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ABSTRACT
Introduction The minor allele of a missense variant, 
rs373863828, in CREBRF is associated with higher body mass 
index (BMI), lower fasting glucose, and lower odds of type 2 
diabetes. rs373863828 is common in Pacific Island populations 
(minor allele frequency (MAF) 0.096–0.259) but rare in non- 
Pacific Island populations (MAF <0.001). We examined the 
cross- sectional associations between BMI and rs373863828 
in type 2 diabetes and fasting glucose with a large sample of 
adults of Polynesian ancestries from Samoa, American Samoa, 
and Aotearoa New Zealand, and estimated the direct and 
indirect (via BMI) effects of rs373863828 on type 2 diabetes 
and fasting glucose.
Research design and methods We regressed type 2 
diabetes and fasting glucose on BMI and rs373863828 
stratified by obesity, regressed type 2 diabetes and fasting 
glucose on BMI stratified by rs373863828 genotype, and 
assessed the effects of rs373863828 on type 2 diabetes and 
fasting glucose with path analysis. The regression analyses 
were completed separately in four samples that were recruited 
during different time periods between 1990 and 2010 and then 
the results were meta- analyzed. All samples were pooled for 
the path analysis.
Results Association of BMI with type 2 diabetes and fasting 
glucose may be greater in those without obesity (OR=7.77, 
p=0.015 and β=0.213, p=9.53×10−5, respectively) than in 
those with obesity (OR=5.01, p=1.12×10−9 and β=0.162, 
p=5.63×10−6, respectively). We did not observe evidence of 
differences in the association of BMI with type 2 diabetes or 
fasting glucose by genotype. In the path analysis, the minor 
allele has direct negative (lower odds of type 2 diabetes and 
fasting glucose) and indirect positive (higher odds of type 2 
diabetes and fasting glucose) effects on type 2 diabetes risk 
and fasting glucose, with the indirect effects mediated through 
a direct positive effect of rs373863828 on BMI.
Conclusions There may be a stronger effect of BMI on 
fasting glucose in Polynesian individuals without obesity 
than in those with obesity. Carrying the rs373863828 
minor allele does not decouple higher BMI from higher 
odds of type 2 diabetes.

INTRODUCTION
High body mass index (BMI) is a risk factor 
for type 2 diabetes and elevated fasting glucose 
levels. While type 2 diabetes and obesity are 

Significance of this study

What is already known about this subject?
 ► The minor allele of the missense variant 
rs373863828 in CREBRF is paradoxically associated 
with higher body mass index (BMI) and lower type 
2 diabetes.

 ► rs373863828 is common in Samoan and other 
Polynesian and Pacific populations (minor allele fre-
quency 0.042–0.259) but rare in non- Pacific popu-
lations (minor allele frequency <0.001).

What are the new findings?
 ► The rs373863828 minor allele has direct negative 
effects (lower odds of type 2 diabetes and fasting 
glucose) and indirect positive effects (higher odds of 
type 2 diabetes and fasting glucose) on type 2 dia-
betes risk and fasting glucose.

 ► The indirect positive effect of the rs373863828 mi-
nor allele is mediated through a direct positive ef-
fect (higher BMI) of the rs373863828 minor allele 
on BMI.

 ► Higher BMI is associated with higher odds of type 2 
diabetes and fasting glucose even for those carry-
ing the metabolically favorable rs373863828 minor 
allele.

How might these results change the focus of 
research or clinical practice?

 ► Exploring the effect of rs373863828 on BMI, type 
2 diabetes, and fasting glucose adds to the current 
knowledge of CREBRF and may lead to important in-
sights into ‘favorable adiposity’, where type 2 diabe-
tes risk is lower in minor allele homozygotes despite 
their higher mean BMI.
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highly correlated, there is little overlap in genetic variants 
associated with each phenotype.1 One genetic variant asso-
ciated with both, the minor allele A of a missense variant in 
CREBRF (rs373863828, c.1370G>A, p.R457Q) is simultane-
ously associated with higher BMI (1.36 kg/m2 per copy of the 
A allele) and, contrary to expectations, lower the odds of type 
2 diabetes (OR 0.586) and lower fasting glucose (−1.65 mg/
dL per copy of the A allele) in Samoans and other Pacific 
Island populations.2–6 Alleles with such discrepant effects 
have been termed ‘favorable adiposity’ alleles.7 8 Favor-
able adiposity alleles like those of rs373863828 in CREBRF 
and variants in ADAMTS9, GRB14/COBLL1, and TCF7L21 9 
could reveal avenues for the study of the variation in biolog-
ical pathways underlying the relationship between BMI and 
type 2 diabetes. The biological mechanisms of CREBRF and 
its role in the development of obesity and type 2 diabetes 
remain largely unknown.

