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Computed tomography (CT) is a common modality for liver diagnosis, treatment, and follow-up process. Providing accurate liver
segmentation using CT images is a crucial step towards those tasks. In this paper, we propose a stacked 2-U-Nets model with three
different types of skip connections. The proposed connections work to recover the loss of high-level features on the convolutional
path of the first U-Net due to the pooling and the loss of low-level features during the upsampling path of the first U-Net. The skip
connections concatenate all the features that are generated at the same level from the previous paths to the inputs of the
convolutional layers in both paths of the second U-Net in a densely connected manner. We implement two versions of the
model with different number of filters at each level of each U-Net by maximising the Dice similarity between the predicted
liver region and that of the ground truth. The proposed models were trained with 3Dircadb public dataset that were released
for Sliver and 3D liver and tumour segmentation challenges during MICCAI 2007-2008 challenge. The experimental results
show that the proposed model outperformed the original U-Net and 2-U-Nets variants, and is comparable to the state-of-the-
art mU-Net, DC U-Net, and Cascaded UNET.

1. Introduction

The liver is the largest substantive organ of human body. It
maintains important life activities such as detoxification and
metabolism. Computed tomography (CT) is a common
modality to detect liver and liver lesions. Liver segmentation
is important for the formulation of treatment plan and for
the evaluation of the follow-up treatment effect. As themanual
segmentation is error-prone and time-consuming, automatic
liver segmentation methods have been extensively studied
[1–3].

Liver segmentation is still a challenging task, due to the
variability of organ’s shape and size and similar intensity
values among neighbouring organs and tissues, such as the
heart, the stomach, the kidneys, and the abdominal wall.
On the other hand, a liver has a crucial role in metabolic
processes; therefore, it is essential to perform a fast and accu-

rate diagnosis in case of any disease. Moreover, with the
improvement of different medical imaging techniques, the
focus is placed on the application of noninvasive diagnostic
methods, before performing a painful, invasive examination
(e.g., biopsy). Out of different liver pathologies, liver cancer
is the fifth most commonly occurring cancer in 2018
world-wide, according to the World Health Organisation
and others [4–7]. Therefore, a continuous effort is required
to develop efficient and automatic segmentation methods,
which may support the diagnostic process and facilitate the
treatment decision-making.

Liver segmentation task has been introduced as a chal-
lenge for many conferences, e.g., MICCAI 2007, MICCAI
2008, and ISBI 2017. During these challenges, 3Dircadb1
and LiTS datasets were introduced for training and
evaluation of the proposed approaches. The existing auto-
matic liver segmentation methods are divided into two
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categories: pixel- or image-based segmentation and learning-
based segmentation. Thresholding, region growing, edge
detection, and graph cut [8–10] are some of the commonly
used image-based segmentation methods, which directly
segment images by the grey level, texture, and gradient. Most
of them have low robustness, are prone to under or over seg-
mentation, and are sensitive to initial seed selection; there-
fore, a sophisticated preprocessing is required. Therefore,
in recent years, these methods are rarely applied to liver seg-
mentation alone, but are usually used as a postprocessing for
other methods.

The learning-based segmentation methods include sta-
tistical models, traditional machine learning methods, and
deep learning methods. Supervised learning methods with
pixel-wise binary classification usually performs better than
the image-based segmentation methods, e.g., statistical
models [11], active shape models (ASM), active appearance
models (AAM) [9], level set-based methods [12], and atlas-
based segmentation [13]. However, traditional machine
learning methods, e.g., support vector machines (SVM)
[14], and Adaboost [15], rely on extracting handcrafted
image features, which is not efficient and subject to human
bias. In contrast, deep learning methods extract image fea-
tures automatically based on large training dataset without
introducing human bias.

Convolutional neural networks have become the state-
of-the-art in many fields especially for medical image analy-
sis. U-Net was introduced in 2015 for the segmentation of
neuronal structures in electron microscopic stacks. It works
with binary crossentropy as a loss function for pixel wise
classification, and the energy function is computed by a
pixel-wise soft-max over the final feature map combined
with the crossentropy loss function [16]. 2-bridged U-Net
were proposed for prostate segmentation [17]. CNNs and
deep learning approaches are widely used for liver segmenta-
tion and require significant number of training samples and
preannotated masks as ground truth.

