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Cortical activity exhibits distinct characteristics in different functional states. In awake

behaving animals it shows less synchrony, while in rest or sleeping state cortical activity

is most synchronous. Previous studies showed that switching between functional states

can change the efficiency of flowing sensory information. Switching between functional

states can be triggered by releasing neuromodulators which affect neurotransmitter

release probability and depolarization of cortical neurons. In this work we focus

on studying primary visual area V1, by using firing rate ring model with short-term

synaptic depression (STD). We show that reconstruction of visual features from V1

activity depends on the functional state, with best precision achieved at the state with

intermediate release probability. We suggest that this regime corresponds to the state of

maximal visual attention.
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1. INTRODUCTION

Numerous experimental observations show that during different functional states cortex generates
different activity dynamics, characterized in particular by different degree of syncrhonization. To
a large extent, cortical functional state depends on whether the animal is awake and engaged in
solving a task or it is quiet or sleeping (Poulet and Petersen, 2008; Okun et al., 2010; Harris and
Thiele, 2011).

Transition from one cortical state to another can be regulated by releasing neuromodulators
such as acetylcholine (ACh), noradrenaline (NA) or others. These neuromodulators were shown
to reduce neurotransmitter release probability by influencing presynaptic calcium channels
while simultaneously reducing postsynaptic potassium conductance, enhancing depolarization
(McCormick et al., 1993; Giocomo and Hasselmo, 2007). It was shown that in the case
when animal is behaviorally engaged, cortical activity is asynchronous and vice versa in quiet
state. Computational modeling demonstrated that in clustered networks, resembling cortical
connectivity, information flow is most efficient in the regime of intermediate synchronization
(Mark and Tsodyks, 2012).

In this work we focus on studying how information processing in primary visual area V1
depends on cortical state. The main motivation for choosing V1 for this study is the fact that it
is widely believed to be responsible for processing simple features of visual stimuli, in particular the
orientation of stimulus edges. Pioneering experiments in studying information processing in visual
cortex performed by Torsten Wiesel and David Hubel on cats revealed that when a bar of light
with specific angle is presented to the animal, neurons in V1 responsible for detecting this angle
fire with highest rate (Hubel and Wiesel, 1959). Moreover, neurons from the same cortical column
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tend to prefer similar orientations, and a set of neighboring
columns, called “hypercolumn,” encode all possible orientations.

To account for experimentally observed independence of
width of neuronal orientation tuning curves from the contrast
of the stimulus, firing rate ring model (further for simplicity
called ring model) was proposed in Ben-Yishai et al. (1995),
Hansel and Sompolinsky (1998). The ring model consists of a
network of selectively interconnected units described by their
firing rates, each of which representing an average activity of a
single V1 column. Units are arranged on a ring and each unit has
its preferred angle. Connections are chosen in such a way that
units with similar preferred orientation (PO) excite each other
stronger, while units with opposite PO inhibit each other. This
kind of network architecture could also be applied to different
spiking models as in Smirnova and Chizhov (2011), Lajoie and
Young (2016).

In the current study, we consider effects of short-term synaptic
depression (STD) on information processing in V1 (Tsodyks
et al., 1998; Romani and Tsodyks, 2014). Following Mark and
Tsodyks (2012), we emulate changing of functional states by
varying neurotransmitter release probability and depolarization
level of cortical neurons. Since release probability is a crucial
determinant of synaptic depression (Tsodyks and Markram,
1997), changing release probability is a plausible mechanism
by which transitions between different cortical states could be
controlled. To characterize the efficiency of visual information
processing, we simulate the network receiving oriented stimulus
and compute the precision with which the orientation of the
stimulus can be read out from the activity of the network. We
show that precision is optimal at a certain intermediate value
of release probability, i.e., there is an optimal cortical state.
Moreover, the optimal state is different for different strengths
of external inputs, such that for stronger input, smaller release
probability is optimal. These results could potentially be tested
experimentally.

2. METHODS

2.1. Model of Cortical Hypercolumn
The dynamics of cortical hypercolumn in visual area was
described by ring model (Ben-Yishai et al., 1995; Hansel and
Sompolinsky, 1998), which is rate model (Wilson and Cowan,
1972; Equation 1) with special connectivity matrix described
by the (Equation 2) below. We also introduce short term
depression as in (Tsodyks et al., 1998; Romani and Tsodyks, 2014;
Equation 3).

