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ABSTRACT

The brain growth spurt (BGS) represents a pivotal window in neurodevelopment, defined by rapid
neurogenesis, heightened synaptogenesis, and the dynamic establishment of neural networks. During this
phase, heightened brain plasticity significantly enhances learning and memory abilities, while al 88
increasing the brain’s susceptibility to disruptions. Anesthetics, particularly those targeting 7y-
aminobggaic acid type A receptors (GABAARs), interfere with GABAergic and glutamatergic systems,
disrupt %n—derived neurotrophic factor (BDNF) signaling, and exacerbate neurotoxic effects. These
agents activate glial cells, induce inflammation, and contribute to oxidative stress, while also disrupting
calcium homeostasis and triggering endoplasmic reticulum stress. Furthermore, anesthetics alter the
expression of non-coding R, which affects gene regulation and long-term memory formation. The
extent of neurotoxic effects 15 contingent upon a constellation of factors, including the timing, dosage,
and frequency of anesthetic exposure, as well as individual susceptibility. Notably, perioperative
administration of anesthetic agents has been implicated in long-term cognitive dysfunction, thereby
emphasizing the critical importance of precisely modulated dosing regimens and temporally optimized
delivery strategies to mitigate potential neurodevelopmental risks. In contrast, neuroactive steroids
demonstrate promising neuroprotective potential by modulating GABA 4R activity, enhancing BDNF
release, and regulating oxidative stress and inflammation. New strategies for preventing and reversing
anesthetic-induced neurotoxicity could include novel anesthetic combinations, anti-apoptotic agents,
aatioxidants, or nutritional supplements. These findings underscore the complex and multifactorial
effects of anesthetic agents on the developing brain and emphasize the urgent need to establish and refine
anesthetic strategies that safeguard neural integrity during vulnerable windows of neurodevelopment.

Keywords Anesthetics Targeting GABAARs; Neurodevelopment; Neurotoxicity; Neuroprotective;

Neuroactive Steroids
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1. Introduction

A growing body of evidence derived from both animal models and clinical research suggests that

the postnatal BGS represents a critical period in neurodevelopment, during which the central nervous
system displays exceptional plasticity and heightened susceptibility to external perturbations. During this
critical developmental window, neuronal circuits are sculpted through the rapid generation and
remodeling of trillions of synapses, accompanied by dynamic neuronal migration, connectivity
establishment, and functional maturation(Maksimovic et al., 2022). This crucial period is characterized
by an accelerated process of neurogenesis, gliogenesis, and synaptogenesis, which collectively contribute
to the brain's high plasticity and vulnerability(Fan et al., 2021; Vanderhaeghen & Polleux, 2023). At this
developmental stage, the brain exhibits heightened sensitivity to disturbances arising from both

environmental stimuli and pharmacological exposures.

An expanding corpus of evidence derived from both invertebrate and vertebrate models indicates
that administration of general anesthetics during the BGS period can elicit extensive neurodevelopmental
disruptions. These include the induction of neuronal apoptosis, inhibition of dendritic arborization,

impairment of synaptogenesis, and disruption of synaptic plasticity, collectiv tributing to

ely
persistent deficits in learning, memory, and long-term neurological function (Schaefer et al., 2019; Xu
et al., 2018). It is now well-recognized that such adverse neurodevelopmental outcomes are
mechanistically linked to the modulation of synaptic signaling by anesthetic agents. In particular, these
drugs enhance inhibitory neurotransmission via GABAsRs and/or suppress excitatory activity by
antagonizing N-methyl-D-aspartate (NMDA) receptors ations that critically impair synaptic
formation and stability during key developmental periods (Forcelli et al., ; Zhou et al., 2011). In
clinical practice, GABA AR agonists are more commonly administered than NMDA receptor antagonists

26

such as ketggime or nitrous oxide. Frequently utilized GABA,\R-tar-lg anesthetics encompass
inhalational agents—such as sevoflurane, iscflurane@d desflurane—as well as intravenous drugs

including propofol, etomidate, and a range of benzodiazepines (e.g., midazolam, diazepam,

remimazolam) and barbiturates (e.g., thiopental, pentobarbital).

GABAsR agonists such as propofol disrupt a critical developmental process in which GABA
transitions from depolarizing to inhibitory action. By enhancing inhibitory signals, these agents disturb
the balance between excitatory and inhibitory signaling, thereby compromising neural network stability
and causing long-term damage to developing brain networks. Consequently, these drugs have been
included on the FDA's warning list due to their potential neurotoxic risks to children(Food &
Administration, 2017).

Neuroactive steroids (NAS), a subclass of endogenous steroid compounds, actas powerful allostg 28
modulators of GABA 4Rs,s and play a pivotal role in modulating inhibitory neurotransmission within the
central nervous system. While NAS agents such as CDNC, alphaxalone, and 3f-hydroxyandrostanes
share sedative and anesthetic properties akin to propofol, they differ significantly in their neurotoxicity
profiles. Notably, even at equivalent or supratherapeutic concentrations, these compounds do not elicit
neuroapoptotic responses. In contrast, conventional anesthetics including isoflurane and propofol have
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been shown to induce widespread neuronal apoptosis when administered during critical windows of brain
development. These neumq effects are intimately linked to enduring impairments in synaptogenesis,
and cognitive decline (Xu et al.,, 2018; Zhao et al., 2023). Such findings

underscore the distinctive neurodevelopmental safety profile of NAS agents relative to traditional

reduced neural plasticity,

anesthetics like propofol(Atluri et al., 2018; Tesic et al., 2020). Furthermore, NAS agents demonstrate
more pronounced neuroprotective properties, such as preventing neuronal apoptosis, protecting against

neurodegenerative diseases, and exerting anti-neuroinflammatory effects(Diviccaro et al., 2022).

Given the divergent mechanisms of action and neurodevelopmental consequences observed
between traditional intravenous anesthetics and emerging NAS, this review systematically examines the
neurotoxic risks and neuroprotective potential of GABAergic intravenous anesthetics during early brain
development. Particular attention is devoted to the reversibility and long-term consequences of
developmental impairments resulting from anesthetic exposure. This discussion provides deeper insights
into the molecular and cellular pathways implicated in anesthetic-induced neurotoxicity, while also
exploring critical factors that modulate individual susceptibility to these adverse effects. Lastly, we
evaluate emerging strategies aimed at preventing or attenuating anesthetic-related neurodevelopmental

harm.
2. Neurotoxic Mechanisms of Anesthetics Targeting GABAARs

During key stages of neurudempment, the precisely coordinated activity of GABAergic and
glutamatergic signaling cascades is essential for orchestrating neural stem cell proliferation, directing
lineage-specific differentiation, and ensuring neuronal survival and maturation. General anesthetics, by
profoundly modulating these excitatory and inhibitory neurotransmitter systems, have been demonstrated
to disrupt the finely tuned synaptic equilibrium essential for normal brain development during these
sensitive periods. This dysregulation is partially mediated by alterations in the NK CC1/KCC2 expression
ratio, which governs intracellular chloride gradients and GABAergic polarity (see section 2.1), as well

hrough direct interference with the functional integrity of GABAARs and NMDA receptors(Cabrera
et al., 2020). In addition, anesthetic agents have been reported to modulate the expression pattems of
BDNF, a key neurotrophin involved in synaptic regulation, thereby influencing neuron—glia crosstalk
and initiagp® downstream neuroinflammatory responses(Wan et al., 2021). Moreover, anesthetic agents
n ﬂuenceg ession of brain-derived neurotrophic factor (BDNF), thereby modulating the functional
dynamics of both neurons and glial cells, and eliciting neurcinflammatory responses. This leads to
calcium overload, enhanced oxidative stress, mitochondrial damage, endoplasmic reticulum stress, and
alterations in non-coding RNAs (ncRNAs). These interacting mechanisms impair the proper assembly
of neural circuits during development and may exert enduring detrimental effects on overall brain