Segmentation processes are usually affected by the edge
of the object. Although the skip connections in the conven-
tional U-Net have effectively handled edge information to a
certain extent, there are still room for improvement with the
U-Net [18]. Firstly, the U-Net architecture duplicates low-
resolution information of features. After pooling (i.e., down-
sampling), low-resolution information of features passes on
to the convolution layer in the next stage. However, this
low-resolution information of features is transferred by the
skip connection of the U-Net as well. Duplication of low res-
olution information may then cause smoothing of the object
boundary information in the network, which is more critical
in the case of fuzzy object boundaries [19]. Another draw-
back of the U-Net architecture is that it may not sufficiently
estimate high level features for high-resolution edge infor-
mation of the input object. The U-Net use the skip connec-
tion to transfer high-resolution information; however, high
resolution edge information does not pass through any con-
volution layers during transfer by the skip connection. Thus,
higher level feature maps learned by the network do not con-
tain enough information of the high-resolution edges of the
input object. Consequently, in the conventional U-Net,

high-level features are extracted disproportionately from
low-resolution information [17, 20].

Many new models based on U-Net have been introduced
to overcome the drawbacks of the original U-Net [16]. Stacked
U-Net [21], V-Net [22], and bridged 2U-Net [23] are exam-
ples of the variants of the U-Net. Zhang and Xu [24] added
a separated path to extract the global features and local fea-
tures separately by reducing the number of convolutional
channels of the contraction and expansion paths. It has led
to a faster training process and improved the efficiency of
the convolution kernel feature extraction [24]. Whilst the
adjacent network with less number of parameters sped up
the training process, it has a limited accuracy [25]. U-Net
has also been integrated with other traditional registration
and segmentation techniques such as conditional random field
(CRF) to segment the liver tumour with limited number of
samples [26, 27]. Christ et al. [28] proposed a cascaded CNN
in 2Dwith a 3D dense CRF as a postprocessing step, to achieve
higher segmentation accuracy whilst preserving low computa-
tional cost and memory consumption. Albishri et al. [29] cas-
caded 2 U-Net, one for the liver and one for tumour
segmentation, with preprocessing Hounsfield units (HU)
and Contrast Limited Adaptive Histogram Equalization
(CLAHE). Liu et al. [30] proposed CR-U-Net, where the cas-
cade U-Net is combined with residual mapping, and the
second-level of cascade network is deeper than the first-level
to extract more detailed image features and adopted morpho-
logical algorithms as an intermediate-processing step to
improve the segmentation accuracy. Lu et al. [31] combined
a 3DCNNwith a Graph Cut (GC) algorithm for liver segmen-
tation. Wang et al. [32] transformed the Dicom image format
to Hounsfield Unit, then used a window of the specific HU for
the liver before training with CNNs. They replaced the convo-
lutional layers at each level with dense connection blocks
where each dense block contains 5 U-Nets of 2 levels. Zhou
et al. [33] combined U-Nets of varying depths into one ensem-
ble architecture where different U-Nets share the same
encoder but have separate decoders to encourage knowledge
sharing. However, such architecture still suffers from two
drawbacks. Firstly, the decoders are disconnected, and deeper
U-Nets do not offer a supervision signal to the decoders of the
shallower U-Nets in the ensemble. Secondly, the common
design of skip connections used in the U-Net is unnecessarily
restrictive, requiring the network to combine the decoder fea-
ture maps with only the same-scale feature maps from the
encoder.While striking as a natural design, there is no guaran-
tee that the same-scale feature maps are the best match for the
feature fusion.

