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Correcting for sparsity and interdependence in
glycomics by accounting for glycan biosynthesis

Bokan Bao'23©, Benjamin P. Kellman® 236, Austin W. T. Chiang® "4, Yujie Zhang® ",
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Glycans are fundamental cellular building blocks, involved in many organismal functions.
Advances in glycomics are elucidating the essential roles of glycans. Still, it remains chal-
lenging to properly analyze large glycomics datasets, since the abundance of each glycan is
dependent on many other glycans that share many intermediate biosynthetic steps. Fur-
thermore, the overlap of measured glycans can be low across samples. We address these
challenges with GlyCompare, a glycomic data analysis approach that accounts for shared
biosynthetic steps for all measured glycans to correct for sparsity and non-independence in
glycomics, which enables direct comparison of different glycoprofiles and increases statistical
power. Using GlyCompare, we study diverse N-glycan profiles from glycoengineered ery-
thropoietin. We obtain biologically meaningful clustering of mutant cell glycoprofiles and
identify knockout-specific effects of fucosyltransferase mutants on tetra-antennary struc-
tures. We further analyze human milk oligosaccharide profiles and find mother's
fucosyltransferase-dependent secretor-status indirectly impact the sialylation. Finally, we
apply our method on mucin-type O-glycans, gangliosides, and site-specific compositional
glycosylation data to reveal tissues and disease-specific glycan presentations. Our
substructure-oriented approach will enable researchers to take full advantage of the growing
power and size of glycomics data.
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ARTICLE

lycosylation is a complex post-translational modification

and it decorates one-fifth to one-half of eukaryotic

proteins!2. Glycans account for 12-25% of dry cell mass
and have essential functional and pathological roles>*. Despite
their importance, glycans have complex structures that are diffi-
cult to study. The complex structures of glycans arise from
a context-sensitive biosynthetic network involving dozens of
enzymes. A simple change of a single intermediate glycan or
glycosyltransferase will have cascading impacts on the glycans
secreted>®. Unfortunately, current data analysis approaches for
glycoprofiling and glycomic data lack the critical systems per-
spective to decode the interdependence of glycans easily’~12. It is
important to understand the network behind the glycoprofiles to
understand the behavior of the process better.

New tools aiding in the acquisition and aggregation of glyco-
profiles are emerging, making large-scale comparisons of glyco-
profiles possible. Advances in mass spectrometry now enable the
rapid generation of many glycoprofiles with detailed glycan
composition and structure predictions”®19-18, exposing the
complex and heterogeneous glycosylation patterns on lipids and
proteins®>11L19-22 Targe glycoprofile datasets and supporting
databases are also emerging, including GlyTouCan?3, UniCarb-
DB?4, GlyGen??, and UniCarbKB2°.

These technologies and databases enable efforts to associate
glycans with disease and other phenotypes. However, the rapid
and accurate comparison of glycoprofiles can be challenging with
the size, sparsity and heterogeneity of such datasets®11,20-22,27,
A glycoprofile provides glycan structure and abundance infor-
mation, and each glycan is usually treated as an independent
entity. Furthermore, in any one glycoprofile, only a small per-
centage of all possible glycans may be detected®%11:2027, Thus, if
there is a significant perturbation to glycosylation in a dataset,
only a few glycans, if any, may overlap between samples. How-
ever, these non-overlapping glycans may only differ in
their synthesis by as few as one enzymatic step. Currently, delib-
erate manual coding is required to make glycoprofiles
comparable’~1220.27_ These properties of glycomics data may not
be problematic in the studies of individual glycans and their
downstream effects on other biological processes. However,
sparsity and non-independence can be a problem in determining
the sources of differential glycan abundance when leveraging
large datasets®?2728, Since many methods assume data inde-
pendence (e.g., t-tests, ANOVA, etc.), their application to gly-
comics can lead to decreased statistical power or erroneous
results.

Previous studies have used glycan motifs to explore similarities
across glycans. Scientists have used substructure-oriented analysis
to describe glycan diversity in databases (e.g, glycan
fingerprinting)?®-30, align glycan structures’!, identify glycan
epitopes in glycoprofiles’? and lectin profiles!, deconstruct LC-
MS data to quantify glycan abundance’?, and compare glycans in
glycoprofiles®*. These tools leverage both glycan abundance and
structure. However, no tools make explicit use of the biosynthetic
context encoded in glycan structures. Thus, a generalized sub-
structure approach could facilitate the study of large numbers of
glycoprofiles by connecting them to the shared mechanisms
involved in making each glycan.

In this work we present GlyCompare, a method enabling the
rapid and scalable analysis and comparison of multiple glyco-
profiles, while accounting for the biosynthetic similarities of each
glycan. We propose glycan substructures, or intermediates, as
interpretable functional units for glycoprofile comparisons; each
substructure can capture one step in the complex process of
glycan biosynthesis, which accounts for the shared dependencies
across glycans. This approach addresses current challenges in
sparsity and hidden interdependence across glycomic samples

and will facilitate discovering mechanisms underlying the changes
among glycoprofiles. We demonstrate the functionality and per-
formance of this approach with a variety of glycomic analyses,
including recombinant erythropoietin (EPO) N-glycosylation,
human milk oligosaccharides (HMOs), mucin-type O-glycans,
gangliosides, and site-specific compositional data. Specifically, we
analyzed 16 MALDI-TOF glycoprofiles of EPO, where each EPO
glycoprofile was produced in a different glycoengineered CHO
cell line?-?7. We also analyze 48 HPLC glycoprofiles of HMO
from six mothers®>. By analyzing these glycoprofiles with Gly-
Compare, we quantify the abundance of important substructures,
cluster the glycoprofiles of mutant cell lines, connect genotypes to
unexpected changes in glycoprofiles, and associate a phenotype of
interest with substructure abundance and flux. We further
demonstrate that such analyses gain statistical power. Finally, we
expand our studies to include a tumor-normal comparison of
mucin-type O-glycans, human retinal glycolipids, and site-
specific N-glycan compositional data from the mouse brain.
The analyses of the various N- and O-type glycan datasets
demonstrate that our framework presents a convenient and
automated approach to elucidate insights into complex patterns
in glycobiology.

Results

Different glycoprofiles from small genetic changes can be
compared with GlyCompare. Due to the sparsity and inter-
dependence of glycans in each glycoprofile, comparing different
glycoprofiles can be challenging®!2. We demonstrated the core
idea with three diverse erythropoietin (EPO) profiles made by
three glycoengineered CHO cell lines?!*”. EPO produced in the
wild type (WT) and two double glycosyltransferase knockout
(Mgat4a/4b and St3gal3/6) CHO cell lines have very different
glycoprofiles that do not share many detected glycans (Fig. 1a).
Efforts to identify primary and off-target effects of genetic
modifications have limited success when relying only on over-
lapping glycans or on the presence/absence of a set of glycoforms.
This glycan-level analysis can drastically limit analytic power due
to the sparsity of comparable consensus glycans (Fig. 1a). The
problem is that even glycans differing in only one single mono-
saccharide will be treated as two completely different glycans
under conventional glycoprofile analysis methods®. Ultimately,
the glycan abundance cannot be compared directly. This limited
overlap between samples compounds when analyzing large gly-
comics datasets. These challenges prompted us to develop Gly-
Compare, a substructure-based approach to glycan analysis.
Glycoprofiles are decomposed into a substructure network that
encodes the shared biosynthetic pathways as well as the inter-
dependence among glycans. Then, the substructure abundances
are aggregated across glycans to account for activities at each
enzymatic step (Fig. 1b). In essence, this shifts the focus of gly-
coprofile analysis from examining the increase/decrease of inde-
pendent glycans to examining the increase/decrease of a series of
glycan substructures (Fig. 1c). Substructure abundance provides
interpretable biosynthetic information and allows us to mitigate
major statistical challenges of working with glycan-based
glycoprofiles.

