heat

of dilution was obtained by titrating TonBCt into the dialysis buffer and subtracted from all subse-

quent measurements. Heats of binding for all the reactions were integrated using Microcal Origin

software and all the data were fitted to a single-site binding model. All titrations were performed as

triplicates and errors are reported as standard deviations (SD).

Tryptophan fluorescence quenching experiments
All fluorescence measurements were performed using a Cary Eclipse fluorescence spectrometer.

FoxA purified in nonyl glucopyranoside (NG) was diluted to 100 nM in a 3 ml quartz cuvette. Trp

fluorescence was excited at 280 nm and emission spectra were recorded from 310-420 nm. Ferriox-

amine B, diluted in the same buffer as FoxA, was titrated into the cuvette until saturation in fluores-

cence quenching was reached. Control experiments with buffer were performed to account for

dilution effects on Trp fluorescence. Buffer conditions were 20 mM Tris pH 7.5, 200 mM NaCl, 0.4%

NG. Curves were plotted and analysed in GraphPad Prism 7. The binding curve was fitted to a sin-

gle-site binding model. Measurements were performed as triplicates.
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