Recently, residual mapping has been used in combina-
tion with image segmentation architectures, which is an
effective way to prevent overfitting and meanwhile to
improve accuracy. Milletari et al. [22] combine residual
learning with U-Net to construct V-Net for 3D image seg-
mentation. Bi et al. [34] proposed a cascaded deep residual
networks (ResNet) approach to segment the liver and liver
lesions. As preprocessing, it converts the images to HU
and applies data augmentation strategies including random
scaling, crops, and flips and used 3D CRF and multiscale
fusion for postprocessing. The network is pretrained firstly
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on the ImageNet dataset for parameter fine-tuning and is
further fine-tuned with the liver dataset. On the other hand,
Xu et al. [35] used HU as preprocessing and postprocessing
2D CRF and 3D CRF. ResU-Net added residual connections
to each skip connection of the basic U-Net structure. Liu
et al. [36] added attention block and residual block to the
decoder path of the U-Net with adaptive dice loss function.
It has helped increase the dice coefficient loss on LiTS data-
set from 0.8365 to 0.9692 with all the residual and attention
blocks. Seo et al. [20] included the residual path and a design
of object-dependent upsampling to U-Net structure. The
network avoids duplication of low-resolution information,
estimates higher level feature maps that better represent
high-resolution edge information of larger object inputs,
and learns to extract even higher level global features for
small object inputs. The testing accuracy on 3Dircadb data-
set is 96:01 ± 1:8%, marking a relatively superior perfor-
mance compared to other state-of-the-art.

The previously reviewed models can be categorized to
three categories based on the number of U-Nets and the type
of connections between the U-Nets. The first category con-
tains the models based on one U-Net, e.g., mUNet [20]
introduced a decovolutional block before the skip connec-
tion; [24] proposed an extra path for global feature extrac-
tion; residual U-Net [35] added residual connection
between each two consecutive layers; densely connected U-
Net [32] replaced the conv layer at each level to of the con-
traction path with dens block; [36] added attention module
to each level of the expansion path. The second category
contains the models that used 2 cascaded U-Nets, e.g., [28,
29] consist of two separated U-Net one for liver and one
for tumor segmentation, whereas [34] adds CRF as a post-
processing technique. The third category contains the
models that implemented 2 stacked U-Nets, e.g., [21] intro-
duced 2 stacked U-Nets with N cut loss function; CRUNet
[30] introduced 2 U-Nets with different depth and a mor-
phological technique as intermediate process between the
two; and [23] proposed one skip connection as a bridge
between the 2 U-Nets.

In comparison, we propose a 2 stacked U-Net model.
The model is not computationally expensive as it contains
smaller number of layers compared to the Dense U-Net
[32, 33] and less number of residual connections compared
to [35]. The proposed model introduces 3 types of skip con-
nections between the two U-Net in addition to the normal
skip connection in each U-Net, whilst the bridge U-Net
[23] used one bridge connection between the 2 U-Nets and
[21, 30] contains only the skip connections of the original
U-Net.

2. Materials and Methods

2.1. Data. 3Dircadb1 (3D Image Reconstruction for Com-
parison of Algorithm Database) is created by Hôpitaux Uni-
versitaires France as a public dataset for researchers in
medical image segmentation. The dataset is composed of
3D CT-scans for 20 patients with hepatic tumours in 75%
of cases. For each patient, there are number of CT scans in
addition to manually annotated mask for several structures

of interests, e.g., liver, left kidney, right kidney, and hepatic
tumours performed by clinical experts. All CT scans and
masks are in DICOM format with pixel size (512 × 512).
The total numbers of CT scans are 2823. We adopted two
augmentation techniques as in [37] to increase the number
of samples. After applying horizontal and vertical flipping
in addition to rotation with 15°, the total number of samples
increased to 112,920 images. 13% of the images are used for
testing while the remaining samples are divided into 75% for
training and 25% for validation. From patient’s point of
view, the images are divided into 14 patients for training, 4
patients’ data for validation, and 2 patients’ data for testing
(patients no. 5 and no. 20).

2.2. The Model. The proposed model extends the main fea-
ture of 2D U-Net [16] that concatenates the output of each
layer in the contracting path to the inputs of the layer on
the same level on the expansion pass to limit the effect of
the loss in the high level feature during the convolution
and pooling process. The model consists of two stacked U-
Net with total 4 paths, B1 and B2 are the contracting and
expansion path of the first U-Net while B3 and B4 are the
components of the second U-Net as in Figure 1. Each U-
Net consists of 4 levels at each path in addition to one level
to connect the contracting and expansion paths. The num-
ber of filters at the contracting path starts with 64 and is
increased by 200% for the next level until it reaches 1024 fil-
ter at level 5. As for the expansion path, the number of filters
is decreased by 50% as the level goes up, reaching the initial
64 filters at the topmost level. The input image size is of
256 × 256 pixels and is decreased by 50% after each level
on the contracting path due to the maxpooling process to
reach the minimum image size with 16 × 16 at level 5, then
start to increase by 50% with each level of upsampling on
the expansion path. The output feature maps have equal size
at each level on both U-Net paths as shown in Figure 2.