The association of rs373863828 with BMI, obesity, type 2 
diabetes, and fasting glucose was first identified in Samoans 
from Samoa and American Samoa2 and has since been repli-
cated in other Pacific populations.3–6 rs373863828 is common 
in Samoans (minor allele frequency (MAF)=0.259),2 
Tongans (MAF=0.150),5 Pukapukans (MAF=0.243), Niueans 
(MAF=0.096), Cook Island Māori (MAF=0.195), New Zealand 
Māori (MAF=0.174),3 Native Hawaiians (MAF=0.128),6 and 
Pacific Island people from Guam and Saipan (MAF=0.042),4 
but is very rare in non- Pacific populations (MAF <0.001).10 11

The prevalence of obesity in Polynesia is among the highest 
in the world, and temporal increases in obesity- related disor-
ders such as type 2 diabetes represent a growing public 
health problem in the region.12 From 1978 to 2013, the prev-
alence of obesity (≥30 kg/m2) in men rose from 28% to 53% 
and in women from 45% to 78%.13 Similarly, from 1980 to 
2014, the age- standardized prevalence of type 2 diabetes of 
Samoan men and women increased from 6.1% and 9.0%, 
respectively, to 22.7% and 26.6%, respectively.14

Previous work has focused on the direct associations of 
rs373863828 with BMI, type 2 diabetes, and fasting glucose.2–5 
Here we examine, more extensively, the relationships among 
type 2 diabetes, fasting glucose, BMI, and rs373863828 
in three samples of adult Samoans (n=2861, n=1083, and 
n=1013) living in Samoa and American Samoa and a sample 
of adult Polynesians (n=1270) of several ancestries living in 
Aotearoa New Zealand. This combined study (n=7127) is 
the largest one thus far examining the relationship between 
rs373863828, type 2 diabetes, and BMI.2 3 This is also the first 
time that path analysis has been used to explore the direct 
and indirect effects of rs373863828 on type 2 diabetes and 
fasting glucose.

RESEARCH DESIGN AND METHODS
Participants and phenotypes
For this study, we worked with three samples of Samoan 
participants from Samoa and American Samoa2 15–20 
from a 1990–1995 longitudinal study of cardiometa-
bolic disease, a 2002–2003 family- based cross- sectional 
study of adiposity- related trait genetics, and a 2010 

population- based study of cardiometabolic disease 
genetics, and a sample of participants of Māori and 
Pacific (Polynesian) ancestry from the Genetics of Gout, 
Diabetes and Kidney Disease in Aotearoa New Zealand 
Study.3

Adult participants in the longitudinal 1990–1995 study 
were recruited from Samoa and American Samoa. They 
reported Samoan ancestry and no previous diagnosis of 
diabetes, heart disease, or hypertension at baseline.18–20 
Whole blood was collected after an overnight fast for 
fasting glucose measurement. Fasting glucose ≥126 mg/
dL at baseline was used to define type 2 diabetes.2 18 The 
final sample comprised 1013 individuals with full pheno-
typic and genotypic data (table 1).

Participants of the cross- sectional 2002–2003 family 
study reported Samoan ancestry and were recruited 
from Samoa and American Samoa as members of 
families of probands selected from the longitudinal 
1990–1995 study.2 16 17 Whole blood was collected after 
a 10- hour fast for fasting glucose measurement. Fasting 
glucose ≥126 mg/dL and/or a previous diabetes diag-
nosis was used to define type 2 diabetes.2 16 The final 
sample comprised 1083 adults with full phenotypic and 
genotypic data (table 1).