GlyCompare decomposes glycoprofiles to facilitate compar-
ison. Glycoprofiles can be decomposed into abundances of
intermediate substructures. The resulting substructure profile has
richer information than whole glycan profiles and enables more
precise comparison across conditions. Since glycan biosynthesis
involves long, redundant pathways, the pathways can be collapsed
to obtain a subset of substructures while preserving the infor-
mation of all glycans in the dataset. We call this minimal set of
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Fig. 1 The GlyCompare platform improves glycomics data analysis and interpretation by using glycan biosynthetic network data to account for glycan
interdependence. a Three example glycoprofiles (WT, Mgatda/4b knockout, and St3gal4/6 knockout profiles), with annotated glycans and measured

relative glycan abundances, show low overlap despite differing in only a few gene knockouts. b The low overlap can be rescued by propagating glycan
substructures through the glycan biosynthetic network. Then, the glycoprofile is transformed into glyco-motif vectors. The representative substructure is
generated to represent core glycan substructures of glycoprofiles (see “Methods”). € Venn diagrams show the imperfect overlap of glycans across samples
(upper), which is rescued when using GlyCompare to analyze glyco-motif substructures (bottom). Source data are provided as a Source data file.

substructures, glyco-motifs. The GlyCompare workflow consists
of several steps wherein glycoprofiles are annotated and decom-
posed, glyco-motifs are prioritized, and each glyco-motif is
quantified for subsequent comparisons (see the “Methods” sec-
tion). The specific workflow is described as follows.

First, to characterize one glycoprofile with substructures, all
substructures in one glycoprofile are identified and occurrence
per glycan is quantified (Fig. 2a, b). Within a glycoprofile, a
substructure’s abundance is calculated by summing the abun-
dance of all glycans containing the substructure. This transfor-
mation results in a substructure profile, which stores abundances
for all glycan substructures (Fig. 2b) in the given glycoprofile. The
summation over similar structures asserts that they follow the
same synthetic paths, which is appropriate for glycosylation
wherein synthesis is hierarchical and acyclic®. Therefore, a
substructure abundance is not simply a sum over similar
structures but mirrors the activity of the enzymes through
biosynthetic pathways. Second, to identify the most informative
substructures (i.e., glyco-motifs), substructures are prioritized
using the substructure network. The substructure network is built
by connecting all substructures with biosynthetic steps (Figs. 2d
and 3c). The network starts from a core structure. An additional
network level represents one biosynthetic step, adding one of the
monosaccharides to the previous level. The edges in the network
represent enzymatic additions of each monosaccharide, which
can be annotated with known reactions (Supplementary Fig. 1).
Redundant substructures are identified when parent—child
substructure abundances are the same (Fig. 2d). Substructure
network reduction proceeds by collapsing links with redundant
substructures (connected with a solid arrow in Fig. 2d) and only
retaining the child substructure. The remaining substructures are
called glyco-motifs (selected-substructures); they describe the

variance entirely at the substructure level. The abundances of all
glyco-motifs are then represented as a glyco-motif profile, the
minimal subset of meaningful substructure abundances repre-
senting glycoprofiles (Fig. 2e).

For larger datasets, it is useful to summarize the structure
difference and abundance changes by clustering glyco-motifs
(Supplementary Fig. 2). After clustering glyco-motifs, the
common structural features of a cluster are calculated using the
average weight of each monosaccharide (Fig. 2f, see “Methods”).
Monosaccharides with a weight larger than 51% are preserved,
which illustrates the predominant structure in the cluster. This
allows one to quickly evaluate the distinguishing structure
features that vary across samples in any given dataset.

The workflow described here will connect all glycoprofiles in a
dataset through their shared intermediate substructures, thus
allowing robust analysis of the differences across glycomics
samples and the evaluation of the associated genetic bases.

GlyCompare accurately clusters glycoengineered EPO samples.
We first apply GlyCompare on the dataset consisting of 16 gly-
coprofiles coming from a panel of different erythropoietin (EPO)
glycoforms, each produced in different glycoengineered CHO cell
lines. Clustering glycoprofiles did not adequately recapitulate the
severity of glycosylation disruption, wherein many neighboring
samples were not the most genetically similar mutants (Fig. 3a
and Supplementary Fig. 3). This inconsistency and poor clus-
tering stem from the inherent sparseness of glycoprofiles, i.e.,
each glycoprofile only has a few observed glycans (Fig. 3d), and
most glycans appear only in a few glycoprofiles (Figs. 3e, f). Thus,
the matrix of glycan abundances is sparse and incompatible with
the glycan synthesis assumption. Since glycan composition is not
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Fig. 2 Core methodology for transforming glycoprofiles to glyco-motif profiles and visualizing cluster-representative substructures using GlyCompare.
a, b A glycoprofile with structure and relative abundance annotation G is obtained. The glycans are decomposed to a substructure set S, and the presence/
absence of each substructure is recorded. Presence/absence vectors are weighted by the glycan abundance, and are summed into a substructure vector P.
¢ Seven example glycoprofiles are transformed to substructure vectors as (a) and (b). d A substructure network is constructed to identify the non-
redundant glyco-motifs that change in abundance from their precursor substructures. e The glycoprofiles can then be compared by their glyco-motif
vectors M to generate more meaningful clusters. Both glycoprofiles and substructures can be clustered for similarity analysis. f Core structure information
can be visualized from a substructure cluster. For example, four substructures with different weights were aligned together, and the monosaccharides with
a weight over 51% were preserved. Throughout the manuscript, glycan is referred to complete and secreted monosaccharide polymer; a glycan
substructure is referred to a complete or incomplete monosaccharide polymer observable within at least one secreted glycan; a glycan motif (glyco-motif)
is referred to an enriched functional glycan substructure for a dataset or biological process. Note that both glycan epitopes (typically terminal glycan
substructures recognized by lectins) and glycan cores (biosynthetic glycan substructures common to select types (e.g., N- or O-glycosylation) or modes
(e.g., complex or high-mannose) of biosynthesis) are glyco-motifs as they are biologically functional, interpretable and will be enriched in datasets selecting
for specific glycan presentation of biosynthesis. Glycompare core methods are explained at length in the “Methods” section.

utilized, the clustering is heavily affected by the categorical pre-
sence or absence of a glycan, rather than structural similarity.
GlyCompare addresses these problems by exposing hidden
similarities between glycans after decomposing glycoprofiles to
their composite substructures. The 16 glycoprofiles with 52
glycans in total were decomposed into their constituent glycan
substructures, resulting in a substructure network with 613 glycan
substructures (Fig. 3b, c). Furthermore, the known enzymatic
rules are annotated to the edges and the network is collapsed to
include 151 glyco-motifs (Fig. 3c). By encoding the structure
information, the glyco-motifs provide richer information than
using glycans alone (Fig. 3d-f). The glyco-motif clustering clearly
distinguished the samples based on the structural patterns and

separated profiles into groups more consistently than the raw
glycan-based clusters (Fig. 3b and Supplementary Figs. 3-5).
The 16 glycoprofiles clustered into three groups with a few
severely modified outliers (Fig. 3b). The 151 glyco-motifs were
clustered into 35 groups, each summarized by representative
substructures Repl-Rep35 (Fig. 4a and Supplementary Fig. 1).
The clusters of glycoprofiles are consistent with the genetic
similarities among the host cells. Specifically, the major
substructure patterns cluster individual samples into four
categories: ‘wild-type (WT)-like’, ‘mild’, ‘medium’, and ‘severe’.
The WT-like category contains WT and B4galt1/2/3/4 knock-
outs samples, which have most substructures seen in WT cells.
The mild group includes the Mgat4b/4a, Mgat4b, and Mgat5
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NATURE COMMUNICATIONS | (2021)12:4988 | https://doi.org/10.1038/s41467-021-25183-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25183-5

a Standard-scaled representative substructures
(recentralized with WT abundance)
- I | [ [ |
30 . .
: ] . [ |
| | | |
-15 | | . I
: | [ | |
|| |
-0.0
| |
e 5 e T 1]

f%?????%%?%%?%%%?%%%?@%@%@%@@?@@@@@

2 3 45 6 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Child abundance

b Visualizing the representative substrutures C
Parent abundance

Ratio =
in KO St3gal4/6 profile with the network

Edge ratio for A3SIAT (n=edges)

