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The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with

profound impacts on human society and ecosystem function. The challenge of

documenting and describing fungal diversity is exacerbated by their typically

cryptic nature, their ability to produce seemingly unrelated morphologies

from a single individual and their similarity in appearance to distantly related

taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based

comparisons to study fungal diversity, including linking curated DNA

sequence data to expertly identified voucher specimens. DNA-barcoding

approaches in fungi were first applied in specimen-based studies for identifi-

cation and discovery of taxonomic diversity, but are now widely deployed for

community characterization based on sequencing of environmental samples.

Collectively, fungal barcoding approaches have yielded important advances

across biological scales and research applications, from taxonomic, ecological,

industrial and health perspectives. A major outstanding issue is the growing

problem of ‘sequences without names’ that are somewhat uncoupled from

the traditional framework of fungal classification based on morphology and

preserved specimens. This review summarizes some of the most significant

impacts of fungal barcoding, its limitations, and progress towards the

challenge of effective utilization of the exponentially growing volume of

data gathered from high-throughput sequencing technologies.

This article is part of the themed issue ‘From DNA barcodes to biomes’.

1. Introduction
Diversity in the fungal kingdom is estimated to range from 1.5 to more

than 5 million species [1–3], but only a small fraction of these species

(approx. 100 000) have so far been described [4], despite their essential roles

in ecological systems in terms of global chemical cycling, decomposition, nutri-

ent acquisition in symbiosis and pathogenicity [5–8]. Because these eukaryotic

organisms have microscopic life-history stages with simple and often conver-

gent morphological features, genetic data are essential for quantifying the

extent and distribution of their diversity. Early molecular studies focused on

fungi relevant to medical and industrial applications, but within little more

than a decade, surveys of the natural environment were being used to uncover

hidden fungal diversity, all based on universal nuclear ribosomal primers

developed by White et al. [9]. The development of these primers was perhaps

the most important advance in establishing a barcoding approach—using stan-

dard, short sequences to identify taxa, facilitating comparative research across

diverse fungal groups and ultimately becoming the standard practice.

The formal acceptance of the internal transcribed spacer (ITS) region in the

nuclear ribosomal cistron as the standard fungal barcode was based on a phy-

logenetically wide-ranging test showing reasonable discriminatory power at

the species level in many groups [10]. This built on an extensive body of
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literature showing that discontinuities in sequence variation

often correspond to data from morphology, chemistry, biogeo-

graphy and ecology [11]. Comparisons with mitochondrial

cytochrome oxidase 1 (CO1), the standard barcode marker

for animals, showed that in many fungi CO1 is prone to

having multiple introns and is difficult to amplify with

universal primers [12–14]. There is now an extensive set of

resources for fungal barcoding, including sampling protocols

and laboratory techniques, summarized in the electronic

supplementary material.

The aim of this paper is to review how DNA barcoding has

been deployed to enhance understanding of global fungal

diversity, including both scientific advances and societal

applications, focusing on ITS barcoding and extending to

genome-wide sequencing. We build on more than 20 years of

data collection using the originally de facto and now formal

ITS barcode marker, and we reiterate the challenge to integrate

DNA sequence data into the wider historical classification

framework for fungi [15–17]. Given the scale of this challenge,

and the increasingly urgent need to rationalize these two

approaches, it is clear that one important role for DNA barcod-

ing will be to generate novel species hypotheses as well

as evaluating existing taxon concepts. Although unrelated

lineages such as oomycetes share fungus-like lifestyles,

research challenges and even barcoding target loci [18], we

restrict this review to true fungi.
2. Fungal barcoding databases
Effective DNA barcoding requires comparing newly genera-

ted sequences to a well-established reference database.

This voucher-based approach enabling reproducibility and

re-examination was advocated from the early stages of fungal

barcoding, with sequence data routinely accompanied by

curated and annotated specimens or strains [19]. However,

two important challenges have persisted. First, despite

concerted efforts to fill the gap, only a small proportion of

fungal species have ITS data in the public databases, such as

GenBank, which form part of the International Nucleotide

Sequence Database Collaboration (INSDC) [20–23]. Second

is the accumulation of misidentified and unspecified sequen-

ces in public sequence databases [24,25], which make

identifications using these sequences problematic.