Participants in the 2010 Samoan sample were drawn 
from a cross- sectional population- based study of adults 
of reported Samoan ancestry recruited in Samoa. Details 
of the sample population and recruitment have been 
described elsewhere.2 15 In brief, whole blood samples 
were collected following a 10- hour fast for the fasting 
glucose measurement. Type 2 diabetes was defined as 
fasting glucose ≥126 mg/dL and/or currently taking 
medication to treat diabetes.2 The final sample comprised 
2861 participants with full phenotypic and genotypic data 
(table 1).

The sample from Aotearoa New Zealand (n=2124) was 
recruited from 2006–2017.21 Type 2 diabetes was ascer-
tained by physician diagnosis and/or participant reports 
and/or use of glucose- lowering therapy.3 Ancestry of 
participants was based on both self- reported New Zealand 
Māori and/or Pacific ancestries of their grandparents 
and clustering of genome- wide principal components 
resulting in 2124 adults of Polynesian ancestry. Fasting 
glucose was not measured in this study (table 1).

In all studies, height and weight were measured in 
duplicate and were used to calculate BMI. When classi-
fying participants into those with and without obesity, 
we used the standard WHO cut- off of ≥30 kg/m2.22 
Compared with people of European ancestries, people 
of Polynesian ancestries have a greater ratio of lean mass 
to fat mass at higher BMI, so a BMI threshold of >32 kg/
m2 has been suggested to be more appropriate in this 
population than the standard WHO cut- off of ≥30 kg/
m2.22 23 Our conclusions did not change when we used 
the Polynesian- specific BMI cut- off (online supplemental 
table S4).

Details of the DNA extraction and genotyping for the 
Samoan, American Samoan, and Aotearoa New Zealand 
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samples have been described elsewhere.2 3 Subject relat-
edness in the 2010 sample was measured using an empir-
ical kinship matrix calculated with OpenMendel using 
genome- wide genotype data.2 24 25 In the 2002–2003 
sample, expected kinship was derived from familial 
pedigrees with OpenMendel.24 Neither genome- wide 
genotype data nor pedigree information was available 
for participants in the 1990–1995 sample, so subjects 
were treated as unrelated in the statistical models. In 
the Aotearoa New Zealand sample, a kinship coefficient 

matrix was calculated from 40 156 independent auto-
somal markers using PLINK V.1.9.26

All participants in these studies gave written informed 
consent.

Statistical analysis
We explored the impact of BMI and rs373863828 on 
type 2 diabetes and fasting glucose in three ways: (1) 
regression analysis to assess the effect of rs373863828 and 
natural log- transformed BMI (lnBMI) on type 2 diabetes 

Table 1 Sample demographic information stratified by sex and diabetes status

1990–1995 Samoan and American Samoan sample

  

Overall (n=1013) Male (n=477, 47.1%) Female (n=536, 52.9%)

Diabetes
(n=63, 6.2%)

No diabetes
(n=950, 93.8%)

Diabetes
(n=34, 7.1%)

No diabetes
(n=443, 92.9%)

Diabetes
(n=29, 5.4%)

No diabetes
(n=507, 
94.6%)

Age, years, mean (SD) 46.0 (9.4) 38.8 (9.4) 46.3 (8.8) 38.8 (9.3) 45.7 (10.1) 38.8 (9.6)

BMI, kg/m2, mean (SD) 35.7 (8.0) 31.8 (6.1) 34.8 (6.2) 30.6 (5.7) 36.7 (9.7) 32.8 (6.3)

Fasting glucose, mg/dL, 
mean (SD)

201.8 (68.8) 88.4 (12.1) 198.8 (55.3) 88.6 (12.6) 205.4 (82.7) 88.1 (11.6)

2002–2003 Samoan and American Samoan sample

  

Overall (n=1083) Male (n=499, 46.1%) Female (n=584, 53.9%)

Diabetes
(n=161, 14.9%)

No diabetes
(n=922, 85.1%)

Diabetes
(n=74, 14.8%)

No diabetes
(n=425, 85.2%)

Diabetes
(n=87, 14.9%)

No diabetes
(n=497, 
85.1%)

Age, years, mean (SD) 54.8 (12.3) 40.7 (16.1) 56.0 (12.0) 39.5 (15.8) 53.7 (12.4) 41.6 (16.4)

BMI, kg/m2, mean (SD) 36.4 (8.8) 32.8 (7.7) 35.4 (9.7) 30.4 (6.1) 37.1 (7.8) 34.8 (8.3)