® T .
l .i,v g/r @ 0\1, %; o8 T
-15 v
\ ol ®/ 0 % p=03
-0.0 Ei' E 04 Wilcoxon
;0 ﬁy p p =43e-09
--15 @ 02 *xER
\& ’ /J,
I 3.0 ° \L ? — 0.0] Si—————
éii. ol KO.St3gal4/6 wT KO.Fut8
wﬁfl‘\ '.E,’ \ 8 & n=9 n=9 n=9
Y — /’Jv"%,@\
Efi ﬁ}% \ -~ -..;gii . '.Eiaﬁ 3 le], = Edge ratio for iGNT (n=edges)
iii / [\ \ST‘ ’\l/ ] Wilcoxon
o T 0s] P<22e-16
®A/P///! ‘ X\ T 9 p=32e-14
8 0 \¢¢ I g o ] e
I 2 —
Q\L & o4 :
@ ®/' \ XXXKR
)é /\ %g 0.2
‘ Sialyation %gA % 0\1/ ilg‘a o - ?
KO.St3gal4/6 WT KO.Fut8
9 LacNac elongation n=28 n=28 n=28

Fig. 4 Analysis of glycan abundance changes using representative substructures. a The heatmap of normalized glycan abundance for the

35 substructure clusters from Fig. 3b. The substructures are sorted based on the glycan structure complexity, followed by the number of branches, the
degree of galactosylation, sialylation, and fucosylation. The profile colors are same as in Fig. 3b. While comparing to WT, the weighted average abundance
of each cluster is calculated then z-score standardized by each column. The color denotes the change of glycan abundance for the comparison of KO vs.
WT of the indicated substructure. b The differential substructure representative network for the comparison between the St3gal4,/6 knockout profile and
the WT profile. The z-score rescaled substructure clusters' abundance in (a) are visualized on edges with a simplified network. The color is defined the
same as in (a) for the changes of glycan abundance. The plot demonstrates the changes of the elongation and sialylation. ¢ Differential enzyme activities of
a-2,3-sialyltransferase (a3SiaT, reaction n=9) and p-1,3-N-acetylglucosaminyltransferase (iGNT, reaction n = 28) for the knockout profiles (St3gal4/6
and Fut8) and wild-type profile in terms of network edge ratio. Specifically, the network edge ratio is calculated on the reactions shared by three profiles.
The 5 quartile boundaries of the a3SiaT table are KO.St3gal4/6, Min = 0, Max = 0;KO.Fut8, Min = 0.795, Q1 = 0.795, median=0.795, Q3 =1, Max=1;
WT, Min=0.871, Q1 = 0.871, median = 0.871, Q3 =1, Max =1. The 5 quartile boundaries of the iGNT table are KO.St3gal4/6, Min = 0.224, Q1= 0.224,
median = 0.285, Q3 = 0.314, Max = 0.412;,KO.Fut8, Min =0.096, Q1 = 0.104, median = 0.161, Q3 = 0.205, Max = 0.205; WT, Min=0.0569, Q1=
0.0637, median = 0.0709, Q3 = 0.129, Max = 0.129. The one-sided Wilcox tests are performed. For a3SiaT table, KO.St3gal4/6 vs WT has p = 4.3e—09,
KO.Fut8 vs WT has p=0.3. For iGNT table, KO.St3gal4/6 vs WT has p < 2.2e—16, KO.Fut8 vs WT has p = 3.2e—14. Source data are provided as a Source
data file.

knockouts, where each loses the tetra-antennary structure, and a
St3gal4/6 knockout, which loses the terminal sialylation. The
medium category is a group that contains knockouts of St3gal4/6
and Mgat4a/4b/5, knockouts of Mgat4a/4b/5 and B3gnt2,
knockouts of Mgat4a/4a/5 with a knock-in of human ST6GALL,
and knockouts of Mgat4a/4b/5 and St3gal4/6. The medium

disruption category lost the tri-antennary structure. The ‘severe’
category includes three individual glycoprofiles with knockouts
for Fut8, Mgat2, and Mgatl, each of which generates many
glycans not detected in the WT-like, mild or medium categories.
While some glyco-motif clusters can be seen in the glycoprofile
clusters, there are important differences, and the glyco-motif
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clusters provide more information and improved cluster stability
(Fig. 4a, Supplementary Figs. 4, 5). These results demonstrate that
standard methods are unfit to cluster glycan abundance from
glycomics data in genetically diverse datasets; however, comput-
ing glyco-motif abundance accounts for the structural similarity
of glycans between different glycoprofiles and allows one to use
standard hierarchical clustering techniques reliably.

GlyCompare summarizes structural changes across glycopro-
files. GlyCompare helps to more robustly group samples by
accounting for the biosynthetic and structural similarities of
glycans. Further analysis of the representative structures provides
detailed insights into which structural features vary the most
across samples. To accomplish this, we rescaled the representative
structure abundances and identified significant changes between
mutant cells and WT (Fig. 4a, Supplementary Fig. 6). Analysis of
the representative substructure network provides a more precise
interpretation of the changes in the St3gal4/6 KO (Fig. 4b) and
the Fut8 KO profiles (Supplementary Fig. 7). This interpretation
highlights the specific structural features of glycans that are
impacted when glycoengineering recombinant EPO.

In-depth analysis showed, as expected, in the Mgatl knockout
glycoprofile, only high-mannose N-glycans are seen. Also, in the
Mgat2 knockout, the glycan substructure of bi-antennary on one
mannose linkage significantly increases. The unique structure of
bi-antennary LacNac elongated in the N-glycans emerges in the
St3gal4/6 and Mgat4a/4b/5 knockouts. In the St3gal4/6 knockout
profile, the abundance of structures with sialylation are zero,
while the tetra-antennary and tri-antennary poly-LacNAc
elongated N-glycan substructure without sialylation significantly
increased (Rep24-25: p=1.3 x 1073, Rep31-32: p=2.3 x 107*)
(Fig. 4a—c). Along with expected changes in a-1,6 fucosylation in
the Fut8 knockout glycoprofile, we also observed an increase in
the tetra-antennary poly-LacNac elongated N-glycan without
fucose, which has not been previously reported (one-sided one-
sample Wilcoxon test, Rep28: p=2.7x 107%, Rep34: p
=2.0 x 107*) (Fig. 4a). Both the St3gal4/6 and Fut8 knockout
profiles have increased tri/tetra-antennary poly-LacNac elongated
substructure (Rep24, Rep31). It is related to the increased
conversion ratio of iGNT (Fig. 4c). Finally, the Mgat4b,
Mgat4a/4b, and Mgat5 knockouts lose all core tetra-antennary
substructures (Rep30-35: unscaled abundance = 0) (Supplemen-
tary Fig. 6). While tri-antennary substructures with GlcNac
elongation increased significantly for Mgatdb (Repl3-14, p
=2.6x 1073 Rep26-27: p=2.5x 107%), the poly-LacNac
elongation structure disappeared. Interestingly, while both the
Mgat4b and Mgat5 knockouts do not have the tri-antennary poly-
LacNac elongated N-glycan, the Mgat4a/4b mutant keeps a highly
abundant poly-LacNac branch (Rep28-29: p = 2.4 x 10™*). Thus,
by using GlyCompare, we identified the specific glycan features
impacted not only in individual glycoengineered cell lines but also
in features shared by groups of related cell lines.