GenBank and UNITE are the main repositories of fungal

sequence data. These data are augmented by various special-

ized sequence databases for barcoding and barcoding-related

work, which collate and curate databases of reference mate-

rial (voucher specimens or cultures) linked to sequence data

(table 1). In addition, several specialized bioinformatics pipe-

lines for high-throughput fungal analyses have been devised

[36–38]. The UNITE database and PlutoF [39] workbench

include modules for ITS extraction, chimera checking,

and identification, including matching query sequences with

species hypotheses (including varying similarity cut-offs) and

reference sequences determined by expert users [36]. The

Ribosomal Database Project (RDP) employs a naive Bayesian

approach to classify unknown sequences, relying on initially

selected training sets [40], including ITS [41]. Another important

initiative at the US National Center for Biotechnology Infor-

mation (NCBI) is focused on curating and re-annotating ITS

sequences from type material that is already publically available

at the INSDC, i.e. the RefSeq Targeted Loci ITS project [32,42].
Curated databases with a guarantee of long-term support are

critically important, because the community-led specialist

fungal databases often lack such funding commitments.
3. Linking names and sequences
Ultimately, linking scientific names to molecular data requires

reference sequences generated from type material. Recent

efforts to add barcodes for cultures and specimens are begin-

ning to make inroads into this problem [32,43]. However, the

problem of ‘dark taxa’ represented by sequences lacking

formal binomials is steadily growing [44,45]. The latest com-

parisons of the names in the NCBI Taxonomy Database [46]

indicate a shift in the early 2000s where more sequences were

released without, rather than with, species-level identification;

this trend was recognized by Hibbett et al. [17] in 2011 and has

not diminished (figure 1). Compounding the ‘sequences with-

out names’ issue is the ‘names without sequences’ problem

(figure 2). From a 10 year period up to 2009, more than 70%

of new fungal species described had no ITS sequence deposited

[17]. This in part is driven by some researchers having limited

access or resources for DNA sequencing, and in part by

researchers not choosing to generate the sequence data

for new species. After the requirement for online deposition

of new fungal names was proposed in 2011, the percentage of

new species with sequences has increased to 55%. Another

important improvement to NCBI, implemented in 2013, is

allowing material to be retrospectively designated by curators

as from a type in the taxonomy database; links can also be

made directly to outside biorepositories [47]. As of 2016, 23%

(7308) of current fungal species with binomials (32 431) in the

INSDC databases (November 2015) can be tied to sequences

from type material with 14% (4759) having quality verified

ITS sequences in the UNITE database.

Massively parallel metabarcoding, the use of high-through-

put barcoding to analyse community composition, is also

resulting in ever-increasing numbers of unidentified fungal

ITS sequences [48], a challenge clearly articulated in the recent

review by Hibbett et al. [17]. The main public repository

for these sequences is the Sequence Read Archive (SRA) of

NCBI. Current bioinformatic tools and techniques diagnose

molecular operational taxonomic units (MOTUs) or species

hypotheses from these sequences using similarity thresholds

(e.g. 0.03 forectomycorrhizal (EM) fungi or 0.05 for endophytes).

This standardization of unit diagnosis using sequence data

allows fungal ecologists to compare across studies and geo-

graphical areas. Although sequence clusters are potentially

uncoupled from other biologically meaningful information

and may not always correspond to recognized species [49–51],

it is clear that closely related fungi can be detected repeatedly

with this approach, enabling diversity comparisons to be made.