Fasting glucose, mg/dL, 
mean (SD)*

191.5 (84.2) 88.3 (13.9) 191.9 (92.9) 88.5 (13.3) 191.1 (76.5) 88.1 (14.4)

2010 Samoan sample

  

Overall (n=2861) Male (n=1149, 40.2%) Female (n=1712, 59.8%)

Diabetes
(n=478, 16.7%)

No diabetes
(n=2383, 83.3%)

Diabetes
(n=185, 16.1%)

No diabetes
(n=964, 
83.9%)

Diabetes
(n=293, 
17.1%)

No diabetes
(n=1419, 
82.9%)

Age, years, mean (SD) 52.5 (8.0) 43.7 (11.2) 53.0 (7.6) 44.3 (11.4) 52.2 (8.3) 43.3 (11.0)

BMI, kg/m2, mean (SD) 35.1 (6.3) 33.1 (6.7) 34.0 (6.0) 30.9 (5.8) 34.6 (6.8) 35.9 (6.4)

Fasting glucose, mg/dL, 
mean (SD)†

206.1 (81.9) 88.6 (14.0) 203.5 (84.0) 89.6 (14.4) 207.7 (80.7) 88.0 (13.7)

2006–2013 Aotearoa New Zealand sample

  

Overall (n=2124) Male (n=1334, 62.8%) Female (n=790, 37.2%)

Diabetes
(n=557, 26.2%)

No diabetes
(n=1567, 73.8%)

Diabetes
(n=335, 25.1%)

No diabetes
(n=999, 
74.9%)

Diabetes
(n=222, 
28.1%)

No diabetes
(n=568, 71.9%)

Age, years, mean (SD) 57.4 (11.4) 45.8 (15.2) 57.3 (11.5) 46.1 (14.5) 57.4 (11.4) 45.3 (16.2)

BMI, kg/m2, mean (SD) 36.6 (8.2) 33.8 (7.6) 36.4 (7.5) 34.0 (7.1) 36.9 (9.1) 33.4 (8.3)

Fasting glucose, mg/dL, 
mean (SD)

‡ ‡ ‡ ‡ ‡ ‡

*Excluding individuals (2 male, 4 female) who reported a type 2 diabetes diagnosis.
†Excluding individuals (6 male, 11 female) who reported a type 2 diabetes diagnosis.
‡Fasting glucose was not measured in the Aotearoa New Zealand sample.
BMI, body mass index.
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and natural log- transformed fasting glucose (lnFG) in 
the two obesity- stratified groups; (2) regression analysis 
to assess the effect of lnBMI on type 2 diabetes and lnFG 
within each of the three rs373863828 genotype groups; 
and (3) path analysis to model the effects of lnBMI and 
rs373863828 on type 2 diabetes and lnFG.

Except where noted, all statistical analyses were 
conducted using R (V.3.6.0), and a significance threshold 
of α<0.05 was used for all tests.27 Age and age2 were scaled 
and centered (cAge and cAge2) to separate the effects of 
the sex × age and sex × age2 interactions from the main 
effects. The rs373863828 genotype was coded as an addi-
tive genetic effect for the analysis in R so that it represents 
the number of copies (0, 1, or 2) of the minor allele, A.

Participants who reported a diabetes diagnosis—and 
thus were potentially being treated for the disease—were 
excluded from fasting glucose analyses (table 1). We did 
not exclude individuals with fasting glucose ≥126 mg/dL 
from the fasting glucose analysis if they did not report a 
diagnosis because they were presumed to not be part of 
any intervention affecting their fasting glucose levels.

Each regression model was fit using logistic mixed 
models for type 2 diabetes status and linear mixed models 
for fasting glucose (online supplemental table S1). We 
adjusted for kinship as a random effect using the lme4qtl 
package.28

Unless otherwise noted, we performed each analysis 
in each of the three Samoan/American Samoan samples 
and the Aotearoa New Zealand sample and then meta- 
analyzed the results together. In the regression anal-
yses, the samples were meta- analyzed using SE—weights 
based on the effect sizes and heterogeneity was tested in 
METAL.29 In the path analyses, we pooled the raw data 
across the samples.