function(Fig. 1).
2.1 Disruption of Neurotransmitter Balance by Anesthetics

During early brain development, GABA is released prior to the functional maturation of
glutamatergic synapses. In the neonatal cortex, high expression of the sodium-potassium-chloride

cotransporter 1 (NKCC1) establishes a depolarizing chloride gradient, thereby rendering GABAergic
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signaling excitatory during this critical developmental window. As the brain matures, the expression of
potassium—chloride cotransporter 2 ( 2) progressively increases, replacing NKCC1 activity and
resulting in a developmental transition in GABA function—from excitatory to inhibitory. This dynamic
transition between excitatory and inhibitory signals ensures that neurons receive sufficient excitatory
inputs during development while progressively establishing inhibitory neural networks(Oh et al., 2016;
Watanabe & Fukuda, 2015).GABAsR agonists, such as propofol and etomidate, may disrupt the
excitation/inhibition (E/I) balance by increasing NKCC1 expression or inhibiting the maturation of
KCC2(Ju et al., 2017). This disruption leads to chloride extrusion and membrane depolarization,
ultimately resulting in neuronal hyperexcitability and cognitive dysfunctgggDiGruccio et al., 2015). In
addition to modulating neurotransmitter systems, general anesthetics ge been shown to activate
voltage-gated calcium channels—particularly L-type channels—thereby elevating intracellular calcium
concentrations. This abnormal calcium influx disrupts neuronal calcium homeostasis, a fundamental
regulator of cell viability and intracellular signaling, and initiates a cascade of pathological events that
ultimately lead to neummeneratiun, These observations underscore calcium dysregulation as a central
pathogenic mechanism m anesthetic-induced neurotoxicity(Miao et al., 2022; Schaefer et al., 2019;
Soyalp et al., 2022). BZDs like midazolam and diazepam enhance central GABAergic function by
binding to GABA 4Rs and modulating dow am signaling pathways, including those involving protein
kinase G and synaptic marker intcractiuustriksson et al., 2007; Jevtovic-Todorovic et al., 2003)..
For instance, midazolam requires higher doses to induce sedation in neonatal animals because, at elevated
concentrations, the anesthetic's effect on KCC2 surpasses its impact on NKCC1, ultimately achieving
sedation through neuronal hyperpolarization(Doi etal., 2021). However, excessive dosages increase the
risk of neurotoxicity, particularly in infants, as anesthetic doses often exceed those used in adults,
rendering them more susceptible to neuronal injury. In contrast, remimazolam, with its lower equivalent
dosage, short half-life, and minimal accumulation, results in less memory impairment. This is attributed
to the reduced affinity of its metabolites for GABAaRs, which is approximately 1/400 of remimazolam's

affinity, thereby decreasing NMDAR overexpression and alleviating synaptic damage(Shi et al., 2024).

During intense synaptic activation, Glutamate (GLU) induces pustsynuic membrane
depolarization by activating AMPA receptors, which relieves the magnesium block on NMDA receptors
d allows calcium ions to enter, triggering long-term potentiation (LTP). Subsequently, Postsynaptic
gnsity protein 95 (PSD95) functions as a pivotal structural scaffold at the synapse, anchoring NMDA
AMPA receptors at the postsynaptic membrane, facilitating AMPA receptor insertion, and enabling
@induction of long-term potentiation (LTP) and synaptic plasticity, thereby strengthening synaptic
connectivity. Conversely, GABA 4R activation has been shown to impair LTP induction—a fundamental
cellular mechanism underpinning learning and memory—by attenuating GLU release at excitatory
synapses. This inhibition of excitatory neurotransmission disrupts synaptic strengthening mechanisms
essential for cognitive development. In vitro experiments indicate that propofol inhibits GLU release by
suppressing presynaptic membrane depolarization, which reduces Na® infly hile its effect on
presynaptic Ca*" influx and the reverse transport of transporters is not significant{Bademosi et al., 2018;
Karunanithi et al., 2020). Evidence from animal models indicates that propofol, at concentrations
consistent with clinical use, exerts direct modulatory effects on postsynaptic GABAsRs, thereby
enhancing inhibitory neurotransmission during critical stages of brain development(Li et al., 2020). At

clinically relevant concentrations, both propofol and etomidate have been shown to interact with the
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vesicle docking protein syntaxinlA, by restricting its lateral mobility apglgmpairing glutamate
(GLU) exocytosis from glutamatergic neurons in the basal forebrain of mice (Bademosi et al., 2018;
Karunanithi etal., 2020). This molecular interaction diminishes neuronal excitability and contributes to
functional impairment in cortical networks. Thiopental, another intravenous anesthetic, has been
implicated in neonatal neurodegeneration by inhibiting GLU synthesis and promoting apoptotic signaling
via upregulation of pro-apoptotic proteins (Naseri et al., 2017). Concurrently, gestational exposure to
sevoflurane has been linked to sustained downregulation of key synaptic proteins—most notably PSD95
and synaptophysin—in the hippocampus of both fetal and postnatal offspring, suggesting long-lasting
impairments in synaptic architecture and integrity (Zheng et al., 2013). This effect may involve
modulation of the ubiquitin—proteasome pathway. Impaired PSD95 expression destabilizes postsynaptic
AMPA receptor anchoring, enhancing receptor internalization through clathrin-mediated endocytosis.
These alterations compromise hippocampal synaptic potentiation and are associated with memory

deficits in rodent behavioral paradigms (Liao et al., 2021; Lu et al., 2017).
2.2 Impact of Anesthetics on BDNF

BDNF, a pivotal modulator of neurodevelopment, governs fundamental processes including
neuronal differentiation, axonal and dendritic growth, and synaptic plasticity. Initially synthesized as the
precursor protein proBDNF, BDNF is predominantly stored within synaptic vesicles and subsequently
converted into its mature form (mBDNFphrough proteolytic processing—a transformation essential for
synaptic remodeling and the reﬁnementh neural circuits during critical windows of brain development.
Binding of proBDNF to its receptor p75™™ activates the RhoA signaling cascade, resulting in axonal
elongation and growth cone collapse(Head et al., 2009). During neurodevelopment, BDNF regulates the
development of GABAergic, glutamatergic, and other synaptic types to ensure the precise establishment

and stability of neural networks in the brain(Szymanski & Minichiello, 2022).

General anesthetics such as propofol significantly affect BDNF and its associated signaling
pathways by modulating Aergic and glutamatergic neurotransmission, thereby disrupting
neuroplasticity(Cohen-Cory et al, 2010). Experimental studies have demonstrated that propofol
attenuates the signaling cascade of BDNF and its receptor TrkB, thereby leading to reduced expression
of PSD95 and impairing synaptic plasticity (Wan et al., 2021). Simultaneously, propofol activates the
P75"R/RhoA/ROCK pathway and GABA 4Rs, increasing the ratio of proBDNF to mBDNF, disrupting
the homeostasis of neurotrophic factor signaling, and exacerbating neuronal apoptosis, leading to
neurological dygfianction(Kahraman et al., 2008). Furthermore, propofol significantly suppresses the
expression of %NF, B-cell lymphoma 2 (BCL-2), and phosphorylated cAMP response element-

binding protein (p-CREB) in hippocampal neurons, thereby intensifying its neurotoxic impact(Wei

et al, 2016).