The outputs of conventional specimen-based barcoding and

community sequencing thus share the common problem of

linking sequences (and sequence clusters) to names. One

approach to tackle this is akin to that of the barcode identifi-

cation number system used in animal barcoding [52]. This

involves the establishment of a separate nomenclature based

around sequence clusters; this approach is used in the UNITE

database [36]. This sequence cluster framework can then be

mapped to existing taxonomic infrastructure where sequence

clusters/MOTUs overlap with named specimens. The alterna-

tive approach, advocated by Hibbett and co-workers [17,53],



Table 1. A selection of actively curated specialist databases containing ITS reference sequences for fungi, including single and multilocus sequence typing
(MLST) resources.

name scope contents
web address, NCBI nucleotide
Entrez search term(s)

CBS-KNAW: Centraalbureau voor

Schimmelcultures

BioloMICS Databases [26]

Aspergillus and Penicillium

Dermatophytes

Fusarium

indoor fungi

medical fungi

Phaeoacremonium

Pseudallescheria/Scedosporium

Resupinate Russulales

Russula

yeasts

ITS and MLST www.cbs.knaw.nl

Fusarium-ID [27,28] Fusarium multiple

markers,

ITS

http://isolate.fusariumdb.org

International Society of Human and Animal

Mycology (ISHAM) ITS database [29]

human and animal pathogens ITS http://its.mycologylab.org

loprovishamits[filter]

MaarjAM [30] Glomeromycota multiple

markers,

ITS

http://maarjam.botany.ut.ee

Q-Bank [31] quarantine organisms ITS and MLST www.q-bank.eu/fungi

RefSeq Targeted Loci [32] mainly sequences from type material,

re-annotated from INSDC

ITS, LSU http://www.ncbi.nlm.nih.gov/refseq/

targetedloci/

177353[bioproject]

51803[bioproject]

RDP Classifier [33] wide taxonomic range, training set

selected from INSDC

ITS, LSU https://rdp.cme.msu.edu/classifier/

classifier.jsp

Targeted host-associated Fungi ITS Database

(THF) [34]

wide taxonomic range, re-annotated

from INSDC

ITS https://risccweb.csmc.edu/microbiome/

thf/

TrichoBLAST [35] Trichoderma and its Hypocrea

synonyms

TEF1, RPB2,

ITS

www.isth.info/tools/blast/index.php

UNITE [36] wide taxonomic range, re-annotated

from INSDC

ITS http://Unite.ut.ee

loprovunite[filter]
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is for mycologists to collectively work to alter common practice

in applying the International Code of Nomenclature, allowing

species to be formally named with binomials based on sequence

types alone or based on environmental samples.

Regardless of the mechanism, the importance of using well-

curated fungal collections as a source of expert taxonomic

opinion and authoritative-type material cannot be overstated,

and can serve to integrate new sequence data with taxonomy

and its important legacy of associated biological and evolution-

ary knowledge [54,55]. Although ITS has been successfully

sequenced from fungus-type material over 200 years old

[56,57], this is the exception. Shotgun sequencing of historic

material [58] may represent a new opportunity to access genetic

information in historical specimens, potentially revolutionizing

our ability to stabilize nomenclature and improve connections

between sequences, specimens and names. It is clear that both
integrating retrospective data from existing collections and

routinely sequencing new collections (including generating

sequences from all new species) are needed.
4. Barcoding successes
An important success of fungal ITS barcoding and the tools

devoted to its use (e.g. table 1) is the increased ability to include

fungi in studies of biological diversity. Although few fungal

researchers use the term barcoding, ITS sequencing is now

often a routine part of diversity assessment, particularly for

unexplored habitats and regions. Because most of the world’s

fungi have not been detected by traditional surveys, basic

distributional data about the species diversity for most

geographical regions and fungal groups are often lacking [59].