GlyCompare reveals unexpected changes in substructures
invisible at the whole-glycan level. Many secreted and measured
glycans are also precursors, or substructures, of larger glycans
(Fig. 5a). Thus, the secreted and observed abundance of one
glycan may not equal the total amount synthesized. GlyCompare
quantifies the total abundance of a glycan by combining the
glycan abundance with the abundance of its products. To
demonstrate this capability of GlyCompare, we analyzed HMO
abundance, to test if maternal genetics underlying the secretor
status has unexpected off-target effects on other HMO features.
We obtained 47 HMO glycoprofiles from 6 mothers (1, 2, 3, 4, 7,
14, 28, and 42 days postpartum (DPP)), 4 “secretor” mothers with

functioning FUT2 (a-1,2 fucosyltransferase), and 2 “non-secre-
tor” mothers with non-functional FUT2. With GlyCompare
addressing the interdependence of HMOs, we could use powerful
statistical methods to study trends in HMO synthesis. Specifically,
we used regression models to predict secretor status and DPP
from substructure abundance.

We first checked both the glycan-level and substructure-level
clustering of the glycoprofile. Samples with same secretor status
and days postpartum (DPP) were successfully grouped (Supple-
mentary Figs. 8, 9). Further examination of the glyco-motif
abundance (i.e., the total amount of substructure synthesized)
revealed phenotype-related trends invisible on the glycan profile
level. Interestingly, secretor status, defined by glycan fucosylation,
significantly impacts the sialylation of non-fucosylated HMOs
(e.g. LSTb) over time. While the relative abundance of both LSTb
substructure (X62) and secreted LSTb was elevated in non-
secretor milk (Wald p=4x 1077 and Wald p=3.98 x 10713
Fig. 5a, b), only X62 showed a strong interaction between time
and secretor status. At an adjusted sample size of 6, the time-
dependent decrease in non-secretor X62 is significant (Wald p =
0.002). In contrast, the time-dependent decrease is only margin-
ally significant for secreted LSTb (Wald p = 0.03). Previous work
has already described an LSTb elevation at 3-4 months
postpartum?3®, Here, a substructure-analysis of X62 suggests that
while the secreted LSTb is elevated in non-secretor milk, total
LSTb produced (and consumed as the substrate for other sugars)
may decrease over time.

Examining other secreted HMOs containing the
X62 substructure (DSLNT and DSLNH), we see no significant
secretor-status-dependent elevation (Wald p>0.2; Fig. 5a-d).
Unlike X62, DSLNT shows no significant change over time (Coef
=—0.39, Wald p=0.17; Supplementary Table 3a). Finally,
DSLNH shows a significant increase over time (Wald p=
2.91x 1078 Supplementary Table 3a). The secretor-specific
trends in total LSTb are only clearly visible by examining the
X62 substructure abundance (Fig. 5a-d). Thus, while secretor
status is expected to impact HMO fucosylation, GlyCompare
reveals associations with non-fucosylated substructures. Viewing
substructure abundance as total substructure synthesized pro-
vides a fundamental measure to the study of glycoprofiles
(Supplementary Fig. 10); it also creates an opportunity to explore
trends in biosynthesis.

Flux estimation from GlyCompare identifies reaction respon-
sible for an unexpected change in sialylation. The identification
of a non-fucosylated substructure that is associated with differ-
ences in secretor genotype raised the question of which reactions
are responsible. Thus, we used GlyCompare to estimate enzyme
fluxes to identify the reaction responsible for the unexpected
change in HMOs. To do this, we estimate the flux for each bio-
synthetic reaction by quantifying the abundance ratio of products
and substrates from parent-child pairs of glycan substructures.
Thus, we could study changes in HMO synthesis through the
systematic estimation of reaction flux across various conditions.

Although the fucosyltransferase-2 genotype defines secretor
status, not all secretor-associated reactions were fucosylation
reactions. We further explored the secretor-X62 association using
the product-substrate ratio to estimate flux. Specifically, we
examined the upstream reaction of LNT (X40) to LSTb (X62) and
the downstream reaction of LSTb (X62) to DSLNT (X106)
(Fig. 5e). We estimated the flux of the upstream reaction of LNT
converting to LSTb, using the X62/X40 ratio over time. However,
no significant change was observed to secretor status (Fig. 5f;
Wald p = 0.55). In the conversion of LSTb to DSLNT, we found a
secretor-specific increase in reaction flux. Specifically, the X106/
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X62 ratio was significantly higher (Wald p=0.018) in secretor
mothers (Fig. 5g; Supplementary Table 3c). In the average non-
secretor mother, 52.3% (s.d. 15.1%) of LSTb is converted to
DSLNT. Meanwhile, in secretors, on average, 81.8% (s.d. 7.2%) is
converted. The LSTb to DSLNT conversion rate appears higher in
secretors, while conversion from the LSTb precursor, LNT,
appears unchanged (Fig. 5f). Any changes in sialylation are
intriguing, considering that secretor status is associated with
genetic variation of a fucosyltransferase. A secretor-elevated
conversion rate from LSTb to DSLNT is consistent with

Days postpartum (DPP)

observing elevated X62 and secreted LSTb in non-secretor milk
(Fig. 5a, b)3; if non-secretors consume less LSTb as a DSLNT
substrate, more of the synthesized LSTb (X62) will remain LSTb
through secretion. Examining the product-substrate ratio has
revealed a phenotype-specific reaction propensity, thus providing
insight into the condition-specific synthesis.

GlyCompare increases the statistical power of glycomics data.
GlyCompare successfully provides insights by accounting for
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Fig. 5 Analysis of intermediate substructures with GlyCompare elucidates unexpected associations in HMO abundance and reaction flux with secretor
status, which are missed in the standard whole-glycan analysis. a-d Over time (DPP), substructure X62, LSTb, DSLNT, and DSLNH show different trends
for secretors and non-secretors. Furthermore, the abundance of aggregated X62 shows significant positive-correlation with secretor and negative-
correlation with non-secretor. GEE models for each structure are visualized and approximated using a gaussian-link generalized linear model with 95%
confidence intervals; odds ratio (OR) significance (likelihood OR is non-zero) was measured with a two-sided Wald test (an =47, Coef = -1.37, p=4.3e
—7,bn=47, Coef =—-1.81, p=3.98e-13; c n=47, Coef =0.16, p =3.98e-13; d n =47, Coef =0.382, p = —0.23). e The substructure intermediates for
four connected glycans are shown here. The synthesis of larger glycans must pass through intermediate substructures that are also observed glycans,
where the substructures are as associated with measured glycans as follow X40 = LNT, X62 = LSTb, X106 = DSLNT, X138 = DSLNH. f, g Panels examine
the product-substrate ratio for two reactions in panel (e). X40, the LNT substructure, is a precursor to X62, the LSTb substructure, which is a precursor to
X106, the DSLNT substructure. We estimate the flux of these conversions from X40 to X62 and X62 to X106 by examining the product-substrate ratio, i.e.,
the proportion of the total synthesized substrate converted to the product. LSTb/LNT substructure relative abundance ratios are not associated with
secretor status while DSLNT/LSTDb ratios are. Panels f and g show OR corresponding to the ratio association with secretor status (fn =47, OR=0.99, p =
0.55; g n=47, OR=0.95, p=0.018). See Supplementary Table 3 for complete GEE statistics. Source data are provided as a Source data file.