Within the context of early neural development, repeated exposure to sevoflurane disrupts the
equilibrium between tissue plasminogen activator and its endogenous inhibitor PAI-1, thereby impairing
the fibrinolytic cascade and compromising synaptic plasticity. This dysregulation subsequently hinders
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the activation of TrkB signaling and reduces the proteolytic processing of proBDNF into mBDNF(Dong
etal., 20@§). In parallel, sevoflurane engages the proBDNF—p75 neurotrophin receptor (p75™"%) axis to
trigger Ec INK/c-JUN/AP-1 cascade (Bi et al., 2018), while simultaneously promoting
neurodegenerative signaling via B-arrestin 1/2-mediated stimulation of metabotropic GLU recamgrs,
leading to ERK1/2-MAPK activation and downstream NRF2/BA C
etal., 2016; F. Yang et al., 2020). Disruption of the BDNF-TrkB-PI3K-Akt-mTOR signalling cascade

in both cortical and hippocampal circuits is increasingly recognised as a key contributor to the neurotoxic

transcriptional modulation (Wang

effects observed following exposure to general anaesthetics(Wang & Wang, 2019). In postnatal day 6
(P6) mice, exposure to sevoflurane induces pathological activation of GSK-3p, resulting in aberrant tau
hyperphosphorylation, upregulation of IL-6 in the hippocampus, and diminished expression of the
synaptic scaffolding protein PSD95. These molecular alterations converge to impair cognitive
performance, suggesag a mechanistic link between anesthetic exposure, neuroinflammation, and

synaptic dysfunction(Faraco et al., 2019; Tao etal., 2014).

Furthermore, Repeated exposure to odiazepines, including remimazolam and midazolam, has
been demonstrated to disrupt short-term cognitive processes such as learning and memory in juvenile
rodent models. This cognitive impairment may be mechanistically atiributed to a reduction in BDNF,
upregulated caspase-3 expression, diminished phosphorylation of PSD95, and suppression of LTP within

the hippocampus, culminating in the exacerbation of hippocampal neuronal cell death.(Shi et al., 2024).
2.3 Effects of Anesthetics on Glial Cells and Inflam mation

Anesthetic agents exert their effects not only on neurons but also extensively influence glial
populations in the developing brain, with notable impacts on astrocytes, microglia, and oligodendrocytes.
Amplified inflammatory activity within astrocytes and microglia is a defining feature of
neuroinflammation, marked by glial cell activation or infiltration of immune cells that subsequently drive
the upregulation of pro-inflammatory mediators(Mendiola & Cardona, 2018). Oligodendrocytes further

influence neurodevelopment through their role in myelination(Fig. 3).

Microglial activation is broadly acknowledged as a central driver of pro-inflammatory cytokine and
chemokine production within the central nervous system. Persistent or excessive activation of these
immune mediators is intimately ligled to neuronal injury and is thought to underlie anaesthesia-related
neuroinflammatory pathologies (gen et al, 2018). Repeated exposure to sevoflurane during the
neonatal stage has been demonstrated to markedly stiallate microglial activation, leading to heightened
expression of pivotal neuroinflammatory mediators such as TNF-g, IL-6, and IL-13 (M. Yang et al.,
2020). Moreover, prenatal anaesthetic exposure via matem administration disrupts fetal glial cell
signaling, prominently increasing IL-6 production through extracellular signal-regulated kinase (ERK)
phosphorylation (Hirotsu et al., 2019). Concurrently, neonatal exposure to sevoflurane significantly
upregulates sirtuin 2 (SIRT2) in the hippocampus, promoting microglial polarization towards a pro-
inflammatory M1 phenotype (Z. Wu, Y. Zhang, et al., 2020). Beyond inhalational anesthetics,
intravenous agents such as propofol and midazolam have also been associated with microglial activation,
leading to an upsurge in the release of inflammatory mediators, notably IL-1} and TNF-u (Popié¢ etal.,

2015; Ramirez et al., 2016). These responses contribute to neuroinflammatory cascades and interfere
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with developmental neurogenesis (Mglanovic et al., 2016). Exposure to propeofol during early postatal

development significantly elevates the expression of pro-inflammatory markers—including caspase-1
and interleukin-1—in both cortical and thalamic regions of postnatal day 7 (PNDT@S(Milanu\fic et
al., 2016). Importantly, microglial activation induced by sevoflurane has likewise been linked to the

pathogenesis of various neurodegenerative conditions(Yeh et al., 2017).

Astrocytes are essential regulators of neural circuit formation and play a fundamental role in
sustaining synaptic architecture and functionality throughout neurodevelopment. Anesthetics may
disrupt astrocyte density and function, thereby impairing BDNF secretion and indirectly affecting
neuronal survival. For example, in high-density co-cultures of astrocytes, BDNF secretion effectively
rescues propofol-induced neuronal death, whereas low-density astrocytes, which secrete insufficient
BDNF, fail to provide the sa rotection(Y. Liu etal., 2017). These observations may offer mechanistic
insight into the heightened susceptibility of the developing brain to anesthetic-induced neurotoxicity.
Within the hippocampus, astrocytes enriched in phosphoprotein enriched in astrocytes 15 (PEA135) are
prominently represented, with PEA15 expression shown to increase progressively as astrocytes undergo
maturation... Mounting evidence indicates that propofol interferes with neurodevelopment by
suppressing the expression of PEA13, thereby perturbing the ERK/CREB§ signaling axis. This
disruption ultimately results in diminished neuronal proliferation alongside an increase in programmed

cell death(Xian et al., 2019).

Oligodendrocytes are central mediators of myelin sheath formation, facilitating efficient axonal
conduction and supporting the maturation of neural circuits (Choi et al., 2019; Tisgmason et al., 2020).
Myelination, a tightly regulated and temporally coordinated process occurring ging early postnatal
development, plays a pivotal role in the emergence of higher-order cognitive capacities and is intimately
associated with the dynamic remodeling of both structural and functional neural circuitry(Deoni et al.,
2018). Oligodendrocytes are not fully mature during the neonatal period, and anesthetic-induced
inflammation may permanently damage myelination, hindering normal neurodevelopment. Studies have
shown that anesthetic drugs have a far greater impact on oligodendrocyte apoptosis than on neurons, with
apoptosis occurring at twice the rate in oligodendrocytes, representing 59% of all apoptotic
cells(Schenning et al., 2017). Administration of propofol during vulnerable windows of early
neurodevelopment markedly amplifies apoptotic activity in both neuronal and oligodendrocyte
populations, concurrently triggering a substantial upregulation of pro-inflammatory cytokine expression.
These molecular and cejplar disruptions exhibit a strong association with enduring behavioural
impairments manifesting %ater stages of life (Milanovic et al.,, 2016; Ye et al., 2013). Moreover,
gestational exposure to sevoflurane has been shown to impair myelination in offspring by inducing iron
deficiency, therebpmcompromising myelin structure and reducing overall myelin content (Zuo et al.,
2020). Similarly, exposure to high concentrations of sevoflurane during the early postnatal phagsshas
been linked to impaired oligodendrocyte maturation and disruption of the normal trajectory ut"%te
matter myelination in the developing rat brain. These disturbances in oligodendrocyte lineage
development contribute to central nervous system dysmyelination, a pathological process that may

underlie long-term cognitive impairments (Z. Wu, H. Xue, et al., 2020).
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2.4 Effects of Anesthetics on Calcium Overload, Oxidative Stress, and Endoplasmic Reticulum

Stress

Appropriate calcium ion (Ca*) levels are crucial for regulating oxidative phosphorylation in the
mitochondrial matrix, thereby maintaining normal ATP production rates. Nevertheless, excessive
calcium influx—particularly originating from the cytosol or the endoplsmic reticulum (ER)—can
compromise mitochondrial respiratory chain function, thereby pmmutingEe overproduction of reactive
oxygen sgcies (ROS). The resulting elevation in intracellular ROS levels ultimately culminates in
oxidative DNA damage(Piao et al., 2020). Excessive generation and accumulation of ROS compromise
the structural integrity of the mitochondrial membrane, disrupt cellular energy homeostasis by impairing
ATP synthesis, and increase mitochondrial outer membrane permeability (MOMP), collectively
u‘iggeriignaling cascades that culminate in cellular dysfunction(Calvo-Rodriguez & Bacskai, 2021;
Marchi et al., 2018).