All regression models were adjusted for age and sex. 
The analyses in the 2002–2003 and 1990–1995 Samoan/
American Samoan sample sets were also adjusted for 
polity (Samoa or American Samoa) to account for the 

many socioeconomic, cultural, and nutritional differ-
ences during these time periods between the Indepen-
dent State of Samoa and the US territory of American 
Samoa.19 We did not adjust for polity in the single- 
country 2010 Samoan or Aotearoa New Zealand samples. 
For each regression model, we compared the effect sizes 
and the overlap of CIs, a conservative measure of hetero-
geneity, to assess whether the effects were different per 
stratification.30

Association of lnBMI and rs373863828 with type 2 diabetes and 
lnFG stratified by obesity
We stratified the samples by the WHO obesity cut- off 
(30 kg/m2). We examined if the effects of lnBMI and 
rs373863828 on type 2 diabetes differed for individuals 
with and without obesity by regressing type 2 diabetes on 
lnBMI and rs373863828 in the obesity- stratified groups. 
We also examined whether the effects of lnBMI and 
rs373863828 on fasting glucose differed by regressing 
lnFG on lnBMI and rs373863828 in the obesity- stratified 
groups.

Association of lnBMI with type 2 diabetes and lnFG stratified by 
rs373863828 genotype
We stratified the samples by rs373863828 genotype (GG, 
GA, and AA). We examined if the effect of lnBMI on 
type 2 diabetes differed depending on genotype group 
by regressing type 2 diabetes on lnBMI in each of the 
groups. We also examined whether the effect of lnBMI 
on lnFG differed by regressing lnFG on BMI in each of 
the genotype groups.

Modeling the effects of lnBMI and rs373863828 on type 2 
diabetes and lnFG with path analysis
The relationships among sex, age, rs373863828, lnBMI, 
and type 2 diabetes were modeled with path analysis 
using the lavaan package in R.31 Interaction terms were 
not included in the path model and therefore variables 

Figure 1 Comparison of the OR and effect size in the obesity and genotype- stratified groups. From the meta- analysis, (A) a 
comparison of the OR and 95% CI in the obesity and genotype- stratified models with type 2 diabetes as the dependent 
variable and (B) a comparison of the effect size and 95% CI in the obesity and genotype- stratified models with lnFG as the 
dependent variable. lnBMI, log- transformed body mass index; lnFG, log- transformed fasting glucose; T2D, type 2 diabetes.

https://dx.doi.org/10.1136/bmjdrc-2021-002275


5BMJ Open Diab Res Care 2022;10:e002275. doi:10.1136/bmjdrc-2021-002275

Genetics/Genomes/Proteomics/Metabolomics

were not centered. The path analysis consisted of two 
layered multiple regression analyses: the regression of 
lnBMI on sex, age, and rs373863828, and the regression 
of type 2 diabetes on lnBMI, sex, age, and rs373863828. 
The indirect effect of rs373863828 on type 2 diabetes as 
mediated by lnBMI was calculated by multiplying the path 
coefficient of the direct effect of rs373863828 on lnBMI 
by the path coefficient of the direct effect of lnBMI on 
type 2 diabetes. Fasting glucose was modeled using path 
analysis by substituting lnFG for type 2 diabetes in the 
above model. Relatedness was not accounted for in these 
models because the methods for accounting for related-
ness do not exist and this may increase type I error.

In the path analysis, the absolute value of an effect 
size of around 0.1 is commonly considered to be small, 
around 0.3 is medium, and 0.5 is large.32 The direct paths 
of sex to type 2 diabetes and sex to lnFG had effect sizes 
less than 0.1 and were not part of the direct or indirect 
path of rs373863828 on type 2 diabetes/lnFG so they 
were trimmed from the models. For both type 2 diabetes 
and lnFG, two models were examined: with and without 
a dummy variable for study (2010 Samoa, 2002–2003 
Samoa, 2002–2003 American Samoa, 1990–1995 Samoa, 

1990–1995 American Samoa, or 2006–2013 Aotearoa 
New Zealand) to assess for study sample differences.