http://www.cbs.knaw.nl
http://isolate.fusariumdb.org
http://isolate.fusariumdb.org
https://its.mycologylab.org
https://its.mycologylab.org
http://maarjam.botany.ut.ee
http://maarjam.botany.ut.ee
http://www.q-bank.eu/fungi
http://www.ncbi.nlm.nih.gov/refseq/targetedloci/
http://www.ncbi.nlm.nih.gov/refseq/targetedloci/
http://www.ncbi.nlm.nih.gov/refseq/targetedloci/
https://rdp.cme.msu.edu/classifier/classifier.jsp
https://rdp.cme.msu.edu/classifier/classifier.jsp
https://rdp.cme.msu.edu/classifier/classifier.jsp
https://risccweb.csmc.edu/microbiome/thf/
https://risccweb.csmc.edu/microbiome/thf/
https://risccweb.csmc.edu/microbiome/thf/
http://www.isth.info/tools/blast/index.php
https://Unite.ut.ee
https://Unite.ut.ee
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Figure 1. Number of fungal binomial species names and unspecified
binomials added each year—‘dark taxa’ in GenBank.
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Figure 2. Number of new species listed in Index Fungorum by year, and their
representation in the NCBI Taxonomy Database. New species names in Index
Fungorum per year (solid line), their presence in NCBI Taxonomy (dashed
line) and which of them have ITS sequences in the UNITE database (version 7;
dotted line).
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(a) Location-based insights into diversity
At the level of a local assemblage, barcoding approaches have

relatively rarely been carried out on individual specimens,

because most fungi are usually microscopic. However, lichens

and EM fungi produce perennial structures and can provide

tests of the method. In lichens, a floristic specimen-based

barcoding approach identified a larger proportion of speci-

mens than taxonomists owing to its greater ability to identify

scanty, immature and poorly developed material [60].

This does depend on having a reference database available,

and in the less well-known lower latitudes, the lack of suitable

sequenced reference material for comparison still acts as a

constraint [61]. For EM fungi, barcoding of root tips shows

greater diversity at sites than above-ground identification of

fruiting bodies, even with up to 50 years of fruit–body surveys

[11,51,62,63].

Metabarcoding studies have been on scales ranging from

the tiny (e.g. the size of insect guts [64] and leaves [65]) to

whole-forest soils [48]. In most such studies, the two-stage

process of species discrimination and species identification

entirely relies on bioinformatics pipelines to streamline analy-

sis of many thousands of newly generated sequences (see

section Fungal barcoding databases). Not surprisingly, using

this approach, the number of new species clusters discovered

by ITS has been growing relative to specimen-based sequences,

with little overlap between taxa found in specimen-based com-

pared with environmental samples [17], and total estimates of

diversity limited by the inability of studies to reach saturation

in rarefaction curves [1,48,66]. For instance, endophyte diver-

sity using ITS sequence data typically far exceeds that found

using morphotypes (even with a conservative sequence

similarity of 95%; [67]).

(b) Taxon-based studies
Because of the cryptic nature of the fungal lifecycle, a large

degree of unseen diversity is expected. This exists across

taxonomic ranks, with new class and even phylum-level diver-

gences being documented, with a particularly rapid expansion

in known fungal diversity stemming from sequencing of

environmental samples [68,69].
Although multilocus sequencing is likely to remain the

gold standard for the unambiguous definition of new species

[70–72], data from ITS have been a steady component of

fungal diversity description since the early 2000s. Numerous

examples of cryptic species have been described, with unrec-

ognized genetic diversity hidden in what was assumed to

be a single lineage, e.g. [73], even from quite small sampling

areas (e.g. 400 m2, [74]). Biologists have long been aware of

cryptic species [75], with perhaps the most extreme example

from a single basidiolichen now known to represent at least

126 species based on ITS divergence, each with a recogniz-

able combination of traits, including morphology, habitat

and distribution. Hundreds more species belonging to this

morphology were predicted from unsampled geographical

areas [76]. Other lichens and form genera in asexual fungi

offer similar cases of extreme polyphyly hidden by seemingly

similar morphologies [77,78].