τ
mi(t)

dt
= −mi(t)+ g









N
∑

j= 1

WijUxj(t)mj(t)





+ I
inp
i (t)+ Inoisei (t)+ I0



 (1)

g(y) = log(1+ exp(y))

Heremi(t) is a mean firing rate of the unit i, τ is time constant, g
is a gain function, I0 is a mean depolarization level. Each i-th unit

has its preferred angle θi = i πN which corresponds to preferred
orientation (PO). Wij is the weight between i-th and j-th units,
given by Equation (2), it includes homogeneous inhibitory part
J0 and spatially modulated part J1 cos(2(θi−θj)) which represents
stronger connectivity between units sharing similar POs. N is the
number of units.

Wij = J0 + J1 cos
(

2(θi − θj)
)

(2)

U is a baseline level of neurotransmitter release probability. τrec
is a time constant for neurotransmitter recovery. xi(t) is an
amount of neurotransmitter in presynaptic unit i, governed by
the following equation:

xi(t)

dt
=

1− xi(t)

τrec
− Uxi(t)mi(t) (3)

I
inp
i (t) is the external stimuli input for unit i, with amplitude C

and duration T. Angles θ
inp

k
of external stimuli are uniformly

distributed between 0 and π . rect is rectangular function,
(Equation 5). Nstim, tk stand for the number and times of stimuli,
respectively:

I
inp
i (t) = C

Nstim
∑

k

rect

(

t − tk

T

)

cos
(

2
(

θ
inp

k
− θi

))

(4)

rect

(

t − tk

T

)

=

{

1 if tk < t < tk + T

0 elsewhere
(5)

Finally, Inoisei (t) is a colored noise with standard deviation σ and
correlation time τn, each unit receives noise uncorrelated with
others:

τn
dInoisei (t)

dt
= −Inoisei (t)+ σ

√

2τnξi(t)
〈

ξi(t)ξj(t
′)
〉

= δ(t − t′)δij (6)

Parameters for simulations are shown in the Table 1. These
parameters are used in all simulations unless otherwise stated.

TABLE 1 | Parameter values for simulations.

Parameter Value

J0 −12

J1 30

τ 0.01 s

τrec 0.8 s

τn 0.1 s

σ 2

N 200

C 5, 10, 20, 40

T 0.05 s, 0.2 s

Freq 4 Hz

Tsim 2,000 s
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Transitions between functional states were implemented by
simultaneously changingU and I0 while keeping mean firing rate
〈m〉 ≈ 0.5 Hz, (see Equation 7). Tsim is total simulation time.
Corresponding values of I0 for each U are shown in Figure 2.

〈m〉 =
1

TsimN

Tsim
∫

0

N
∑

i= 1

mi(t)dt (7)

2.2. Readout
In order to analyse the detection precision of orientations of
external stimuli we calculate the so called Population Vector
(PV), (Equation 8). The PV is a complex number which
represents the angle of activity bump (argument of PV) and its
magnitude (absolute value of PV). Readout was performed with
variable numbers of neurons Nread. Readout uses a sample of
units than are involved in processing of stimuli, reflecting sparse
connectivity between different regions of the cortex (Schüz,
2003).

τr
dR(t)

dt
= −R(t)+

1

Nread

Nread
∑

j= 1

exp
(

−2iθj
)

χj(t), (8)

where R(t) population vector, χj(t) is a number of spikes emitted
by neuron j, chosen randomly with Poisson distribution those

probability mass function is P(k) =
(mj(t))

k

k!
e−mj(t).

To distinguish the errors caused by sparseness and
discreteness of readout and the errors caused by moving of
bumps we also calculate PV, according to Equation (9). ER (Exact
Readout) can be considered as 2nd coefficient of spatial Fourier
expansion of activitymj(t).

ER(t) =
1

N

N
∑

j= 1

exp
(

−2iθj
)

mj(t) (9)

For each stimulus deviation of detected angle (argument of R(t)
and ER(t)) from the true angle of the stimulus was calculated
and averaged to estimate detection error (Equation 10). In error
estimation we also introduce a delay (lag), because it takes time
for readout neurons to react. Hence, for each functional state
controller by U, I0 and readout sparseness Nread we find lag for
which detection error is minimal.

Errs(lag) =
1

TNstim

Nstim
∑

k= 1

tk+T
∫

tk

∣

∣

∣angle(R(t + lag))− θ
inp

k

∣

∣

∣ dt (10)

2.3. Simulation Tools
Dynamical system has been integrated by Euler-Maruyama
method for SDE with 0.002 s time step. Calculation script was
written in Python RRID:SCR_008394 with the help of numpy
RRID:SCR_008633 and matplotlib RRID:SCR_008624; (Hunter,
2007) libraries. To run calculation for different parameters in
parallel GNU parallel utility has been used (Tange, 2011). Scripts
can be downloaded from github repository https://github.com/
esirpavel/ring_plasticity_V1_fcn.