Each path consists of a series of layers to construct a
block at each level. The blocks on B1 follow the typical archi-
tecture of a convolutional network. It consists of two convo-
lutional layers with filter size 3 × 3 (unpadded convolutions),
each followed by an exponential ReLU (ELU) or rectified
linear unit (ReLU) at levels 4 and 5, a 2 × 2 max pooling
operation with stride 2 for downsampling, and ends with
dropout layer with 50% rate. After each block, the number
of feature channels will be doubled. The maxpooling and
dropout layers are excluded from the block at level 4. The
blocks in the expansion path (B2) consists of an upsampling
of the feature map followed by a 2 × 2 convolution (upcon-
volution) that halves the number of feature channels, a con-
catenation with the corresponding feature map from the
contracting path, and two 3 × 3 convolutions, each followed
by an ELU or ReLU and a dropout with 45% rate. The blocks
in B3 are similar to B1 except that the former starts with a
concatenation of the feature map from the corresponding
expansion path in B2 with the feature maps from the previ-
ous level in the contracting path in B3, then followed by sim-
ilar layers as in the blocks on B1 (i.e., Conv, Conv,
maxpooling, and dropout). The building blocks on B4 have
the same structure as B2 except that it concatenates 4 feature
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maps before applying the sequence of (Conv, Conv, and
Dropout). The first feature map that comes from the previ-
ous upsampled level in B4 will be concatenated with the fea-
ture maps at the corresponding levels from B1, B2, and B3.
At the final layer, a 1 × 1 convolution is used to map each
64-component feature vector to the 256 × 256 image mask
as shown in Figure 3.

2.3. Skip Connections. A model with 2 bridged U-Nets for
prostate segmentation [17] introduced a bridge to add the
output features from each level at the contracting path of
the first U-Net to the inputs of the expansion path of the sec-
ond U-Net at the same level (blue lines). Our modified
model introduces two new bridging connections. One bridge
concatenates the output of the expansion path of the first U-
Net (B2) to the inputs of the contracting path of the second
U-Net (brown lines). The second bridge concatenates the
output of B2 to the inputs of B4 (red lines). The final model
proposed in this research is a compound model that con-
tains all type of bridging connections. The novel architecture
has used all the previously generated feature maps from all
paths of the two U-Nets and concatenated them to the
inputs of the last expansion path. We hypothesize that by
concatenating all previously generated feature maps, the

proposed model can decrease the loss of both high-level
and low-level features (see Figure 3).

2.4. Feature Concatenation. There are two types of opera-
tions to combine the features through the bridge and skip
connections. Addition operator applies a pixel-wise summa-
tion operation and generates one layer for all the input
layers. Concatenation operator stacks all the feature maps
together along the feature map dimension with depth equal
to the number of input layers. We used concatenation with
all skip connections and bridge connections since concate-
nation operation increases the features space by combining
the high-level and low-level features. Therefore, the subse-
quent convolutional operation is able to learn new features
that are dependent on both high-level as well as low-level
features (see Figure 4).

In comparison, we created another version of the model
started with 32 filters applied on the first layer then
increased by 200% on the next level to reach 512 filters
applied at the deepest level.

2.5. Objective and Loss Function. In fact, the U-net, an end-
to-end segmentation network, is a classification of each
pixel. Most of the deep learning networks use the cross-

B1 B2 B3 B4 B1 B2 B3 B4B1 B2 B3 B4

Compound bridgeModified bridgeOriginal bridge

Figure 1: The architecture overview of the proposed 2 stacked U-Net main structure. B1 and B2 are contracting and expansion path for the
first U-Net while B3 and B4 are the contracting and expansion path of the second U-Net. The colored lines represent the bridging
connections between the different paths. Original, modified, and compound are three different structures of the bridging connections.
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brown) and one skip connection in each U-Net (dark blue).
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entropy as a loss function for pixel-wise classification to seg-
ment an image into different regions. However, the samples
in the dataset we use are only for liver area, and the ratio of
positive and negative samples is about 1 : 15, an extremely
uneven distribution. If crossentropy function is used in our
training process, the result will be biased towards the nega-
tive samples.