RESULTS
Association of lnBMI and rs373863828 with type 2 diabetes 
and lnFG stratified by obesity
In the regression of type 2 diabetes on lnBMI and 
rs373863828, higher lnBMI was associated with higher 
odds of type 2 diabetes in participants without and with 
obesity (OR=7.77, p=0.015 and OR=5.01, p=1.12×10−9, 
respectively). lnBMI was also associated with lnFG in 
participants without and with obesity (β=0.213 (1.24 
mg/dL higher fasting glucose with each higher unit of 
lnBMI), p=9.53×10−5 and β=0.162 (1.18 mg/dL higher 
fasting glucose), p=5.63×10−6, respectively) (figure 1 and 
online supplemental figure S1 and table 2). There was 
evidence of heterogeneity (p<0.01) between studies in 
the subset without obesity in the lnFG analysis (p=0.046) 
(online supplemental figure S1 and online supplemental 
table S2).

On the other hand, rs373863828 was associated with 
lower odds of type 2 diabetes in participants both without 

Table 2 Effect of lnBMI and rs373863828 on type 2 diabetes and fasting glucose in the meta- analysis, stratified by obesity 
status and genotype

Stratified by obesity status

  

Meta- analysis: lnBMI Meta- analysis: rs373863828

Dependent variable: type 2 diabetes

Stratum* n OR (95% CI) P value OR (95% CI) P value

Without obesity 2316 (244 cases) 7.77 (1.48 to 40.78) 0.015 0.59 (0.43 to 0.81) 9.80×10−4

With obesity 4765 (1015 
cases)

5.01 (2.98 to 8.42) 1.12×10−9 0.67 (0.58 to 0.77) 1.09×10−8

  Dependent variable: natural log- transformed fasting glucose

Stratum* n β (SE) P value β (SE) P value

Without obesity 1616 0.213 (0.055) 9.53×10−5 −0.036 (0.009) 4.57×10−5

With obesity 2916 0.162 (0.036) 5.63×10−6 −0.029 (0.008) 1.66×10−4

Stratified by genotype

  
  

Meta- analysis: lnBMI

Dependent variable: type 2 diabetes

Stratum n OR (95% CI) P value

GG 4111 (824 cases) 6.37 (4.03 to 10.05) 1.88×10−15

GA 2547 (389 cases) 7.049 (2.85 to 17.47) 2.46×10−5

AA 232 (22 cases) 1.774 (0.19 to 16.93) 0.619

Dependent variable: natural log- transformed fasting glucose

Stratum n β (SE) P value

GG 2442 0.245 (0.027) 3.12×10−20

GA 1759 0.214 (0.034) 1.89×10−10

AA 331 0.161 (0.062) 0.001

*Without obesity: BMI ≤30 kg/m2; with obesity: BMI >30 kg/m2.
BMI, body mass index; lnBMI, log- transformed body mass index.

https://dx.doi.org/10.1136/bmjdrc-2021-002275
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and with obesity (OR=0.59, p=9.80×10−4 and OR=0.67, 
p=1.09×10−8, respectively). rs373863828 was also associ-
ated with lower lnFG in participants both without and 
with obesity (β=−0.036 (−0.96 mg/dL fasting glucose 
with each copy of the missense allele), p=4.57×10−5 and 
β=−0.029 (−0.97 mg/dL fasting glucose), p=1.66×10−4, 
respectively) (figure 1 and online supplemental figure S1 
and table 2).

Association of lnBMI with type 2 diabetes and lnFG stratified 
by rs373863828 genotype
In the regression of type 2 diabetes on lnBMI in the 
genotype- stratified groups, higher lnBMI was associ-
ated with higher odds of type 2 diabetes in both the GG 
and GA groups (OR=6.37, p=1.88×10−15 and OR=7.05, 
p=2.46×10−5, respectively). lnBMI was not signifi-
cantly associated with type 2 diabetes in the AA group 
(OR=1.774, p=0.619) (table 2). However, the analysis of 
the AA group only included participants from the 2010 
Samoan sample (type 2 diabetes cases=22) because the 
regression models did not converge with the low numbers 
of type 2 diabetes cases in the AA group in the 1990–1995 
and 2002–2003 Samoan samples (n=2 and n=6, respec-
tively) and in the Aotearoa New Zealand sample (n=16) 
(figure 1 and online supplemental table S3). According 
to a post- hoc power calculation, we had 70.5% power to 
detect an OR of 1.774 in our AA sample with α=0.05.