At larger spatial scales, one repeated finding is that fungal

taxa with wide distributions are likely to comprise different

and isolated genetic lineages sharing exceedingly similar

morphology [79–81]. Often, names based on first-described

types have been applied to similar morphologies as the

nearest approximation of a species hypothesis in another geo-

graphical area [82,83], and fungal species with broad

geographical distributions are likely to represent fertile

areas for discovery of cryptic species [84,85]. The one caveat

to this is the trend of widespread high-latitude distributions

for many fungal taxa across the arctic [86–88]. A key practical

issue in unravelling the complexity of widespread named

taxa is effective sampling. Low-intensity sampling from a

restricted part of the distribution may generate apparently

distinct sequence clusters that then merge as further sampling

across the range is undertaken [89].
(c) Ecology and biogeography
Although a succession of individual species-based studies

have shown that fungi are distributed in biogeographically

distinct patterns [90], the availability of large datasets from
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high-throughput studies means that global trends can begin

to be examined for fungi in a meaningful way. Ongoing debates

about primer choice notwithstanding (electronic supplemen-

tary material), the rapidly accumulating findings are at last

opening a window into biogeography and diversity for

unseen, uncultured and uncollected fungi [59]. For both endo-

phytes and soil fungi, the general trend of species diversity

increasing with decreasing latitude has been supported by

ITS data [65,91,92]. In contrast, EM fungi appear to be more

diverse in the temperate zone [92–95], corresponding to general

trends of high Basidiomycota diversity in temperate Fagus [96]

and pine [1] forests. Similarly, in a global sample of indoor air,

latitude was the best predictor of fungal diversity rather than

the details of the buildings sampled, and temperate diversity

was higher than tropical [97]. Analyses across the arctic have

shown no decline in EM fungal diversity from two host

plants with increasing latitude [98], and increasing dominance

of Ascomycota, including the majority of lichens [99].

Metabarcoding studies of fungi have shown similar biogeo-

graphic patterns to other organisms [100], but have also

revealed a surprising level of local distributions, potentially sen-

sitive enough for determination of geographical origins of dust

for forensic or archaeological application [101]. Supporting the

idea that fungal endemism is widespread, metadata mined

from unidentified fungal ITS sequences in the INSDC databases

allowed a comparison across EM genera, showing that a small

handful of poorly known genera such as Inocybe, Tomentella,

Cortinarius and Russula are often encountered, with high num-

bers of unidentified sequences (e.g. widespread genera, but not

widespread species) [102]. In one example, 0–40% of sequences

of Inocybe were identified to the species level, depending on

their continent of origin, with lower numbers of identified

sequences come from Asia and Australia, where reference

material is poorly represented in databases [102] and where tro-

pical regions have higher degrees of endemism [92]. However,

there are exceptions, and some species were apparently wide-

spread with over 35% of species found on more than one

continent [102]. A meta-analysis of published ITS sequences

from the truffle genus Tuber documented 126 ITS phylotypes,

with none sharing intercontinental distributions [103].

One of the best-studied groups of fungi, the EM plant associ-

ates, has been used to address the long-standing question about

how the diversity of fungi is associated with the diversity of

plants. Although there is a general geographical bias in studies

of EM fungi favouring Western Europe and North America, in a

review of 100 studies, EM fungal diversity was shown to be

better explained by host-plant genera than by plant species or

family-level diversity [104]. Even some of the best examples of

highly specific plant–fungus symbioses have associations that

link fungal species groups to host-plant genera [105,106]. Simi-

larly, in fungal–algal associations in lichens, extreme host

specificity at the species or strain level tends to be the exception

rather than the rule [107]. Typical patterns demonstrate the

specificity of fungi for their algal hosts above the species level

[108–111]. Likewise, in a global meta-analysis of arbuscular

mycorrhizal fungi in the Glomeromycota, fungal community

differences are related to geographical distance, climate and

plant community [112].
(d) Conservation applications
Although fungi are often poorly represented in conserva-

tion plans compared with plants and animals, they are of
considerable conservation relevance. Fungal species can act

as bioindicators of habitat status and type, and indicate sites

with long ecological continuity [113]. Fungi are also involved

in a myriad of complex, often unseen, interactions that are cru-

cial in the functioning of many ecosystems. Individual species

can also provide societal benefits in terms of nutrition, medi-

cine, aesthetics and/or cultural values, and hence warrant

conservation in their own right. Given that DNA barcoding

can improve species discovery and an understanding of

fungal distributions [114,115], it can, by extension, improve

conservation decision-making.