shared biosynthetic routes of measured oligosaccharides. Since it
includes information on the similarities between different glycans,
we wondered how our approach impacts statistical power in
glycan analysis. Thus, to quantify the benefit of the glyco-motif
analysis, we constructed many regression models associating
either glyco-motif abundance or glycan abundance, with a DPP
and secretor status (see “Methods”). We found that regressions
trained with glyco-motif abundance are more robust than those
trained on whole glycan abundance, as indicated by the increased
coefficient magnitude (Wilcoxon p=0.0047, Fig. 6a) and
decreased standard error (Wilcoxon p=0.033, Fig. 6b). An
increase in the stability of a statistic can result in an increased
effect size. Consistent with the increased coefficient magnitude
and decreased standard error, the effect size also increased, as
measured by the marginal R? (mR2?) of glyco-motif-trained
regressions (Wilcoxon p=0.04, Fig. 6¢c). These effects were
confirmed with a bootstrapping t-test; bootstrapping p-values
were less than or equal to Wilcoxon p-values within 0.001.
Increases in statistical magnitude, statistical stability, and effect
size are all expected to increase analysis power. Using the median,
Ist quartile, and 3rd quartile of observed mRZ, we estimated the
expected power of glyco-motif-trained and glycan-trained
regressions at various sample sizes. The expected power of a
glyco-motif-trained regression reaches 0.8 at 36 samples and 0.9
at 57 samples. In contrast, a glycan-trained regression requires
more than double the sample size to reach a comparable power
(Fig. 6d). GlyCompare provides additional power for discovering
glycan-phenotype associations.

To further probe the increased statistical power, we compared
our approach to another statistically-driven network approach.
Benedetti et al.?8 demonstrated that novel glycan biosynthetic
reactions could be resolved using partial correlation?8. Using the
Benedetti data, we computed partial correlation for glycan
abundance and with GlyCompare-computed linkage-specified
substructure abundance. We compared the partial correlation
between glycans or substructures across true-positive, known
reactions and false-positive, uncharacterized reactions (as speci-
fied in the Benedetti supplement). Partial correlations across
known reactions between GlyCompare-computed substructures
were significantly higher than partial correlations between
corresponding glycan abundances (Supplementary Fig. 11).
Partial correlation across known reactions was elevated for
substructure abundance in all IgG isoforms (one-sided t-test, p <
0.0039), and reactions performed by B4GALT1 and ST6GALI
(one-sided t-test, p < 1.1 x 10™4). Interestingly, the lowest partial
correlations across true-positive reactions between substructures
were substantially higher than corresponding glycan correlations.
The higher floor for substructure correlations suggests that
substructure abundances may increase positive predictive value
(Supplementary Fig. 11). Finally, while correlation increased

between true-positive associated substructures, correlations across
uncharacterized reactions were close to zero and indistinct from
glycan correlations across the same reactions. Thus, using
GlyCompare for glyco-motif-level analysis can substantially
increase the robustness and statistical power in glycomics data
analysis since it allows for comparing different glycans who share
biosynthetic steps.

Additional statistical power reveals tumor-depleted mucin-type
O-glycans. To explore the broad applicability of GlyCompare, we
used our method to calculate substructure abundance for mucin-
type O-glycans®” (Fig. 7), glycolipids®® (Supplementary Fig. 12),
and site-specific compositional N-glycosylation?? (Supplementary
Fig. 13). These results are described in more detail in the Sup-
plementary Discussion.

In a re-examination of the mucin-type O-glycans from tumor
and normal samples, glycan abundance and motif abundance
were compared (Fig. 7a, b). We found zero whole-glycan
structures significantly distinguished between tumor and normal
following multiple-test correction (FDR <0.1, Fig. 7a). Yet, after
substructure decomposition using Glycompare, we found five
significantly depleted (FDR <0.1) mucin-type glycan motifs in
gastrointestinal cancer (Fig. 7b)37. We found a substantial
depletion in the tumor samples of five core 2 structures. These
structures included three fucosylated and two with I-branches.
The largest structures were over 30-fold depleted in tumors
(FDR <0.03, Fig. 7c). The core 2 depletion was noted as a
nonsignificant trend in the original publication; we identified the
specific core 2-type substructure depleted in tumors using
substructure decomposition. Though this dataset contains few
subjects and therefore may not be robustly generalizable, we
demonstrate the increase in statistical power when using
substructures. In addition, a later study also found significant
depletion of multiple bi-GlcNAc core 2 and I-branched
structures’”. Also consistent with the decrease in bi-GIcNAc
core-2 structures in gastric cancer, low expression of B3GNT3 in
stomach cancer is significantly associated with decreased overall
survival38, BIGNTS3 is necessary for adding the second GlcNac to
core 2 structure®® and therefore upstream of all significantly
depleted structures (Fig. 7); BSGNT3 depletion could explain the
observed differential glycosylation. The observation of signifi-
cantly distinct substructures suggests GlyCompare provided
increased statistical power to detect these distinguishing
condition-enriched structures, and further showed continuity
across similar structures was not evident in the original study.

Discussion

Glycosylation has generally been studied from the whole-glycan
perspective using mass spectrometry and other analytical meth-
ods. From this perspective, two glycans that differ by only one
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Fig. 6 Glyco-motif level statistics require half as many samples to reach
the same level of statistical power as analysis with raw glycans. a, b The
use of glyco-motifs improves measures of regression robustness. The
coefficient magnitude and Standard Error indicate the magnitude of the
measured effect and the confidence with which a coefficient can be
estimated. In a, the boxplot illustrates 25th, 50th, and 75th percentiles for
regression coefficients using glycan data (Min = 0.5094, Q1= 0.7206,
median = 0.8416, Q3 =1.2706, Max =1.7166, n =35) or glyco-motif data
(Min =0.5094, Q1= 0.8365, median =1.1403, Q3 =1.5106, Max =
2.8357, n=74). Distributions were compared using one-sided Wilcoxon
tests (p =0.0047). In b, the boxplot again illustrates the 25th, 50th, and
75th percentiles for regression standard error trained on glycan data (Min
=0.0182, Q1= 0.1631, median = 0.2446, Q3 = 0.2832, Max = 0.4518,
n=35) or glyco-motif data (Min =0.0053, Q1= 0.1508, median =
0.2047, Q3 =0.2747, Max = 0.5398, n = 74). Distributions were
compared using a one-sided Wilcoxon test (p = 0.033). ¢ The R2 describes
the effect size of a regression; we used marginal R2 (mR2) because it was
appropriate for the regression models used®'. Distributions for mR2 of
regression models trained on glycan data (Min =0.128, Q1= 0.183,
median = 0.331, Q3 = 0.441, Max = 0.737, n=20) and glyco-motif data
(Min =0.0949, Q1= 0.3185, median = 0.46, Q3 = 0.686, Max = 0.764, n
=40) were compared using a one-sided Wilcoxon test (p =0.04). d We
predicted power for a range of sample sizes (n=5-200) given the median
effect size (solid line) within the interquartile range (shaded region) for
glyco-motif-trained regressions (mR2 Q1= 0.31, median = 0.45, Q3 =
0.68) and the median effect size for glycan-trained regressions (mR%: Q1 =
0.18, median = 0.33, Q3 = 0.44). Here, the use of GlyCompare and glyco-
motif (grey-blue color) abundances required approximately half the number
of samples to achieve equivalent power as standard glycan (red color)
measures. Source data are provided as a Source data file.

monosaccharide are distinct and are not directly comparable.
Thus, the comparative study of glycoprofiles has been limited to
changes between glycans shared by multiple glycoprofiles or small
manually curated glycan substructures?®. GlyCompare sheds light
on the hidden biosynthetic relationships between glycans by
integrating the structural similarity into the comparison.
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Fig. 7 Increased power for identifying diagnostic markers shown through
a re-analysis of mucin-type O-glycans from normal, tumor-proximal, and
gastrointestinal cancer biopsies, transformed to motif abundance. a, b
Welch two-sample t-test P-value and false discovery rate (FDR)
distributions for glycan abundance and glyco-motif abundance. ¢ We found
multiple core 2 substructures depleted in gastrointestinal cancer relative to
normal tissue. Not all linkages are specified, only those relevant to the
substructure definition. The information of log fold changes (logFC) and the
FDR are presented next to each substructure. Source data are provided as a
Source data file.