In view of the above, we implement the Dice loss, a loss
function based on Dice similarity coefficient (DSC). The
Dice similarity coefficient is a statistical metric that measures
the similarity between two sets of data. It has become one of
the broadly used metrics in the validation of image algo-
rithms as in

Dice = 2∗∣X ∩ Y ∣
Xj j+∣Y ∣

, ð1Þ

where X and Y are two sets of pixels of ground truth (masks)
and the predicted liver, respectively. ∣X ∣ is the number of
elements in set X. ∩ represents the set intersection. The loss
function LDice is the difference between the ground truth and
the predicted mask as in

LDice = 1 −Dice: ð2Þ

2.6. Training and Testing. The testing samples represent 13%
(14,560 images) of the total samples of 3Dircadb1, whilst the
remaining samples are divided into training and validation

with percentage 75% (74,680) and 25% (14,560). All models
trained for 10 epochs with learning rate 1e-5 using Adam
optimizer [38]. All training and testing images were scaled
from 512 × 512 to 256 × 256 due to the limitation of com-
puting resources. Training parameters are shown in Table 1.

During the testing phase, each model was evaluated with
two groups of data. Firstly, the models were tested using the
original testing data without applying any augmentation
technique (normal data). Secondly, the models were evalu-
ated using the data after augmentation including all verti-
cally and horizontally flipped images in addition to all 15°

step rotated images (augmented data). The results are shown
in Tables 2 and 3, respectively.

2.7. Hardware and Software. For training and testing, we
used Intel® Core™ i7-6700 CPU @ 3.40GHz×8, with 16GB
RAM and GPU GeForce GTX 1080/PCIe/SSE2 with 8GB
RAM. Our model was implemented using python 2.7.3, for
Keras 2.1.1, with TensorFlow 1.2.1, Theano 0.8 for Ubuntu
14.04.05.

3. Results and Discussion

We refer to the model by the number of filters at the deepest
level. For example, (compound-512) which represents the
compound model with filters starts with 32 and ends with
512 at the deepest level, whilst (compound1024) which rep-
resents the compound model with filters starts with 64 and

B2 B3 B4B1

Input

Concatenation and
up-sampling block (B4)

Concatenation and
down-sampling block (B3)

Output from
previous level

Output from B2Output from B1

Output from
previous level

Output

Concatenation and
down-sampling block (B2)

Output from previous level
Output from B3

Output from B2

Output from B1

DropoutConv layer Maxpooling

Figure 3: Detailed architecture of the model with the layers in each block for all branches B1, B2, B3, and B4.
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ends with 1024 at the deepest level. To compare our results
with the original U-Net [16] and 2-Bridged U-Net [17], we
conducted two groups of experiments based on the filter
structure of the base U-Net. The first group used base U-
Net with (32-➔512) while the second group used base U-
Net with (64➔1024).

The evaluation metrics of the medical image segmenta-
tion algorithms include but not limited to Intersection over
Union (IOU) or Jaccard index, Dice similarity coefficient
(DSC or Dice), precision, and recall. We use Dice to evaluate
and compare our approach with other related work because
it is the common metric for most of liver segmentation
methods [10, 19, 20, 24, 28–30, 32–36].

The results in Table 2 highlight the key findings. The
model U-Net-1024 recorded higher accuracy than U-Net-
512. The models based on the modified connections and
compound connections recorded higher accuracy than the
original connections with both structures 32-512 and 64-
1024. The models compound-512 and compound-1024
recorded the best accuracy over original and modified con-
nections for both filter structures 32-512 and 64-1024,
except that the modified model with 64-1024 recorded
higher accuracy than that of the models with 64-1024 filters
when testing with augmented data. Using the filter structure
64-1024 recorded higher accuracy over the filter structure
32-512 except for compound connections. The best overall
accuracy for testing with and without augmented data were
recorded for compound model using 32-512 filters structure
as shown in Figure 5.