3. RESULTS

3.1. Activity without External Stimuli
In recurrent networks with ring architecture, spatially tuned
activity can appear if self-excitation is strong enough (Ben-Yishai
et al., 1995; Hansel and Sompolinsky, 1998). Further we will call
such kind of activity “bumps.” When effects of synaptic plasticity
are taken into account, repertoire of possible activities becomes
richer and can lead to generation of waves, or spontaneous bumps
of activity propagating short distances and then disappearing
(York and van Rossum, 2009; Romani and Tsodyks, 2014).

Experimental evidence indicates that mean firing rate remains
approximately constant for different behavioral states if no
sensory stimuli is presented (Poulet and Petersen, 2008). To
achieve this for each value of the release probability U, we
set such value of baseline depolarization I0 that mean firing
rate (Equation 7) remains approximately equal to 0.5 Hz in
the absence of external stimuli (C = 0). Varying I0 and U
simultaneously emulates influence of acetylcholine (ACh) or
other neuromodulators that can reduce release probability and at
the same time enhance depolarization of membrane potential by
changing conductance of potassium channels (McCormick et al.,
1993; Giocomo and Hasselmo, 2007).

Activity for several characteristic values of U and I0 are
shown in Figure 1. When increasing baseline release probability
U, spontaneous bumps appear at U ≈ 0.4, further increasing
their amplitude with growing U. All values of I0 and U that
were used in simulations are shown in Figure 2. The positive
slope in the beginning of the curve in this figure may appear
paradoxical but can be understood as follows. When U is
small, noise does not cause significant spatial fluctuations in
the network activity, and the inhomogeneous input to the i-
th neuron ri1 = J1U

∑

j
cos(θi − θj)xj(t)mj(t) is smaller

than homogeneous inhibition r0 = J0U
∑

j
xj(t)mj(t), because

convolution with cosine filters any spatially unmodulated input.
Therefore, increasing U leads to decreasing of synaptic input to
the neurons and hence for keeping the network activity at the
same value we should increase I0. But, increasingU after reaching
some intermediate values (in this case it is ≈ 0.2) noise starts
to induce spatial fluctuations comparable with mean activity
and hence excitation ri1 dominates over inhibition r0 because
|J1| > |J0| (note than J0 is negative while J1 is positive). Thus,
further increasing of U requires decreasing of the baseline input
I0 to maintain the desired average network activity.

3.2. Activity with External Stimuli
Each presented stimulus is characterized by time of occurrence
and orientation angle. The input to each unit is set according
to Equation (4), so units with preferred angles matching the
orientation of the stimuli receive the strongest input with
amplitude C. Duration of stimuli is T. Stimuli were presented
as Poisson process with frequency Freq = 4 Hz and refractory
period T in order to eliminate intersections. Thus, we do not
model continuous presentation of stimuli, but only brief ones.

Figure 3 illustrates the network activity in the presence of
external stimuli. Each stimulus triggers a bump and changes
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FIGURE 1 | Activity of the model for different values of U and I0. For low

level of the release probability U = 0.05, small asynchronous fluctuations of

activity are seen. For higher U, progressively stronger and more synchronous

activations in the form of bumps emerge.

the angle of PV toward the angle of the external stimulus
(red horizontal lines on the left and right side). However,
detected angles and applied ones do not match entirely. This
happens because of two reasons. The first one is variability
of neuronal response caused by discreteness and sparseness

FIGURE 2 | Mean external input I0 that keeps the mean network

activity constant at 〈m〉 ≈ 0.5 Hz, as a function of U.

of readout; and the second one is intrinsic dynamics of the
network. For small values of release probability firing rate is
small and error caused by variability of neuronal response is
large. It can be seen from Figure 3A, where sparse readout angle
fluctuations around the stimulus are large, and at the same
time exact population vector angle is very close to stimulus
angle. For large values of U (Figure 3C) dynamics of the
network becomes unstable and after presenting the stimuli
a moving bump of activity can emerge, and it takes time
before the angle detected by the network will settle down
to the presented one. Between two of this regimes is an
optimal state at which an error of sparse readout is minimal
(Figure 3B).

3.3. Detection Precision
Wenow address themain issue of the paper, namely the precision
with which the network detects the orientations of external
stimuli for different functional states. To this end, we calculated
the error of detection according to Equation (10), for different
values of the release probability U and numbers of readout
neuronsNread. Also we considered errors when PVwas calculated
according to Equation (9) (exact readout). The plots of the
detection error vs. U, for small and large amplitudes of stimuli,
are shown on Figure 4. On each graph, optimal detection for
sparse readout is reached for some intermediate value of the
release probability. Lags for minimal detection error for C = 20
are show on Figure 5. For bigger firing rates lags for optimal
detection are smaller. Further all simulations was performed with
T = 0.05 s and freq = 4 Hz. Simulations with longer and
more frequent stimuli give qualitatively same results (data no
shown).