General anesthetics have been shown to induce excessive activation of inositol 1,4,5-trisphosphate

) receptors, leading to a pronounced increase in cytosolic Ca** levels while simultaneously depleting
calcium stores within the endoplasmic reticulum. This disruption in intracellular calcium homeostasis
may represent a key mechanistic link underlying anesthesia-induced neurotoxicity during brain
development(Yang & Wei, 2017). For instance, the combination of propofol and midazolam significantly
increases mitochondrial ROS levels, inhibits antioxidant enzyme activity, and impairs synaptic
function(Boscolo et al., 2013). Propofol uncouples oxidative phosphorylation, disrupting mitochondrial
function and increasing ROS production, thereby exacerbating neurotoxicity, which is difficult to
mitigate through pretreatment(Shibuta et al., 2022). When midazolam is combined with nitrous oxide
and isoflurane, ROS levels increase by approximately 30%, and angemidant enzyme activity is notably
reduced(Boscolo et al., 2013). Anesthetic compounds—particularly @uodiachines such as midazolam
and diazepam—have been associated with detrimental neumﬁlupmental consequences, primarily
through the disruption of synaptic architecture, impairment of synaptic transmission, and induction of

neuronal apoptosis(Lee et al., 2013).

Exposure to scvuﬂurancgbecn demonstrated to activate the PI3K /Akt signaling cascade, thereby
perturbing the balance between pro-survival and pro-apoptotic pathways and triggering apoptotic cell
death. This dysregulation enhances MOMP, ultimately triggering ntrinsic tutic pathways and
contributing to long-term cognitive impairments observed during adolescence (Hu et al., 2019; Yu etal.,
2020). In parallel, mowgigge evidence implicates ER stress as a key mediator of sevuﬂm‘ane-induc
neurotoxicity, primarily via the PERK—eIF2a-ATF4-CHOP signaling pathway (B. Liu et al., Zw]‘ In
the developing brain, exposure to sevoflurane has also been shown to upregulate the expression of protein
tyrosine phosphatase 1B within the ER, thereby mitiating ER stress responses and promoting

neurodegenerative alterations (Liu et al., 2019).
2.5 Effects of Anesthetics Targeting GABAARs on Non-Coding RNAs (ncRNAs)

Emerging evidence highlights the pivotal influence of ncRNAs in orchestrating diverse

neurobiological processes through intricate post-transcriptional regulatory mechanisms. General
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anesthetics modulate the expression profiles of microRNAs (miRNAs) and long non-coding RNAs

(IncRNASs) in the developing brain, forming complex molecular regulatory networks that may perturb
critical neural pathways. Such dysregulation is implicated in the induction of acute neuronal apoptosis
persistent memory deficits, potentially resulting in irreversible neurodevelopmental alterations(Jiang
etal., 2021; Rodrigues et al., 2020; Shu et al., 2019).

With respect to apoptotic mechanisms, sevoflurane has been shown to upregulate@cxpression of
caspase-3 and Bax, while concurrently downregulap cl-2, BDNF, and nerve growth factor (NGF).
These changes are accompanied by alterations in long non-coding RNA (IncRNA) expression and a
reduction in hippocan neuronal density, collectively leading to ultrastructural abnormalities and
neuronal apoptosis (Hu et al., 2019) (Hu et al., 2019). Moreover, the non-coding RNA LRCF has
been identified as a pivotal regulatory element in mediating 1soflurane-induced apoptosis of
oligodendrocytes.. In neonatal mice, expression levels of LRCF are ggnificantly elevated relative to
those in adults. This upregulation promotes apoptotic signaling through activation of the HIF-1a/caspase-
3 axis. Congmrsely, reduced LRCF expression appears to exert neuroprotective effects by recruiting the
alternative HIF-1a/miR-138-5 spase-3 pathway. These expression-dependent regulatory divergences
may account for the heightened susceptibility of the developing brain to anesthesia-induced neurotoxicity
during the neonatal period. Consequently gsigh LRCF expression may serve as a high-risk biomarker for
OLG damage caused by anesthesia(Zeng et al., 2021). Exposure to sevoflurane has been demonstrated
to influence synaptic plasticity by upregulating the expression of synaptophysin mRNA, a key
presynaptic marker, via a mechanism dependent on N6-methyladenosine RNA meodification.
Paradoxically, this post-transcriptional modification contributes to a subsequent decline in synaptophysin
protein abundance, which is associated with disrupted motor coordination and impaired cognitive
performance in juvenile mice(L. Zhang et al., 2022). Isoflurane anesthesia has been reported to
downregulate the expression of microRNA-132, thereb ducing dendritic spine density in the
hippocampus, a morphological alteration that contributes to impaired learning and memory performance

in rodent models.(Zhang et al., 2017).
3. Neuroprotective Potential of Anesthetics

NAS, as sedatives and anesthetics, demonstrate significant neuroprotective potential (Tateiwa &
Evers, 2024). By modulating both inhibitory and excitatory neurotransmitter systems, NAS maintain the
stability of neural networks. Additionally, NAS promote the release of BDNF, a molecule essential for
supporting neuronal growth, viability, and synaptic plasticity. Furthermore, NAS regulate inflammation
and oxidative stress, alleviating neuroinflammation and reducing oxidative damage, thereby effectively
protecting neuronal cells from injury. These multiple mechanisms collectively highlight the potential of
NAS agents as neurodevelopmental protective compounds (Fig. 3).

3.1 Modulation of the Inhibitory Neurotransmitter System

While most NAS serve as potent allosteric modulators of GABA 4R, enhancing or inhibiting GABA-
induced currents via subtype-specific binding—such as potentiation by 3a-hydroxylated neurosteroids
and suppression by 3f-sulfated derivatives—emerging evidence indicates a divergence in neurotoxic

potential among GABAR-activating agents(Chen et al., 2019; Laverty et al.,, 2017). Notably,
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compounds like propofol, CDNC24, and alphaxalone all activate GABAaRs, yet only propofol has been
consistently associated with significant neurotoxicity during brain development, whereas NAS such as
alphaxalone exhibit negligible or no overt neurotoxic effects(Tesic et al., 2020). Further investigations
revealed that NAS compounds, such as alphaxalone and 33-OH, do not induce neuronal apoptosis,
regardless of their activation of GABA 4Rs. The neuroprotective properties of these compounds may be
partially attributed to their ability to inhibia‘-type calcium channels, particularly Cav3.1, thereby
diminishing presynaptic GABA release(Tesic et al., 2020; Timic Stamenic et al., 2021). Intriguingly, the
mechanism of action of 3p-OH appegisdo operate independently of classical modulation of GABAergic
or NMDA receptor pathways(Atluri et al., 2018; Timic Stamenic et al., 2021). NAS enhances neuronal
regeneration. For instance, allopregnanolone binds to the transmembrane domain of the GABAAR
complex, activating the receptor and increasing intracellular Ca** concentrations. This calcium influx
subsequently activates CaMK IV, which phosphorylates and activates the transcription factor CREBI.
Once activated, CREB1 enhances the transcription of genes involved in cell cycle regulation, thereby
promoting mitotic activity in neural stem cells and oligodendrocyte precursor cells(G. F. Liet al., 2018).
Moreover, NAS demonstrates significant potential for selective regulation of different GABAsR
subtypes. These compounds can modulate receptor tonic currents by enhancing GABAaR-mediated
current activity. At moderate concentrations, NAS compounds inhibit GABA R function, whereas at
lower and higher concentrations, they enhance GABA regulation. This suggests that NAS compounds
exert a complex bidirectional effect on GABAsRs within different concentration ranges, potentially

providing a new therapeutic strategy for neuroprotection by modulating neural activity (Fig. 4).