Metabarcoding datasets have been compared with speci-

men-based inventory data for invertebrates and birds, and

have shown general comparability in relative assessments of

alpha and beta diversity, in addition to having the advantages

of being much more efficient in terms of person-hours, and

amenable to audit by third parties [116]. Such approaches have

great potential to understand diversity, distributions and

trends in fungi to inform conservation policy and practice. How-

ever, one challenge is the potential for disengagement of

conservation agencies (e.g. conservation non-governmental

organizations) and natural history societies whose working

ethos is based around named species and whose efforts have

been critical to establishing data on fungal diversity and distri-

bution studies to date. Thus, effective systems to connect

sequence data to the existing taxonomic framework are impor-

tant from a conservation perspective [117] for maintaining

cultural connections to fungal diversity. Convenient but non-

Linnean names (e.g. soil clone group 1, [69]) can represent a

barrier to uptake by land managers, local agencies and

decision-makers in many countries.

(e) Wider societal applications
The practical applications of insights from barcoding may

be profound for natural and human systems. Detection of

plant pathogens has huge economic implications for both

forestry [118] and crop plant systems, where a single patho-

gen can potentially impact a crop worth billions [119]. At

tactical timescales, the detection of cryptic species is crucial

to understand major ecological change in European wood-

lands: divergent ITS types distinguished Hymenoscyphus
fraxineus, the novel disease agent causing ash dieback [120],

with the increasingly apparent impact in the UK [121].

From a human-health perspective, barcoding can extend to

indoor mycology [97,122,123] and the importance of fungi

contributing to both health and illness in the human micro-

biome [124], in addition to the obvious application to

identification of human and animal pathogens [6], for

which diagnostic inaccuracy represents a serious shortcoming

[125]. Barcoding approaches are also applicable to industry,

in food traceability and understanding industrial composting

processes [126–128].
5. Where ITS barcoding fails
It is estimated that barcoding using the ITS amplicon is effec-

tive for species discrimination across more than 70% of fungi

tested [10]. For a barcoding approach to be successful, the vari-

ation between species should exceed that within species, with

barcodes from a given species best matching conspecifics.

The use of ITS sequences for species diagnosis was questioned

early on when divergent ITS2 sequences were detected in
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Fusarium [129], and although uncommonly reported, they

appear to be taxonomically widespread [130–132] and

sometimes linked to hybridization [133]. Intragenomic hetero-

geneity in ITS may be more prevalent than is currently

appreciated, found in several unrelated ascomycete and basi-

diomycete genera [134,135]. In Glomeromycota, species are

multinucleate with extreme intraspecies divergence in nuclear

ribosomal sequences, which creates additional challenges for

the use of ITS for species discrimination [136].

On the other hand, the lack of sufficient ITS variability

has also been a problem, especially in Ascomycota. In some

species-rich genera, ITS amplicons that are shorter than the

500 bp recommended for an effective barcode marker are

typical [137], resulting in many species having insufficient

variation to discriminate important biologically significant

groups or closely related species [23]. Although the ITS cis-

tron can correctly identify fungi to the genus level, species

discrimination is poor for many plant pathogenic fungi in

economically important genera such as Alternaria, Diaporthe,

Fusarium, Teratosphaeria and others [23].
0336
6. Secondary barcode markers
In some lineages, protein-coding genes may have equal or