The findings came in line with the main hypotheses that
by adding the high level feature-maps from the contraction
path of the U-Net to the feature-maps on the same level of
the expansion path will reduce the loss of the feature that
may be caused due to the convolution and pooling opera-
tions. The modified model and the compound models add
extra bridging connections from the first U-Net to the final
expansion path of the second U-Net and have shown better
performance over the original model. Although the original
2-bridged U-Net used filters structure 32-512, the results
show that using filter structure of 64-1024 recorded higher
accuracy because the number of training parameters is
higher than the parameters of the model with filters 32-512
for both original and modified models where only one skip

connection had been used to transfer the feature maps from
the first U-Net to the second U-Net. The compound model
has demonstrated that using two skip connections to trans-
fer the feature maps to the second U-Net doubles the size
of feature space at the second U-Net, enhances the model
performance, and decreases the need of increasing the num-
ber of filters to 64-1024 (Figure 5). On the other hand, when
the size of the feature space at the second U-Net is doubled
due to the compound connections, the number of learnable
parameters would also be doubled for all the deconvolu-
tional layers in the second U-Net. It has more significant
impact on the filter structure of 64-1024 than that of 32-
512. That is, the compound model with the filter structure
of 64-1024 is more likely to overfit than the compound
model with the filter structure of 32-512. This could explain
as to why the compound model with the filter structure of
32-512 had better testing performance in terms of the Dice
coefficient than the compound model with the filter struc-
ture of 64-1024.

The sample results in Figure 6 illustrated that using 64-
1024 filters with all models decreased the over segmentation
because the number of the high-level and low-level features
on the contracting path increased by 200% that will allow
the models to learn more global features. In case of the mod-
ified and compound, adding the extra skip connections that
concatenate all the previously generated features to the final
expansion path reduced the false positive and over segmen-
tation artefacts. Although a few images are segmented with
better accuracy using the modified model with 64-1024 fil-
ters (h column), the compound model in general recorded
the best accuracy with both filters’ structure.

Column b shows the results of liver segmentation using
the original structure of U-Net with 32-512 filters. The
results suffer from artefacts near the boundaries of the liver
because the loss in the global features during the downsam-
pling propagated to the following convolutional layers of the
next deeper levels. Similar loss happened due to the fusion of
the features on the expansion path which indicates that the
skip connections in the original U-Net is not enough to
overcome the features loss. The segmentation using the orig-
inal structure of the 2 Bridged U-Net enhanced the accuracy
for the images where the liver size is relatively smaller in
rows 1 and 2 at column c. On the other hand, the output
for the images where the liver size is larger have suffered
from oversegmentation because the skip connections from

Table 1: Model parameters for training.

Parameters Values

Image size 256 × 256
Number of epochs 10

Learning rate 1e-5

Filter size 3 × 3
Pooling size 2 × 2
Dropout rate contracting path 0.5

Dropout rate expanding path 0.4

Filters per layer Previous layer’s filters × 2Concatenation operation

Xn

X1

X2

X3

Y

Addition operation

Xn

X1

X2

X3

Y

Figure 4: The difference between concatenation and addition
operations.
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the expansion path at the first U-Net (B2) were concatenated
to the contracting path at the second U-Net only, whilst the
feature maps from (B1) were transferred directly to (B4)
only Figure 1 (original bridge). Column d illustrates the
improvement of the output and decreased the oversegmen-
ted artefacts because the skip connections of the modified
bridge model transferred the low-level features from (B2)
directly to be concatenated to the expansion path (B4) at
the second U-Net. The compound bridge results in column
(e) show the significant enhancement of the performance
for all images with small and large liver size because the con-
catenation of all output feature maps from all the previous
paths to the final expansion path of the second U-Net has
recovered the loss of the high-level and low-level features.
The accumulative residual connections increased the feature
space and allowed the model to learn more features by
concatenating all the previously generated high-level and
low-level feature maps from all the previous paths. Columns
(f, g, h, and i) show the results of the models using filter

structure 64-1024. Generally, the overall accuracy with 64-
1024 models is higher than the models with filter structure
32-515 because of the number of filters, and feature maps
generated are increased by 100%. In rare cases, the com-
pound model suffers from undersegmentation at some
images with small size liver rows 1 and 2 at column (i)
because the number of features transferred from the
previous paths to the final path is large and might contain
redundant features which increased the false negative for
the images with smaller liver size.