3.2 Modulation of the Excitatory Neurotransmitter System

NAS, such as 3p-OH, reduces presynaptic AMPA receptor-mediated excitatory synaptic currents
but does not affect NMDAR-mediated excitatory currents, thus modulating the glutamatergic
system(Atluri et al, 2018). Gonadal steroids, such as estradiol (E2) and 1 stradiol, potentiate
NMD AR-mediated synaptic transmission and facilitate the release of GLU gm primary afferent
terminals, thereby increasing dendritic spine density in dorsal horn neurons of the spinal cord(Zhang et
al., 2012). Estradiol not only enhances the binding of NMDAR agonists and competitive
antagonists(Kow et al., 2005) but may also exert a dual action by enhancing cognitive funcigmn,
promoting synaptic transmission while offering neuroprotective effects(Nilsen et al., 2002). gle
enantiomer of 17f-estradiol exhibits neuroprotective properties against glutamate-induced toxicity in
cultured neuronal cells, implying that its protective effects may be mediated through pathways
independent of classical nuclear estrogen receptors(Green et al., 2001). These studies suggest that NAS
drugs exhibit neuroprotective potential by modulating NMDARs and the GLU transport system within a

specific concentration range(Fig. 4).

3.3 Promotion of BDNF Release
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Many studies have indicated that NAS can bind to and regulate various proteins involved in cell
protection, including estrogen receptors «/ff (ERa/p), the orphan nuclear receptor pregnane-X receptor
(PXR), and the GPERI1, thereby modulating BDNF levels(Briz & Baudry, 2014; Jakab et al., 2001;
Serrao & Goodchild, 2022). For example, the enantiomer of 17B-estradiol regulates BDNF levels through
an ERP-mediated mechanism(Jakab et al., 2001). This modulatory action not only contributes to
improved learning and memory performance but also serves a pivotal role in mitigating cognitive
impairments induced by anesthesia(Taylor et al., 2017). Additionally, neurosteroid drugs such as
alphaxalone activate PXR, further promoting the secretion of BDNF and exerting neuroprotective
effects(Frye et al., 2014; Serrao & Goodchild, 2022). Clinical randomized controlled trials (RCTs) have
demonstrated that patients treated with alphaxalone during hip replacement surgery show better cognitive
performance postoperatively, with significantly higher plasma levels of BDNF than patients treated with
propofol and sevoflurane(Serrao & Goodchild, 2022). These findings suggest that NAS, by modulating
BDNF and associated pathways, exhibits significant neuroprotective effects, particularly in the recovery

of cognitive function following anesthesia and surgery.
3.4 Regulation of Inflammation and Oxidative Stress

NAS, such as pregnenolone, exert anti-inflammatory effects through multiple signaling pathways,
including Toll-like receptor signaling, the TRAM-TRIF pathway, BDNF, and CX3CL1 signaling
pathways. NAS suppress the initiation of pro-inflammatory signaling cascades by disrupting the binding
of Toll-like receptors—specifically TLR2, TLR4, and TLR7—to their adaptor proteins such as Mygp88,
MD2, and TIRAP, thereby reducing downstream synthesis of pro-inflammatory mediators(Balar g
2019; Balan, Grusca, et al., 2023; Balan, Patterson, et al., 2023).In addition to its established @:n
suppressing pm-inﬂa@atory signaling, NAS activate the TLR4-TRAM-TRIF pathway, leading to the
upregulation of key anti-inflammatory mediators such as IL nd BDNF, thereby contributing to
neuroprotection (Aurelian & Balan, 2019). NAS also promo e expression of the anti-inflammatory
chemokine CX3CLI1, which is essential for maintaining the equilibrium between pro- and anti-
inflammatory responses within the central nervous system, ultimately alleviating neuroinflammation.
Furthermore, NAS have been shown to attenuate microglial pro-inflammatory activation by engagg
GABAARs and modulating the BDNF-TrkA/TrkB signaling cascade, while concurrently rcgulatiﬂé@
transeription of pro-inflammatory genes (Alexaki et al., 2018; S. Y. Wu et al., 2020).Beyond anti-
inflammatory action, NAS support neuronal repaingmnd regeneration through diverse neuroprotective
mechanisms, offering potential therapemic benefits m the context of neurodegenerative conditions and
traumatic brain injury. Cullecti\fcly,r?ise findings underscore the central role of inflammation and
oxidative stress in anesthetic-induced neurotoxicity. Importantly, NAS modulate antioxidant and anti-
inflammatory processes not only through GABAergic pathways but also via alternative non-GABAergic
mechanisms, highlighting their promise in mitigating the adverse neurodevelopmental effects associated

with anesthetic exposure.

4. Susceptibility Factors for Anesthetic-Induced Neurotoxicity

4.1. Dose-, Time-, and Freq y-D dent Effects of Anesthetics

| o
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Anesthetic-induced neurotoxicity demonstrates marked dependence on dose, exposure duration, and
administration frequency. Evidencegiggm both cellular and animal models indicates that anesthetic agents,
such as propofol, may facilitate@differcntiation of neural progenitor cells into neurons when
administered at very low concentrations(Qiao et al., 2017). However, at subclinical or medium-to-high
doses, these anesthetics inhibit neuronal proliferation, increase pro-inflammatory factor levels, and
rigger wi read neuronal apoptosis, with the extent of apoptosis gradually increasing with higher
doses(K. % et al, 2022; Han et al., 2015). Anesthetic neurotoxicity also demonstrat ar time
dependence, with neuronal apoptosis worsening as the exposure duration increases(Huang et al., 2012;

tal., 2016). In rodent models, brief exposure to propofol (2 or 4 hours) induced marked activation
of caspase-3, a key executor of apoptosis. Notably, a more prolonged exposure of 6 hours elicited not
only a pronounced increase in caspase-3 but also elevated calpain activity within the cerebral cortex and
thalamus. These molecular alterations were concomitant with the emergence of apoptotic neumla
profiles, indicating that extended anesthetic exposure may potentiate neurodegenerative processes in
specific brain regions(Milanovic et al., 2010). Prolonged exposure to sevoflurane impairs the maturation
of neural circuits by inhibiting synaptogenesis and destabilizing dendritic spine developngmt. This
anesthetic disruption is further characterized by structural synaptic alterations, including mereased
expression of synaptic vesicle-related proteins, reduced density of apical dritic spines, and
ultrastructural disorganization within hippocampal synapses, which collectively contribute to cognitive
deficits observed in juvenile rats(Yu et al., 2020). Moreover, a study comparing single-dose versus seven-
dose administrations of propofol with the same total dose showed that rats exposed multiple times
exhibited significant impairments in spatial learning and hippocampal function, suggesting that frequent
exposures may have a more severe impact on neurological function than a single cumulative dose(Gao
et al,, 2014). Recurrent administration of sevoflurane during critical periods of cortical development has
been impwted in long-term synaptic dysfunction, accompanied by structural synaptic anomalies and

persistent cognitive deficits manifesting in adulthood(G. Li etal., 2019; Zhou et al., 2019)
4.2 Synergistic Effects of Combined Anesthesia