Glycoprofiles are converted to glyco-motif profiles; wherein each
substructure abundance represents the cumulative abundance of
all glycans containing that substructure. In other words, sub-
structure abundance is automatically computed from given gly-
coprofiles. Motif selection highlights the minimal set of
substructures necessary to understand variation in the given
glycoprofiles. Our substructure quantification can be easily scaled
up to compare many glycoprofiles in large datasets. Thus, it
brings several advantages and different perspectives, with some
important limitations, to enable the systematic study of
glycomics data.

Like any analytical pipeline, GlyCompare is sensitive to
upstream analysis (e.g., mass spectrometry methods measure the
mass-to-charge ratios of glycans and their fragments, and thus
require expert annotation to assign structures). Therefore, Gly-
Compare will continue to improve with advances in glycoprofile
structure annotation quality. Going forward, we hope to include
multiple methods for aggregating abundance over substructures,
including aggregation using multiple functions (besides addition)
over fully or partially specified biosynthetic networks. While
summing abundance for all subsumed substructures works well,
manual reaction specification can help avoid information loss
when biosynthesis is not hierarchical and acyclic or glycans are
not increasing in size. When these limitations are acknowledged,
the current version of glycompare has demonstrated some
exciting capabilities.

First, the GlyCompare platform computes a glyco-motif profile
(i.e., the abundances of the minimal set of glycan substructures)
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that maintains the information of the original glycoprofiles, while
exposing the shared intermediates of measured glycans. These
glyco-motif profiles more accurately quantify similarities across
glycoprofiles. This is made possible since glycans that share
substructures also share many biosynthetic steps. If the glycan
biosynthetic network is perturbed, any synthesized glycan can be
impacted and the nearest substructures can directly highlight
where the change occurred. For example, in EPO glycoprofiles
studied here, the tetra-antennary structure is depleted in the
Mgat4a/4b/5 knockout group and the downstream sialylated
substructure depleted when St3gal4/6 were knocked out. Such
structural patterns emerge in GlyCompare since the tool leverages
shared intermediate substructures for clustering, thus identifying
common features across diverse samples.

Second, trends in glycan biosynthetic flux become visible at the
substructure level. For example, in the HMO dataset, multiple
glycans are made through a series of steps from LNT to DSLNH
(Fig. 5a). Only when the substructure abundances and product-
substrate ratios are computed can we observe the secretor-
dependent temporal differences in the abundance of the LSTb
substructure, X62. Interestingly, though changes in a-1,2 fuco-
sylation define secretor status, we see additional secretor-
dependent effect on sialylated structures with no fucose. The
biosynthetic interpretation of lactose-based substructures was also
applied to ocular gangliosides3® to identify tissue-specific glyco-
lipid substructures (Supplementary Fig. 12). These are the sys-
temic effects invisible without a systems-level perspective due to
the interconnected nature of glycan synthesis; this disparity
underlines the power of this method.

Third, the sparse nature of glycomic datasets and the synthetic
connections between glycans make glycomic data unfit for many
common statistical analyses. However, the translation of glyco-
profiles into substructure abundance provides a framework for a
more statistically powerful and robust analysis of glycomic
datasets. These methods can enrich both structural (Fig. 3a) and
compositional (Supplementary Fig. 13) thereby increasing the
interpretability and structure of the dataset. Single sample per-
turbations, such as the knockouts in the glycoengineered EPO,
can be compared to wild-type; all substructure data can be nor-
malized and rigorously distinguished from the control using a
one-sample Wilcoxon test. Furthermore, conditions or pheno-
types with many glycoprofiles, such as the secretor status in the
HMO dataset, can be compared using various statistical methods
to evaluate the association between the phenotypes and glycosy-
lation. For example, in HMO data, we confirmed that the a-1,2
fucose substructure is enriched in secretor status, consistent with
previous studies3*-41, Because the substructure approach includes
comparisons of glycans that are not shared across the different
samples but share intermediates, GlyCompare decreased sparsity
and increased statistical power. We demonstrate the increase in
statistical power and observable differences between HMO
(Fig. 6) and the tumor-proximal mucin-type O-glycan presenta-
tion (Fig. 7). Thus, one can obtain richer glycan comparisons of
representative  substructures, total synthesized abundance,
and flux.

Finally, in combination with the substructure network, we can
systematically study glycan synthesis. The product-substrate ratio
provides an estimation of flux through the glycan biosynthetic
pathways. Using the HMO dataset, we demonstrated the power of
this perspective by showing that more LSTb is converted to
DSLNT in the secretor mother. The perspectives made available
through GlyCompare are not limited by the independence
assumptions of most statistical tests. Because the substructure-
level perspective makes explicit biosynthetic dependency between
glycans, glyco-motif abundances can be used with nearly any
statistical model or comparison demanded by a dataset. We have

accommodated the sparse and non-independent nature of gly-
coprofiles, thereby making countless comparisons analyses
possible.

Methods

Overview of the pipelines. Supplementary Fig. 14 shows a summary of the
GlyCompare workflow. The GlyCompare workflow consists of several steps
wherein glycoprofiles are annotated and decomposed, glyco-motifs are prioritized,
and each glyco-motif is quantified for subsequent comparisons with or without
specific phenotype data.

N-glycosylation of EPO glycoprofile collection for re-analysis. N-glycosylation
data were previously published?’. Upon retrieving these data from the study, we
picked 16 glycoprofiles that are used again in their follow-up study?! and further
processed the data as follows. All measurements were taken from distinct samples.

Glycan substructures were extracted from the observed glycans. Substructure
abundance was calculated from the glycan abundance of all glycans containing the
substructure. The substructure network identifies a minimal set of 151 glyco-motif
substructures to compare the mutants. Finally, representative substructures were
extracted to pool abundance and summarize the structural changes across mutants.
Each of these operations is further specified below.

HMO glycoprofile collection and analysis. HMOs were analyzed as de-identified
samples previously for an independent study3>42 at Baylor College of Medicine.
Following Institutional Review Board approval (Baylor College of Medicine,
Houston, TX), lactating women provided written informed consent. Women with
diabetes or impaired glucose tolerance, anemia, or renal or hepatic dysfunction
were excluded from the study. Women were 18-35 years of age, had uncomplicated
singleton pregnancies with vaginal delivery at term (>37 weeks) and pregnancy
body mass index (BMI) remained <26 kg m~2. Infants were healthy and exclusively
breastfed. Forty-eight milk samples were collected from 6 human mothers (1, 2, 3,
4,7, 14, 28, and 42 days postpartum (DPP)). More information on subject selec-
tion, exclusion, study design, and breast milk collection has already been
published3542,

Glycan composition and abundance were measured by high-performance liquid
chromatography (HPLC) following fluorescent derivatization with
2-aminobenzamide (2AB, CID: 6942)4344, Raffinose (CHEBI:16634, CID:439242),
a non-HMO oligosaccharide, was added to each milk sample as an internal
standard at the beginning of sample preparation to allow for absolute
quantification. Of the 300-500 predicted HMO, the 16 most abundant HMO were
detected based on retention time comparison with commercial standard
oligosaccharides and mass spectrometry analysis, including 2-fucosyllactose (2FL),
3-fucosyllactose (3'FL), 3-sialyllactose (3/SL), lacto-N-tetraose (LNT), lacto-N-
neotetraose (LNnT), lacto-N-fucopentaose (LNFP1, LNFP2, and LNFP3), sialyl-
LNT (LSTb and LSTc), difucosyl-LNT (DFLNT), disialyllacto-N-tetraose
(DSLNT), fucosyl-lacto-N-hexaose (FLNH), difucosyl-lacto-N-hexaose (DFLNH),
fucosyl-disialyl-lacto-N-hexaose (FDSLNH), and disialyl-lacto-N-hexaose
(DSLNH). GlyTouCan IDs for each glycan are listed in Supplementary Table 2.