The optimal value of U becomes lower while number of
readout neurons is increased, similarly to what was reported in
Mark and Tsodyks (2012). Also there is a tendency for the optimal
U to be smaller for stimuli with higher amplitudes, as one can
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FIGURE 3 | Evoked activity of the network in the different functional states when external stimuli are presented. On the left side, for each figure from top to

bottom. Activity of each unit corresponding to its preferred angle, color code represents firing rate. Amplitude and angle (in degrees) of PVs, blue for exact readout and

orange for sparse readout. On the right side zoomed dynamics of PV angle for exact and sparse readout. (A), activity for minimal value of U. (B), optimal state. (C),

activity when stimuli evoke waves. Duration, amplitude and frequency of stimuli T = 0.2 s, C = 20, freq = 4 Hz, Nread = 80.

see in Figure 6. We discuss the implications of these observations
below in Discussion section.

Appearance of optimal regime for orientation detection can
be understood as follows. For large values of synaptic release
probability, noise induces bigger fluctuations in network activity
that in turn lead to moving bumps rotating away from the angle
of the presented stimulus. This tendency is monotonic, as shown
on Figure 4, dashed lines for exact readout. So firstly we have the

tendency that smaller values of U are better for detection. But on
the other hand, network with small values of release probability
generates activity with lesser firing rate peaks and thus activity
of readout neuron R(t) is more sensitive to noise, especially
when Nread is relatively small. Competition between these two
tendencies lead to the emergence of the optimal value of U for
detection. According with the last tendency, the sparser readout
is, the more dominating the effect of noise on readout, and hence
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FIGURE 4 | Orientation detection error as a function of U.

the greater the optimal value of U for minimal error should
be, consistently with our findings (Figure 6). Similar reasoning
explains why increasing the amplitude of the stimuli should also
result in smaller optimal values for release probability U, for
bigger amplitudes, e.g., C = 40 and full readout, dependence of
detection error fromU becomes almostmonotonically increasing
as for exact readout (data not shown).

In Pinto et al. (2013) it was shown that optogeneric
activation of basal cholinergic neurons or their axons in V1
improves visual discrimination in awake mice. Comparing with
our finding, we can hypothesize that in normal conditions
in quiet animal when sensory stimuli are sufficiently strong
and baseline release probability is relatively big, for better
performance when animal beginss to engage with environment,
baseline release probability should be reduced by releasing of
(ACh).

4. DISCUSSION

We presented a model of a hypercolumn in the primary
visual area V1, that is based on the well studied ring model
(Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1998).

FIGURE 5 | Lags for optimal orientation detection as function of U, for

C = 20.

FIGURE 6 | Optimal value of U, for different number of readout neurons

and stimuli amplitude.

Here we focused in particular on the precision of orientation
representation for different functional states of the cortical
networks. To this end we considered the effects of synaptic
depression in the intracortical connections on the precision
of orientation representation, and assumed that cortical states
are regulated via the effects of neuromodulators on synaptic
release probability and depolarization of cortical neurons.
We show that for different values of release probability
and depolarization levels, network without external stimuli
shows diverse spontaneous dynamics, beginning from
asynchronous firing to generation of high synchronized
activity in the form of bumps when release probability is
high.

We estimated the precision with which network represents
external stimuli. For different functional states regulated by
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release probability and depolarization level, network shows
different precision. As reported in previous study, regime
of intermediate synchrony is most preferable for optimal
information flow (Mark and Tsodyks, 2012). Here we report
that intermediate values of the release probability are also most
preferable for orientation representation and discrimination in
primary visual cortex. This follows from sparse connectivity
between different regions of the cortex. We suggest that this
regime correspond to the functional state of engagement with
the visual stimulation. We also show that for different amplitude
of external stimuli optimal value of U is different, namely
the optimal value of U is smaller for stronger inputs. We
hypothesize that cortical state in the brain are regulated in
order to achieve the maximal performance according to external
conditions.

An open question remains about the role of different types of
inhibitory interneurons in the cortex, whose we did not took into
account in our model, even though they play an important role
in information processing in the cortex (Isaacson and Scanziani,
2011; Tremblay et al., 2016). For example in Lee et al. (2012)
it was shown that activation of specific interneurons improves
V1 feature selectivity and visual perception. Considering their

influence to information processing in primary visual cortex will
be the subject of future work.
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