Emerging evidence indicates that the combined administration of anesthetic agents may markedly
potentiate neuronal apoptosis and disrupt hippocampal synaptic integrity, thereby impairing learning and
memory through synergistic neurotoxic effects(Jevtovic-Todorovic et al., 2003). For instance, during
critical windows of brain maturation, the combined administration of ketamine with thiopental or
propofol significantly amplifies neuronal cell death in neonatal animals and results in enduring functional
impairments in adulthood, whereas the administration of these agents individually te: produce only
modest neurodevelopmental effects(Fredriksson et al., 2007). The combined use of anesthetics h as
isoflurane, midazolam, and nitric oxide (NO) in a "triple cocktail" may reduce synaptic density(Lunardi
et al, 2010), destabilize mitochondria(Sanchez et al., 2011), and increase autophagic

jvity(Fredriksson et al., 2007), which could contribute to neurodegenerative changes. Combined
exposure to midazolam and nitrous oxide perturbs the homeostasis of mitochondrial dynamics by
dysregulating key modulators such as Mfn-2 and Dip-1. This imbalance leads to pronounced
mitochondrial morphological alterations, compromised bioenergetic function, and subsequent

impairments in neuronal integrity and performance(Boscolo et al., 2013).
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4.3 Region-Specific Sensitivity to Anesthetics During Critical Periods of Brain Development

During BGS, exposure to anesthetic drugs can lead to widespread neuronal apoptosis and result in
persistent behavioral deficits(Gentry et al., 2013). The temporal window of the BGS varies signgigmntly
across mammalian species. In rodents, this critical phase of neurodevelopment unfolds within the first
two weeks following birth (Semple et al., 2013), whereas in rhesus macaques, it spans from gestational
day 115 to approximately postnatal day 60 (Brambrink et al., 2012); and in humans, the growth spurts
occur at varying times across different brain regions, with most regions peaking in the second year after
birth and typically reaching their maximum between 3 and 10 years of age(Andropoulos & Greene, 2017).
Neuronal apoptosis induced by anesthetic drugs exhibits significant regional specificity at different time
points during the BGS. In rodents, postnatal day 0 (P0) is the peak period of early apoptosis, primarily
occurring in neurons of the hypothalamus and certain thalamic nuclei; day 3 (P3) marks the peak of
intermediate apoptosis, affecting regions such as the Subiculum, Hibrait, caudate nucleus, and thalamic
nuclei; day 7 (P7) represents the peak of late apoptosis, predominantly affecting cortical
neurons(Maloney et al, 2019). Similarly, In a comparable model using rhesus monkeys, prenatal
exposure to propofol predominantly induces apoptosis in neurons and oligodendrocytes within the
cerebellum, hypothalamus, and additional posterior and anterior brain regions, whereas exposure during

the neonatal period primarily affects the cerebral cortex(Creeley et al., 2013) (Fig. 4).
4.4 Vulnerable Populations for Anesthetic-Induced Neurotoxicity

Neonates—particularly those born prematurely, with low birth weight, reduced gestational age, or
complex congenital anomalies—constitute a highly vulnerable population, exhibiting an elevated
susceptibility to anesthesia-related neurodevelopmental impairment. Neuroimaging studies have
revealed that preterm infants frequently display structural abnormalities in both gray and white matter
following neonatal surgery. These alterations, detectable by MRI, have been strgmgely correlated with
subsequent cognitive deficits and delays in neurodevelopmental milestones(Filan et al., 2012; Stolwijk
etal, 2017). Weiss et al. noted that neonatal brains are highly sensitive to ischemic injury, placing these
groups at a higher risk for neurodevelopmental disorders during the perioperative period. Specifically,
during anesthesia, changes in hemodynamics, respiration, and metabolism may have a greater impact on
neurodevelopment than the anesthetic drugs themselves(Weiss et al., 2016). Furthermore, factors such
as increased surgical frequency, prolonged hospital stays, and prolonged respiratory support further
exacerbate the risk of neurodevelopmental disorders. These impairments are not only related to the direct
effects of surgery and anesthesia, but may also be closely associated with hemodynamic instability,
improper respiratory control, and metabolic imbalance during anesthesia, compounded by surgical stress

and primary diseases(Stolwijk et al., 2016).
5 Potential Strategies to Prevent and Reverse Neurotoxicity
5.1 Combination of Newer Anesthetic Agents

Dexmedetomidine (DEX), a highly selective az-adrenergic receptor agonist, has emerged as a potent

neuroprotective agent against isoflurane-induced neurotoxicity, primarily due to its robust anti-apoptotic
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properties. Mechanistically, DEX exerts its neuru]'atective effects through engagement with several
converging molecular cascades. These include the DNMT3a-miR-377-5p-Arc axis and the ERK1/2—
CREB-BDNF signaling pathway (Xiao et al., 2018), along with acgigation of the PI3K—Akt cascade.

gGSK-3B—CRMP2 and CDK5-

CRMP2 pathways (Z. Chen et al,, 2022). Pretreatment with DEX has also been shown to counteract the

Concurrently, it inhibits pro-apoptotic processes by downregulating

isoflurane-mediated repression of neurotrophic mediators such as BDNF mRNA, phosphorylated
ERK1/2, CREB, and BDNF protein, thereby preserving synaptic homeostasis ugglar anesthetic-induced
stress(Tu et al., 2019). Additional studies have confirmed tha suppression of the GSK-3/CRMP2
and CDK5/CRMP2 pathways by DEX contributes to reduced neuronal apoptosis and cognitive decline
in neonatal models (J. Liet al., 2019). Moreover, the neuroprotection afforded by DEX extends beyond
apoptosis, encompassing antioxidative and anti-inflammatory actions that mitigate sevoflurane-induced
cognitive impairments (Wang et al., 2015). In neonatal rats, DEX may also confer protection via
modulation of glutamatergic transmission (Wang et al., 2019). Activation of az-adrenergic receptors by
DEX and related agonists like clonidine has addmionally been found to attenuate tau
hyperphosphorylation and its associated cognitive sequelae in neonatal mice exposed to sevoflurane (Sun
et al., 2021). Notably, the neuroprotective efficacy of DEX in anesthetic regimens appears dose-
dependent: at low concentrations, co-administration with sevoflurane enhances neuroprotection;
however, higher doses paradoxically increase apoptosis and nggrtality, potentially due to reduced oz
receptor selectivity and inadvertent o receptor activation (Liu et al., 2016; Perez-Zoghbi et al., 2020)
(Perez-Zoghbi et al., 2017)(Fig. 4).

Novel BZDs such as remimazolam, when combined with sevoflurane, significantly reduce the
incidence of postoperative delirium, suggesting a neuroprotective potential that may be linked to reduced
overall anesthetic exposure(Yang et al., 2022). The combined use of anesthetics might also protect the
brain by balancing excitatory and inhibitory pathways. For example, midazolam could facilitate the
reuptake of excess GLU via EAAT? and er GABAAR activity, inhibiting the release of glutamate
transporters, thereby effectively allcvialg excitotoxicity caused by the upregulation of NMDAR NR1
subunits after ketamine withdrawal(Y. Li et al., 2018; Slikker et al., 2007). Moreover, NAS such as 17f-

adiol may enhance AKT phosphorylation, increase p-GSK-3p levels, and stimulate BDNF release(W.
gﬁt al., 2019; Yang etal., 2022), cﬂ'cctivmuitigating the apoptosis induced by combinations of triple
cocktails(Lu et al., 2006) or ketamine(Li et al., 2014). Alphaxalone has been reported to mitigate the
neurotoxic effects elicited by isoflurane exposure in neonatal rats, highlighting its potential as a

neuroprotective agent during early brain development(Zhao et al., 2023).
5.2 Neuroprotective Agents
5.2.1 Anti-Apoptotic Agents