In the meta- analysis of lnBMI on lnFG in the genotype- 
stratified groups, higher lnBMI was associated with 
higher lnFG in all genotype groups (GG: β=0.245 (1.28 
mg/dL higher fasting glucose with each unit of lnBMI), 
p=3.12×10−20; GA: β=0.214 (1.24 mg/dL higher fasting 
glucose), p=1.89×10−10; and AA: β=0.161 (1.17 mg/dL 
higher fasting glucose), p=0.001) (figure 1 and online 
supplemental table S3). In the lnFG analyses, there was 
evidence of heterogeneity between studies in the GG 
group (p=0.079) (online supplemental figure S2).

Path analysis models
The type 2 diabetes path analysis model included five 
nodes: lnBMI, sex, rs373863828 genotype (subscript 
Gt in the following path coefficients), age, and type 2 
diabetes (subscript T2D). The path pooled analyses 
were modeled with and without additional nodes to 
account for study sample (online supplemental figure 

S2). These models were similar, so the simpler models 
are presented in figure 2. In the path pooled analysis 
displayed in figure 2A, rs373863828 had a small direct 
effect on lnBMI (PlnBMI,Gt=0.10, p<0.001). rs373863828 
and lnBMI had small direct effects on type 2 diabetes 
(PT2D,Gt=−0.09, p<0.001 and PT2D,lnBMI=0.13, p<0.001, 
respectively). rs373863828 also had a small indirect effect 
on type 2 diabetes as mediated by lnBMI (PlnBMI,Gt× PT2D,l-

nBMI=0.01). The root mean square error of approximation 
(RMSEA) was 0.011 (90% CI 0.000 to 0.035), indicating 
a good model fit.33

The lnFG path analysis model included five nodes: 
lnBMI, sex, rs373863828, age, and lnFG. In the 
path pooled analysis (figure 2B), rs373863828 had a 
small direct effect on lnBMI (PlnBMI,Gt=0.12, p<0.001). 
rs373863828 had a small direct effect on lnFG (PlnFG,l-

nBMI=0.18, p<0.001). rs373863828 also had a small indirect 
effect on lnFG that was mediated by lnBMI (PlnBMI,Gt× PlnF-

G,lnBMI=0.02). RMSEA was 0.068 (90% CI 0.045 to 0.094), 
indicating that the path model was a mediocre fit.33

DISCUSSION
We see here that the discordant association of rs373863828 
with BMI and type 2 diabetes is consistent among indi-
viduals with and without obesity and across dietary and 
physical activity exposures and general nutritional envi-
ronments from Samoa in 199119 to Aotearoa New Zealand 
in 2006–20133 34 (online supplemental tables S2 and S3). 
While there is evidence of heterogeneity between studies 
in some of the meta- analyses, this is not surprising, given 
the secular trends in fasting glucose and type 2 diabetes 
(online supplemental figure S1). These samples were 
recruited during different decades and from different 
countries, and there could be underlying differences in 
them arising from cohort effects, their different dietary 
and physical activity environments, and differences in 
other exposures.

There may be a stronger effect of BMI on type 2 
diabetes and fasting glucose levels in Samoans without 
obesity than in Samoans with obesity, especially in the 
more recent adult samples. Temporal trends in BMI and 
adiposity among adolescents and young adults indicate 
that adults studied more recently have very likely been 
living with higher BMI and adiposity levels for a longer 

Figure 2 Type 2 diabetes and lnFG path analysis models. In the pooled analysis, rs373863828 genotype (Gt) has both direct 
(blue) and indirect (red) effects on (A) T2D and (B) lnFG as mediated by lnBMI. All direct paths shown have p<0.001. lnBMI, log- 
transformed body mass index; lnFG, log- transformed fasting glucose; T2D, type 2 diabetes.
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time.35 36 Adiposity earlier in life and longer exposure 
to it are likely to lead to more rapid temporal increases 
in hyperglycemia and insulin resistance as adiposity 
increases from normal to overweight to obesity, rela-
tive to later in the pathophysiology process.37 Note the 
increase in the variance of fasting glucose (table 1) from 
the 1990s to the later time periods.

While higher BMI is associated with higher fasting 
glucose across all rs373863828 genotypes, the magni-
tude of effect is less with each copy of the missense allele 
(table 2 and figure 1). However, we do not see a similar 
pattern in the effect of BMI on type 2 diabetes (table 2 
and figure 1). Carrying the A allele does not decouple 
higher BMI from higher odds of type 2 diabetes. Individ-
uals who are GG or GA or AA all have higher odds of type 
2 diabetes with higher BMI, but individuals who are AA 
have a lower risk of type 2 diabetes than those who are 
GG at any given BMI (table 2 and figure 1).