The results in Table 3 compared our models with the
state-of-the-art approaches that used the same dataset 3Dir-
cadb for liver segmentation. In this paper, we used 14
patients’ data for training and 4 patients’ data for validation
with 80 : 20 ratio and 2 patients’ data for testing. In [20], it
used 15 patients’ data for training and validation and 5
patients for testing; however, it did not specify which patient
numbers were used for testing. In [28], 15 patients’ data were
used for training and testing with 2-fold crossvalidation. In

Table 2: The accuracies of training, validation, testing using normal images, and testing using augmented images for all four types of models
(U-Net, original, modified, and compound) using both versions with (32➔ 512) and (64➔ 1024) filters structure. The accuracy represents
the value of Dice similarity coefficient.

Model
Filters Training Validation Testing

Dice Dice Normal data Dice Augmented data Dice

U-Net [16] 32-512 0.9650 0.9800 0.4649 0.6007

Bridge U-Net [17] 32-512 0.9755 0.7065 0.7321 0.6031

Our modified bridge 32-512 0.9785 0.6702 0.7912 0.6010

Our compound model 32-512 0.9752 0.9011 0.8988 0.9442

U-Net [16] 64-1024 0.9740 0.9150 0.5873 0.7593

Bridge U-Net [17] 64-1024 0.9738 0.8775 0.7989 0.7534

Our modified bridge 64-1024 0.9812 0.9250 0.8137 0.8368

Our compound model 64-1024 0.9812 0.9113 0.8303 0.7836

Table 3: Quantitative comparison between our models and other models using 3Dircadb dataset.

Model
Dice Testing
% Normal data Dice % Augmented data Dice %

U-Net [16] 46.49 60.07

Bridge U-Net [17] 73.21 60.31

Our modified bridge 79.12 60.10

Our compound model 89.88 94.42

U-Net [32] 92:6 ± 2:2
FCN-8 s [32] 92:1 ± 1:5
3D DSN [32] 92:8 ± 1:4
DecNet [32] 90:1 ± 1:0
FCN [32] 93.30

Cascaded UNet+CRF [32] 93.10

DCU-Net [32] 94:9 ± 2:0
mU-Net [20] 96:01 ± 1:8
UNET [28] 72.90

Cascaded UNET [28] 93.10

Cascaded UNET +3D CRF [28] 94.30
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Figure 5: The accuracies in percentage for trading, validation, and testing using normal data and testing using augmented data for all
models’ structure (U-Net, original bridge, modified bridge, and compound bridge) with both filter structures (32 ➔ 512) and (64➔ 1024).
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Figure 6: Comparison of testing results. (a) Ground truth, (b) U-Net, (c) bridged 2U-Net, (d) our modified stacked U-Net, (e) our
compound 2U-Net. All (b–e) with filter structure 32-512. All (f–i) with filter structure 64-1024.
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contrast, [32] did not mention any details about the data
splitting approach for training, validation, and testing. We
used the mean values of the Dice of all the tested images as
the accuracy without calculating the STD or tolerance as
the way the results were presented in [24, 28].

Christ et al. [28] proposed a cascaded CNN for liver and
lesion segmentation with preprocessing the image to convert
it to HU values and postprocessing in 2D with a 3D dense
conditional random field (CRF) approach. Although their
recorded results exceeded the U-Net performance with
94.30%, our compound model outperformed their results
with 94.42%. Wang et al. [32] converted the DICOM images
to Hounsfield Unit, then used a window of the specific HU
for the liver. Replacing the Conv layers at each level with a
dense connection blocks significantly increased the number
of layers, and the network ended up similar to 5 dense
blocks; each block contains 5 U-Nets of 2 levels. Their model
is very complicated and computationally expensive with very
large number of layers and connections. It is not clear if the
stated results were based on testing with 3Dircadb dataset or
LiTS as the model was tested on both datasets. It is evident
that our compound model outperformed all the bench-
marked models stated in [32]. The performance of the pro-
posed compound model is comparable to that of the
densely connected U-Net (DC U-Net). Seo et al. [20]
included the residual path and a design of object-
dependent upsampling to U-Net structure. The network
tried to avoid duplication of low-resolution information by
adding block or residual layers on the skip connection while
it used only one U-Net.