Neuronal apoptosis is a major mechanism of developmental neurotoxicity induced by GABAsR
receptor agonists. Inhibiting apoptotic pathways may serve as a potential intervention. The histamine Hs
receptor antagonist Clobenpropit has been shown to activate the PI3K/Akt signaling cascade, thereby
mitigating isoflurane-induced apoptotic injury in hippocampal neurons in vitro (He et al., 2018) (He et

al., 2018). Complementarily, the TNF-a inhibitor Etanercept significantly reduced neuronal apoptosis in
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the developing rat brain following isoflurane exposure (Chenet al., 2016 jp§§hen ]., 2016), suggesting
arole for inflammatory modulation in anesthetic-induced neurotoxicity. In a separate study, Stragisggand
colleagues demonstrated that the co-administration of lithium with either ketamine or pmpufulﬁnﬂt
significantly alter caspase-3 activation levels compared to control conditions, indicating a limited effect
of lithium in modulating anesthetic-induced apoptosis via this pathway(Straiko et al., 2009).Moreover,
erythropoietin (EPO) can partially reverse the decrease in BDNF and Bel-2 levels caused by general

anesthetics, thereby mitigating neuronal damage(Pellegrini et al., 2014).
5.2.2 Anti-Inflammatory Agents

Neuroinflammation has emerged as a critical mediator of anesthetic-induced neurotoxicity, making
it a compelling target for therapeutic intervention. Recent findings indicate that edaravone confers
neumpmtectigainst isoflurane-induced neuronal injury by attenuating inflammatory and apoptotic

sponses via activation of the mBDNF-TrkB-PI3K signaling axis (Yang et al., 2021). These beneficial
eftfects have been validated across both in vitro neuronal culture systems and in vivo preclinical models,
highlighting the therapeutic promise of neurotrophic pathway modulation in mitigating anesthesia-
related neural damage. In parallel, doxycycline—a semi-synthetic tetracycline antibiotic—has
demonstrated potent neuroprotective capabis beyond its antimicrobial function. Through engagement
of the PI3K/Akt pathway, doxycycline has been shown to exert significant anti-inflammatory and anti-
apoptotic effects, supporting its candidacy as a therapeutic agent for inflammation-related

neurodevelopmental pathologies (Méller et al., 2016).
5.2.3 Anti-Oxidative Stress Neuroprotective Agents

Recent advances in neuropharmacology underscore the neuroprotective potential of natural
antioxidants against anesthesia-induced neurotoxicity. tonin, for instance, has been shown to
activate the PKCa/Nrf2 signaling cascade, upregulate the anti-apoptotic protein Bcl-xL, suppress
cytochrome ¢ release, and inhibit mitochondrial-dependent apoptotic pathways. Through these
mechanisms, melatonin markedly reduces neuronal apoptosis triggered by combined exposure to

igd azolam, nitrous oxide, and isoflurane, suggesting a protective role in anesthetic neurotoxicity (B. Li
et al., 2018; Yon et al., 2006). Similarly, curcumin (Ji et al, 2015) and resveratrol (Tang et al., 2021),
both known for their antioxidant properties, have been demonstrated to attenuate sevoflurane-induced
oxidative stress by neutralizing ROS and suppressing associated inflammatory responses. tyl-L-
camitine (L-Ca), a mitochondria-targeted antioxidant, has been identified as neuroprotective n aging
and neurodegenerativ ditions (Robinson et al., 2019; Yan et al., 2014). Notably, co-administration
of L-Ca with propofol has been reported to alleviate propofol-induced cytotoxicity in embryonic neural
stem cells, primgpily by reducing ROS production and downregulating oxidative stress-related signaling
pathways (Liu et al., 2014). These findings highlight the promise of L-Ca as a potential adjunct in

anesthetic protocols, particularly those involving agents with known oxidative liabilities.

5.2.4 Nutritional Supplements for Neuroprotection
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Calcium homeostasis disruption is a key mechanism underlying anesthetic-induced neurotoxicity,
involving mitochondrial dysfunction as well as damage to astrocytes and neurons. Emerging evidence
indicates that stabilizing intracellular calcium dynamics may represent a promising strategy to counteract
the neurodevelopmental toxicity associated with sevotlurane exposure(Zhu et al., 2024). Iron deficiency
has been recognized as a pivotal determinant of impaired myelination within the central nervous system,
exerting its most detrimental effects during the fetal period and early stages of postnatal development.
Disruptions in iron homeostasis during these sensitive periods may compromise oligodendrocyte
function and hinder the proper formation of myelin sheaths(Ward etal., 2014). Sevoflurane exposure has
been implicated in disrupting myelin development during early brain maturation, potentially through
mechanisms involving oligodendrocyte apoptosis, as well as deficiencies in iron and folate metabolism.
Supplementing with iron and folate and inhibiting OL apoptosis could be effective preventive measures,

although further research is needed.

These findings suggest that strategies aimed at preventing apoptosis and inflammation, reducing
oxidative stress, and restoring calcium homeostasis and nutrient balance may offer promising

interventions against sevoflurane-induced neurotoxicity (Fig. 3).
6. Concluding Remarks and Future Directions

During the BGS, the finely tuned interplay between the GABAergic and glutamatergic
(GABA/GLU) systems is essential for proper neural development, with the developmental switch from
NKCC1 to KCC2 transporters serving as a pivotal mechanism in establishing the balance between E/I
signaling. Anesthetics, particularly intravenous agents targeting GABA 4Rs, may disrupt this transition,
thereby destabilizing neural networks(Cabrera et al., 2020). Additional mechanisms include the
imbalance of the BDNF signaling pathway, oxidative stress responses, and inflammatory reactions, all
of which erbatc neurotoxicity. Compared with traditional anesthetics, newer agents such as
NAS(Tesic et al., 2020; Timic Stamenic et al., 2021), remimazolam(Shi et al., 2024), and DEX(Wei et
al., 2016) exhibit milder mechanisms of action, maintaining sufficient anesthetic effects while
minimizing interference with the nervous system. However, our understanding remains limited regarding
how novel NAS and similar compounds may modulate T-type calcium channels and selectively bind to
specific sites on GABAAsR, thereby facilitating endogenous regenerative processes in the brain and
mitigating the neurotoxic effects of anesthetic agents. Further investigation is essential to elucidate their
potential in alleviating neurotoxicity. Concurrently, significant strides am:ing made in the development
of neuroprotective pharmacotherapies. Agents such as melatonin (B. Liet al., 20 18), erythropoietin (EPO)
(Pellegrini et al., 2014), and resveratrol (Tang etal., 202 1)—all of which exhibit potent antioxidant, anti-
nflammatory, and neuroprotective properties—have been investigated as promising candidates for
mitigating anesthetic-induced neurotoxicity (Fig. 3).Accordingly, the development of next-generation
anesthetic agents should prioritise strategies that minimise neurotoxicity, enhance intrinsic
neuroprotective mechanisms, and facilitate post-injury repair and functional recovery—thereby ensuring

both the safety and therapeutic efficacy of anaesthesia in paediatric and other high-risk populations.