In our exploration of the relationships among BMI, 
fasting glucose, and genotype via path analysis, we found 
that the rs373863828 missense variant has both a direct 
protective effect on type 2 diabetes and fasting glucose 
and an indirect opposing risk- increasing effect on type 2 
diabetes odds and fasting glucose (figure 2). This indirect 
effect is mediated through the direct increasing effect 
of the rs373863828 missense variant on BMI (figure 2). 
Again, the rs373863828 missense allele provides some 
protection from type 2 diabetes, but higher BMI is asso-
ciated with higher odds of type 2 diabetes regardless of 
rs373863828 genotype.

Little is known about the biology behind the effects 
of CREBRF on type 2 diabetes and BMI. There is 
evidence that it has multiple, tissue- specific functions. 
The rs373863828 minor allele is associated with greater 
bone and lean mass in Samoan infants at 4 months old, 
but it is not associated with BMI,38 suggesting that body 
composition may be involved in the association between 
rs373863828, type 2 diabetes, and BMI. Another func-
tion is indicated by the analog of CREBRF in Drosophila, 
which is involved in energy homeostasis,39 and along 
with one of its binding partners, CREBL2, it functions as 
a metabolic regulator linking nutrient sensor mTORC1 
(mechanistic target of rapamycin complex 1) to cellular 
metabolic response.40 Finally, there is evidence of a role 
in adipose differentiation. Overexpression of CREBRF 
in mouse 3T3- L1 preadipocytes induces the expression 
of adipogenic markers and results in increased lipid 
accumulation, and overexpression of CREBRF:p.R457Q 
promotes greater lipid storage while using less energy 
than wild- type CREBRF.2 Our path analysis with its dispa-
rate effects adds to this body of evidence that CREBRF’s 
role in biology is multifarious.

While rs373863828 has disparate effects on BMI and 
type 2 diabetes, BMI is still an important and readily avail-
able clinical predictor of type 2 diabetes risk,41 indepen-
dent of rs373863828. While this work is unlikely to impact 
clinical practice in the immediate future, exploring the 
effect of rs373863828 on BMI and type 2 diabetes adds to 

current knowledge of the effects of CREBRF on BMI and 
type 2 diabetes.

Our power to detect differences in the stratified analyses 
was limited by the number of individuals in each sample, 
in particular the low number of individuals with type 2 
diabetes with two copies of the rs373863828 minor allele in 
the 1990–1995 Samoan, 2002–2003 Samoan, and Aotearoa 
New Zealand samples. Another limitation of this work is 
that we were not able to estimate kinship in our models for 
the 1990–1995 Samoan sample because we did not have 
genome- wide genotype data nor pedigree information. The 
heterogeneity between studies may also limit our power to 
detect associations.

Future work should include possible confounding vari-
ables such as socioeconomic status, physical activity, diet, 
time since diagnosis of type 2 diabetes, and more special-
ized measurements of fat distribution in the models. These 
variables were not consistently measured in every sample 
included in this work so they were not included in order 
to keep the confounding variables as unified as possible. 
The effect of rs373863828 on fat distribution could also be 
explored in future work by measuring body composition 
with dual- energy X- ray absorptiometry and by looking at the 
association between rs373863828 and other obesity- related 
diseases.

In summary, we provide evidence that the rs373863828 
minor allele has both direct negative effects (lower odds of 
type 2 diabetes and fasting glucose) and indirect positive 
effects (higher odds of type 2 diabetes and fasting glucose). 
The indirect positive effects on type 2 diabetes and fasting 
glucose are mediated by the direct positive effect (higher 
BMI) of the minor allele of rs373863828 on BMI. Higher 
BMI is associated with higher fasting glucose and odds of 
type 2 diabetes. We also suggest that there may be a stronger 
positive association between BMI and type 2 diabetes and 
fasting glucose in Polynesians without obesity than in Poly-
nesians with obesity. Finally, the A allele of rs373863828 is 
associated with lower odds of type 2 diabetes, but no matter 
the genotype higher BMI is still associated with higher odds 
of type 2 diabetes.
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