better resolving power than ITS, although these suffer from

the lack of universal primers and unreliable amplification

[10,138]. In some economically important fungi, genus-specific

techniques have been developed which sometimes incorporate

ITS along with other markers in multilocus sequence typing

[139,140]. This can be used for sequence matching and strain

identification [31]. Efforts are underway to propose protein-

coding secondary barcodes for specific groups of fungi

[141–143]. Additionally, the broad application of using protein

coding markers to directly sample environments has been

demonstrated recently [144]. This suggests that improved

amplification methods may allow for protein-coding genes

to act as near-universal DNA barcodes and it will be worth-

while to consider an expansion beyond ITS alone as the

barcode marker.
7. Integrating DNA barcoding with genomic
studies

Fungal genomes provide robust scaffolds that can improve

phylogenetic resolution [145], and phylogenomic analyses

have proved key for understanding evolutionary relationships

in some fungal groups, such as yeasts [146,147]. Sequencing

costs continue to drop, new technologies promise rapid and

portable platforms that increase the accessibility of genomic

sequencing (e.g. Oxford Nanopore’s MinION), and ambitious

efforts to compile large-scale genome-level data have been pro-

ceeding, such as the 1000 fungal genomes [148] and the Plant

and Fungal Tree of Life [149]. Already, over 2000 fungal

genome projects are underway or complete [150]. However,

these initiatives still require considerably more research invest-

ment in data gathering and data analysis. For example,

multispecies coalescent approaches sacrifice scalability and

efficiency in addition to computational time for multilocus

versus single-locus approaches [151], and phylogenomic

analysis is complicated by gene tree incongruence and the

increased sensitivity to long branch attraction from
concatenated alignments [146,152]. However, these problems

are surmountable, and many nuclear phylogenomic datasets

confirm current phylogenetic hypotheses [153].

Although it seems unlikely that whole genome compari-

sons will displace ITS-based barcoding for fungi in the near

future owing to consumables costs and especially the degree

of bioinformatics expertise required, there are already several

approaches to compare whole genomes that would mirror a

DNA-barcoding approach without the need for full-scale phy-

logenomics. A sizable percentage of known bacterial species

have multiple genomes deposited at GenBank. This includes

genome data obtained from type cultures for close to 30% of

all bacterial species. The use of average nucleotide identity

(ANI) and kmer score comparisons are feasible for fast identi-

fication of misidentified bacterial genomes [47,154]. Although

eukaryotic genomes certainly pose more complex challenges,

some of the bacterial approaches could be scalable to fungi

[155]. It seems likely that the yeasts will be the first lineages

of fungi where this will become a reality in the near future

[156]. An important step in this process is linking standard

ITS barcoding with genome sequencing projects. Public

genome assemblies frequently do not include sequences from

nuclear ribosomal RNA cistron, and when they are included,

it is often as incorrect or low-quality assemblies. A simple prac-

tical step to promote future comparability of fungal datasets is

to increase efforts in providing reliable ribosomal data for

samples that have their genomes sequenced.
8. Conclusion
Fungal research has benefited tremendously from DNA-

barcoding approaches and the growing collection of sequences

in public, curated databases. Applications range from critical

identifications of pathogens to global-scale investigations of

fungal diversity. However, the scale of the challenge posed

by the sheer diversity of fungi is enormous. Pooling resources

to identify and tackle knowledge gaps is therefore essential, and

the mycological community has already actively promoted

several large-scale collaborations [23,157,158].

The world’s preserved fungal collections in herbaria rep-

resent an underused resource for building up voucher-based

reference datasets [20]: collections-based sequencing is an

important priority for the coming decades. Likewise, another

step of key importance is to increase the proportion of newly

described species that have barcode sequences from the type

material. Nevertheless, it is also clear that most fungal diversity

will remain uncollected and uncultured, and for the foresee-

able future will be known only from environmental samples

and sequences. There is thus an urgent need for the fungal

research community to unite behind a common approach link-

ing sequences to an effective, scalable method of naming. This

approach needs to maximize linkages between ITS barcode

sequences and the existing taxonomic framework encompass-

ing specimens, morphological taxonomic descriptions and

species concepts. It also needs to encompass the growing

depth of sequence coverage given the inevitable increase in

genome-level sequencing and the need for multilocus data to

provide species-level resolution in many fungal groups.
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