Since the 2016 advisory issued by the FDA regarding the potential neurotoxic effects of anesthetic

agents in pediatric populations, there has been a marked increase in clinical investigations evaluating the
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neurodevelopmental consequences of anestlg exposure in children. Findings from key studies such as

the PANDA study (Sun etal., 2016) and the GAS trial (David: al., 2016; McCann etal., 2019) have
shown that a single, bgigiexposure—typically under one hour—to general anesthesia in children younger
than five years of age 1s not associated with significant long-term neurodevelopmental deficits. However,
the MASK study provided evidence that multiple exposures prior to age three may be linked to slower
cognitive processing, impaired fine motor coordination, and increased risk of behavioral and leaming
difficulties. Supporting this, recent data suggest that general anesthesia administered to infants under one
vear of age is associated with an elevated risk of developmental delays, with risk escalating as the number
of surgical procedures increases (Kobayashi et al., 2020). While the majority of clinical studies suggest
that isolated anesthetic exposure is relatively safe, the literature remains inconclusive due to ethical
constraints, methodological limitations, and perioperative confounders. Notably, the combined
neurotoxic effq a5 of multiple anesthetic agents and their potential protective mechanisms remain
underexplored. Future research should adopt an integrative approach, combining mechanistic molecular
studies, behavioral analyses in animal models, and rigorously designed clinical trials. Prospective
randomized controlled trials (RCTs) with long-term neurodevelopmental follow-up are essential.
Moreover, the establishment of standardized dosing frameworks and exposure durations, alongside
anesthesia protocols tailored to regional brain vulnerability across developmental stages, will be critical

to advancing this field

Clinical investigations into @ long-term cognitive and behavioral consequences of anesthetic
exposure in children employ heterogeneous methodologies. However, a significant proportion of these
studies rely predominantly on subjective outcome assessments (Maloney et al.,, 2019), with limited
incorporation of objective neuroimaging techniques or biomarker analyses, thereby o5 straining a
comprehensive evaluation of anesthetic-induced neurodevelopmental effects (Bethlehem et al., 2022; H.

ng et al., 2022). Notably, quantitative ultrasound imaging has revealed increased apoptotic activity
m the developing brains of non-human primates following sevoflurane exposure, highlighting the
potential neurotoxic impact of this agent during vulnerable periods of brain maEation (Rosado-Mendez
et al, 2019). Complementary neuroimaging studies suggest that pediatric exposure to inhalational
esthetics such as isoflurane and sevoflurane is associated with cognitive impairments and disruptions
m white matter integrity (Banerjee et al., 2019; Bethlehem et al., 2022). Morecover, prospective
mvestigations report that as many as 75% of infants undergoing non-cardiac surgery for congenital
anomalies exhibit mild to moderate neuroimaging abnormalities postoperatively (Mongerson etal., 2019;
Moran et al., 2019). To delineate the precise neurodevel@mmental impact of anesthetic agents, future
studies should adopt an integrative approach—combining MRI and diffusion tensor imaging (DTI) with
high-resolution ultrasound and biomarker profiling (e.g., inflammatory cytokines, BDNF)—in
conjunction with longitudinal assessments of cognitive and behavioral function across defined
developmental windows. This will help establish preventive or reversal strategies, such as the use of
antioxidants, calcium channel blockers, or agents that promote myelination, or through environmental

stimulation and functional training to restore the function of impaired neural networks.

7. conclusion
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With the widespread clinical application of intravenous anesthetics targeting GABAsRs, their

potential impact on the developing nervous system has increasingly become a focal point of academic

attention. Although extensive research has elucidated the neurodevelopmental impact of GABAAR-

targeting agents via modulation of both GABAxRs and NMDA receptors, the specific influence of

anesthetic drugs on synaptogenesis remains a complex and multilayered phenomenon. Deciphering the

long-term consequences of such agents, alongside the identification of potential neuroprotective

strategies and the refinement of their clinical applicability, continues to pose substantial challenges for

future investigations.
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FIGURES LEGENDS

Fig. 1 Mechanisms of Developmental Neurotoxicity Induced by Anesthetics Targeting GABAx
Receptors

Anesthetic drugs target GABA, receptors (GABA4R) in immature neurons, leading to developmental
neurotoxicity. Black arrows represent the direct effects of anesthetic drugs on immature neurons, while
red arrows indicate the subsequent effects triggered by the inhibition of relevant signaling pathways. The
underlying mechanisms include: GA upregulating NKCC1 and downregulating KCC2, thereby
enhancing GABA-mediated excitatory signaling, which leads to excessive calcium influx and calcium
overload. This overload then triggers neuroinflammation and exacerbates oxidative stress. Through
NMD AR-mediated excitatory/inhibitory imbalance (E/I imbalance), synaptic plasticity is disrupted, with
a reduction in PSD95 and related proteins, as well as inhibition of long-term potentiation (LTP).
Furthermore, GA affects the BDNF signaling pathway by enhancing BDNF/ P75™'® inhibiting
BDNF/TrkB signaling, and causing BDNF dysregulation. Simultaneously, it interferes with abnormal
ncRNA and PTP-1B signaling pathways, inducing endoplasmic reticulum stress, which ultimately results
in neuronal damage.

Fig. 2 The Effects of Anesthetics Targeting GABA . Receptors on Different Neuronal Populations
Anesthetic agents activate microglia, triggering the release of pro-inflammatory cytokines and M1
markers, which in turn exacerbate neuroinflammation. These drugs induce massive apoptosis in
oligodendrocytes, leading to neuronal demyelination. Notably, iron and folate have been shown to
mitigate this demyelination process. Furthermore, anesthetics interfere with astrocyte function via the
ERK pathway, disrupting BDNF metabolism and ultimately leading to neuronal apoptosis. This cascade
of events underscores the harmful effects of anesthetics on neurodevelopment, particularly in the context
of inflammation-induced apoptosis in both neurons and glial cells.

Fig. 3 Neuroprotective Mechanisms of NAS

NAS exerts neuroprotective effects through multiple pathways. The mechanisms are as follows: black
arrows indicate the direct effects of anesthetics on immature neurons, while red arrows represent
subsequent effects induced by the inhibition of related signaling pathways. NAS interacts with TLR2,
TLR4, and TLR7 and their adaptor proteins to reduce the production of inflammatory factors, thereby
alleviating neuronal inflammation. NAS also regulates the synthesis of mBDNF through receptors such
as GPERI1, ERa/p, and PXR. mBDNF activates MEK/ERK, PI3K/AKT, and PLCy/PKC signaling
pathways through TrkA/B receptors, inhibiting ROS production, alleviating mitochondrial dysfunction,
reducing neuronal apoptosis, enhancing neurotransmitter release, and activating NMDAR to promote
LTP formation, thus increasing synaptic plasticity. Additionally, NAS may exert anesthetic effects by
modulating GABAsRs and calcium ions while enhancing neuronal regeneration to further protect the
nervous system. NAS, DEX, and EPO reduce neuroinflammation and exhibit anti-apoptotic and
neuroprotective effects through the BDNF/TrkB pathway, while Clobenpropit, Edaravone, and
Doxycycline act through the BDNF/PI3K pathway. Melatonin increases BDNF production through Nrf2,
while L-Ca, Curcumin, and Resveratrol reduce oxidative stress, and Etanercept reduces the production
of inflammatory factors.

Fig. 4. The Impact of Anesthetic Agents on Different Brain Regions During Development
Neurodevelopmental trajectories based on global pediatric MRI data are presented, with the y-axis

representing the percentage of maximum volume attained by each brain region during development, and
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the x-axis representing age. The yellow shaded region highlights the period of anesthesia vulnerability,
in comparison to the critical peak developmental periods for various brain functions.The impact of
anesthetic drugs on different brain regions is shown, with highlighted areas indicating regions
particularly vulnerable to anesthesia-mnduced damage. BGS:brain growth spurt; GMV:total cortical grey
matter volume;WMV:total white matter volume:CSF:total ventricular cerebrospinal fluid volume
(ventricles or cerebrospinal fluid);MCT:mean cortical thickness;TSA:total surface area; TCV:total
cerebrum volume.

Fig. 5 Graphical Abstract: Mechanisms of Anesthetic-Induced Neurotoxicity Targeting GABAa
Receptors and Associated Susceptibility Factors

Neonatal brain development occurs during a critical period, and anesthetic-induced neurotoxicity during
this time is influenced by multiple complex factors, including the mechanisms of anesthetic drugs
targeting GABA receptors and associated susceptibility factors. The interplay of these factors contributes

to the formation of a complex mechanism underlying neonatal neurotoxicity induced by anesthesia.
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