HMO measurements by HPLC were quantified using Chromeleon 7.24°.
Technicians were blinded to metadata associated with each sample. One sample
was excluded; the HPLC failed to quantify HMO in the day 1 sample collected from
subject L6, therefore, no data from this sample could be included. Samples were
analyzed in a random order to mitigate batch effects. In addition to absolute
concentration of each glycan g;, the proportion of each glycan per total glycan
concentration (sum of all integrated glycans) was calculated and expressed as
relative abundance (% of the total, g;/3g:). The presence of 2-FL defines secretor
status. Absolute abundance of HMO is determined by a well-characterized low-
noise method*>#4 using HPLC analysis#. Therefore, no technical replicates were
necessary.

HMO abundance profiles were treated similarly to the N-glycans. We identified
and quantified 26 glyco-motifs from 121 substructures. We compared glyco-motif
abundance and their abundance ratios directly to secretor status along with the log
of days postpartum.

Computing glycan substructure profiles from glycoprofiles. Three procedures
were used for pre-processing the studied glycoprofiles (Fig. 2a, b). First, glyco-
profiles are parsed into glycans with abundance. In each glycoprofile, the glycans
are manually drawn and exported with GlycoCT format using the GlyTouCan
Graphic Input tool?. GlycoCT formatted glycans are loaded into Python (version
3+) and initialized as glypy.glycan objects using the Glypy (version 0.12.1)%.
Assuming we have a glycoprofile i, the corresponding abundance of each glycan j in
glycoprofile i is represented by g;;- For example, the relative m/z peak in the mass
spectrum or the abundance value in an HPLC trace, is calculated relative to the
total abundance of glycans in this glycoprofile g;;/>g;.. Glycans with ambiguous
topologies are handled by assuming they belong to every possible structure with
equal probability, thereby creating all possible # structures, still, with g;;/n>g;
abundance of each. Second, glycans are annotated with glycan substructure
information, and this information is transformed into the substructure vector.
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Substructures within a glycan are exhaustively extracted by breaking down each
linkage or a combination of linkages of the studied glycan. Note that this method
cannot currently deal with cyclic glycans. All substructures extracted are merged
into a substructure set S. Substructures are sorted by the number of mono-
saccharides and duplicates are removed. Then, each glycan is matched to the
substructure set S, producing a binary glycan substructure presence (1) or
absence (0) vector, X Last, a substructure (abundance) vector is calculated as

P; = Xx;g; /2g representing the abundance of the substructures s in this gly-
coprofile, where P; = (s, ..., s,,;). Third, a substructure network is built based on
the substructure vectors. The substructure network is a directed acyclic graph
wherein each node denotes a glycan substructure. Given the substructure set S, the
root node starts from the monosaccharides or a defined root core structure, and a
child node is a substructure with only one monosaccharide added to its parent
node. We note that one child node might have multiple parent nodes and vice
versa. The child node depends on its parent node(s) since it cannot exist without
any parent node. The edges in the substructure network were annotated with
known biosynthetic rules for further analysis. Substructure networks were visua-
lized by networkx (version 2.1; https://networkx.org/). and cytoscape (version
3.8.2)%8,

Selecting glyco-motifs from the substructure network. A larger subset of the
substructure network is necessary to uniquely describe a more diverse set of gly-
coprofiles, while fewer substructures are needed to describe more similar glyco-
profiles sufficiently. Comparisons become more focused when only examining
these variable substructures. To simplify the substructure network, the parent/child
substructure pair that have the same abundance can be merged without any
information loss. As illustrated in Fig. 2d, a parent—child substructure pair with the
same abundance (solid arrow) can be merged. If they have the same abundance, we
can conclude that the addition of the specific monosaccharide is not perturbed
across all glycoprofiles, which means they carry the same information. Thus, the
parent node can be pruned without information loss. All remaining nodes, namely,
the glyco-motifs, are used to cluster the glycoprofiles.

After selecting the glyco-motifs (Fig. 2d), we use the “monosaccharides weight”
to track whose parent node is merged. All node weights are initialized as 1. When a
node is removed, the weight is equally divided and distributed to child nodes that
have the same abundance as the removed node. Because the method redistributes
weight from the root to leaves, descendant substructure nodes with differential
abundance (relative to their parent node(s)) will gain additional weight. The
weights W are used later for generating the representative substructures.

Substructure-based clustering of glycoprofiles. After generating the glyco-
motifs, the Pearson correlation and ‘complete’ distance are used to cluster the
glycoprofiles and substructures (Fig. 2e). The elbow method is used to determine
the cluster numbers.

To identify the representative glycan substructures, a set of glycan substructures
with weights W is first aligned (Fig. 2f). Then, we calculate the sum of
monosaccharide weights for each glycan substructure. The representative
substructure is thus defined as the glycan substructures with their summed
monosaccharide weights >51% (a heuristic and flexible parameter to facilitate user-
controlled clarity) of the total weight of glycan substructures. Last, the averaged
abundances of the representative substructures are generated. Differential
abundance of representative substructure can then be compared across
glycoprofiles.

Substructure cluster abundance comparison and network edge-based ratio
comparison. We use the representative substructures to summarize and analyze
the structural and quantitative changes across glycoprofiles. For the abundance of a
representative substructure in a glyco-motif cluster, we combine the substructure
abundance and the substructure monosaccharide weights to generate the weighted
average of substructure abundance. Since the abundance range of representative
substructures across different glycoprofiles is different, we re-centralized the
representative substructure abundance based on WT and scaled them with stan-
dard deviation. There are many representative substructures significantly deviating
from the WT’s abundance. Since the abundance distributions are not normally
distributed, we used a one-sided 1-sample Wilcoxon test to test if the abundance of
a representative substructure in a glycoprofile is significantly divergent. Effect size,

r, was calculated as JLN49' A Bonferroni correction (n = 16) was used to correct for

multiple testing, so p = 0.0031 is used as criteria, and effect sizes are all above 0.68.

For those network edges annotated with enzyme information, we further test if
an enzyme has the same efficacy in two glycoprofiles. Every edge has a parent/child
abundance ratio. All edges annotated with the same enzyme consist of an
abundance ratio distribution in one glycoprofile (Fig. 3c). The Wilcoxon test is
used to compare the ratio distribution for the same enzyme in two glycoprofiles.

To have a concise view of the representative substructure network, we further
generate a simplified network. The nodes from the substructure network are
merged based on the substructure clustering. The edges connecting the original
nodes are merged to connect the new nodes. Last, the derived representative
substructure network represents the merged nodes and the edges annotated by
enzymatic rules (Fig. 4b).