The original architecture of the U-Net model [16] was
reimplemented for comparison purpose in this paper as it
was the case in [28, 32]. Note that Wang et al. [32]
applied preprocessing technique to convert the Dicom
images into Hounsfield Unit (HU) to prevent the loss of
information when the whole image pixel values are scaled
into the range 0-255. Specifically, the raw CT slices are
windowed to a Hounsfield Unit range of -100 to 400
HU to neglect organs and tissues that are not of interest.
Christ et al. [28] followed the same preprocessing tech-
nique and additionally applied histogram equalization for
contrast enhancement followed by augmenting the images
to increase the number of samples using translation, rota-
tion, and adding Gaussian noise. On the contrary, we did
not use any preprocessing techniques but directly con-
verted the Dicom images to pixel values within the range
0-255. Furthermore, whilst [28] used 15 out of 20 patients’
data for training, validation, and testing with 2-fold cross-
validation, we used 14 patients’ data for training, 4
patients’ data for validation, and 2 patients’ data for test-
ing. Our testing data might be not included in the 15
patients’ data used in [28]. On the other hand, Wang
et al. [32] did not mention the methods that used for data
splitting. Hence, it explains the discrepancy between the
results of our implementation of the U-Net and the results
presented in [24, 28].

Our training and testing data were rescaled to 256 × 256
which is 50% of the size of the original images. While [20]
used the original image size 512 × 512, [28] and [32] did

not mention if they used the original data size or rescaled
it. Although scaling the images to smaller size might cause
the loss of some features, our proposed models outper-
formed most of the other models in terms of Dice coefficient
(see Table 3). We also plan to work with original image size
512 × 512 in the future for potentially more accurate liver
segmentation.

Our approach did not apply any preprocessing tech-
nique to the images but directly normalized the DICOM
images’ pixel intensity to the range 0-255. It thus pro-
duced different pixel intensity mapping for the liver
region because 3Dircadb1 database contains DICOM
image with various HU range. Effectively, the variations
of the pixel intensity for the liver region act as an image
augmentation technique. Note that image augmentation
techniques, such as adding noises to image intensity
values amongst others, have been shown to be very useful
for deep learning based models. We have compared our
results with methods that applied image calibration or
windowing process based on Hounsfield Units [28, 32].
Our results are comparable or better in terms of the Dice
coefficient. We plan to add preprocessing step that
includes windowing process in our future work to com-
pare its effectiveness with the models that do not apply
the windowing process.

Although 3D CNNs can process volumetric information,
they have some disadvantages. Due to the increased dimen-
sion, 3D CNNs require higher computational cost. Besides,
the large number of parameters may result in higher risk
of overfitting, especially when encountering small datasets.
Moreover, the GPU requirement of 3D CNNs is impracti-
cally expensive, which hinders their further clinical applica-
tion. Our model is implemented based on 2D U-Net
architecture where each CT slice is treated as input image
that is independent of other slices. The proposed model
has much lighter computational cost but higher inference
speed. In our future work, the information between adjacent
slices could be taken into consideration.

4. Conclusions

In this paper, we proposed a novel segmentation method,
and the experimental results show that stacking two U-
Nets and adding three bridging connections from the first
U-Net to the second U-Net can significantly improve the
accuracy of liver segmentation. The accumulative approach
of concatenating the feature maps from the previous layer
with all the previously generated features at the same level
from all the previous paths of the 2 stacked U-Nets signifi-
cantly reduced the loss of global features and low level fea-
tures during the pooling and upsampling and
outperformed most of the recent approaches. The model
results are robust against noise as it did not use any prepro-
cessing or postprocessing. Our model used augmentation
techniques to overcome the shortage of the medical data
with manually annotated masks, and it showed a significant
improvement in the performance when testing with the aug-
mented data.
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