Phenotype-associated substructure detection. For revealing the phenotype-
associated substructures, we estimated the influence of secretor status on glycan
and glyco-motif abundance using a generalized estimating equation (GEE, R3.6:
geepack®®*1). GEE models account for resampling bias in longitudinal
measurements>?; other regression models, like generalized linear models, over-
estimate the sample size and power by ignoring this bias. Unlike mixed effect
models, which can account for resampling bias, GEE allows non-linear relations
between the outcome and covariates, while accounting for correlation among
repeated measurements from the same subject. Here we used GEE with an
exchangeable correlation structure (assuming the within-subject correlation
between two time-points is p). We log and z-score standardized each glycan and
glyco-motif measurement to stabilize the variance and equalize the range. We also
used the log of days postpartum (DPP) to linearize the relationship over time. The
Wald test was used to measure the significance of secretor status contribution. For
additional information and diagnostic statistics for specific regressions, see Sup-
plementary Table 3a, b. All regression results can be found in Supplementary
Fig. 10.

Product-substrate ratio as a proxy for flux and estimating flux-phenotype
associations. To further isolate glyco-motif-specific effects from biosynthetic
biases, we explored methods to control for the product-substrate relations. First, we
extract the relative abundance of parent—child pairs of glyco-motifs in the sub-
structure network; these are product-substrate relations like LNT and LSTb

(Fig. 5e). Glyco-motif abundance represents the total substructure synthesized;
therefore, when we examine the product-substrate ratio, we measure the total
amount of the substrate substructure converted to the product substructure in the
sample. Thus, the product-substrate ratio is a proxy for flux. Using logistic GEE
regression modeling, similar to the approach used for testing substructure-
phenotype associations, we can measure the influence of estimated flux between
two glycans on secretor status; here we predicted secretor status from the estimated
flux log(DPP). For additional information and diagnostic statistics, see Supple-
mentary Table 3c.

Glyco-motif abundance robustness and power analysis. Similar to those used in
Supplementary Fig. 9, GEE models were trained using either glyco-motif or whole
glycan relative abundance. To stabilize the variance, equalize the range, and make
the regressions comparable, we used a square root and z-score normalization on
each glycan and glyco-motif measurement. Glyco-motif or relative glycan abun-
dance was predicted from either DPP alone, secretor status alone, DPP + secretor
status, or DPP + secretor status + DPP:secretor. To avoid biasing the analysis with
misfit or uninformative models, models with small coefficients (|coef] < 0.5) or
non-normal abundance distributions (Shapiro-Wilks p < 0.001) were removed.
Model robustness measures including, coefficient magnitude (g1ycan-stats = 39,
Nmotif-stats = 86), standard error (nglycan—stats =39, Amotit-stats = 86), and marginal
R? (Mglycan-stats = 21, Mmotif-stats = 47) Were used to compare model performance.
Robustness measures from glycan-trained and glyco-motif-trained models were
compared using a one-sided Wilcoxon rank-sum test with continuity correction.
We validated these findings using a 10,000 iteration one-sided, two-sample boot-
strapping t-tests (Rv3.6:nonpar:boot.t.test); bootstrapping p-values were less than
or equal to Wilcoxon rank-sum p-values within 0.001. Finally, using the Rv3.6::
pwr:pwr.r.test v1.2.2 package, statistical power was predicted between n =5 and n
=200 for the median and interquartile range of effect sizes observed in glyco-
motif-trained and glycan-trained models.

Substructure decomposition of published IgG N-glycosylation to distinguish
known and unknown biosynthetic reactions. We re-analyized structural
N-glycan data from IgG (Benadetti, 2017)?8. IgG N-glycans were measured using
liquid chromatography coupled with electrospray mass spectrometry (LC-ESI-MS).
Pre-processing of these data was restricted to reformatting for input into
Glycompare-compatible abundance matrix and structure annotation. Glycoprofiles
were normalized to relative abundance. Substructure abundances and motif
extraction were performed using an N-glycan thereby focusing analysis on bio-
synthetic motifs.

Using the IgG N-glycan data, we estimated partial correlation®® between glycan
abundances or between motif abundances. Previously, glycan abundance partial
correlation was used to identify previously uncharacterized N-glycan biosynthetic
reactions?8. Here, we used motif abundance partial correlation and compared
predicted power. Edges (partial correlations between glycans or motifs) were
filtered for direct relations (structures differing by only one monosaccharide), split
into known (True), and unknown (False) reactions. Partial correlation distributions
were stratified by prior knowledge (True vs False), structure type used for partial
correlation (glycan vs motif), IgG isoform (1, 2, or 4), and reaction type (B4GALT
or ST6GALT1; manually annotated). A one-sided t-test was used to determine if
motif abundance calculated partial correlations were higher than those calculated
from glycan abundance in either previously known or unknown reactions.

Substructure decomposition of published mucin-type O-glycans to clarify
tumor-specific glycan epitopes. We re-analyzed structural mucin-type O-glycan
abundance®’. Mucin-type O-glycans were originally measured by liquid
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chromatography and mass spectrometry (LC-MS), structures were manually
annotated using empirical masses from Unicarb-DB24. Pre-processing of these data
was restricted to reformatting for input into Glycompare-compatible abundance
matrix and structure annotation. Formatted data were normalized using prob-
abilistic quotient normalization®%. Substructure abundances and motif extraction
were performed using a monosaccharide core for thereby focusing analysis on
epitope motifs.

Using the mucin-type O-glycan data, we examined both the original glycan
abundance data and the motif-level abundance decomposition. Glycan and motif
structure abundance was compared across cancer and non-cancer samples using
two-sample -tests; p-values were multiple-test corrected using false discovery
rate>.

Substructure decomposition of ganglioside glycolipids to compare abundance
across tissues. We re-anaylized structural ganglioside glycolipid abundance3®.
Published abundance was pooled (summation) within ceramide types, from mouse
eye, brain and blood. Glycosides abundance was originally measured by hydro-
philic interaction liquid chromatography stratified mass spectrometry (HILC-MS),
and HPLC with glycoside standards for structural identification. Pre-processing of
these data was restricted to reformatting for input into GlyCompare-compatible
abundance matrix and structure annotation. Formatted data were normalized using
probabilistic quotient normalization®*. Substructure abundances and motif
extraction were performed using a lactose core thereby focusing analysis on bio-
synthetic motifs.

We examined abundance from two gangliosides (GD3 and GM2) and their
corresponding lactose-based substructure abundance. Ceramide groupings include
more than 42 or fewer than 35 Carbons (C.4,, C.35), either 1 or 2 unsaturated
bonds (1 unsat., 2 unsat.), or groups of specific ceramides with X:Y carbons and
unsaturated bonds (e.g., 34:1, (36:14-38:1), or (40:14-40:2). Due to limited sample
size, trends rather than formal statistics were used to compare abundance.

Substructure decomposition of site-specific N-glycan compositions to enrich
correlation structure. We re-anaylized compositional site-specific N-glycan
abundance?2. Intact site-specific N-glycan composition was measured using
activated-ion electron transfer dissociation (AI-ETD), the log of localized spectra
count for each site-specific composition was used to represent abundance. Pre-
processing of these data was restricted to reformatting for input into a Gly-
Compare-compatible abundance matrix and structure annotation. Formatted data
were normalized using probabilistic quotient normalization®*. Substructure
abundances and motif extraction were performed using compositional mono-
saccharides thereby focusing analysis on epitope motifs.

Examining site-specific N-glycan compositional data from rat brain, we used a
slightly modified method to compute compositional substructure abundance from
compositional abundance. To calculate compositional substructure, we sum over
larger and subsuming structures in a compositional network. Consider the
compositional abundance of a structure: HexNac(p)Hex(q)Fuc(r). Instead of
abundance of HexNAc = p, Hex = q, and Fuc =r, we examine the compositional
abundance for all measurements where HexNAc> = p, Hex> = q, and Fuc> =r.
The network structure can be constrained to provide additional insight (e.g.,
Glyconnect Compozitor>®), currently, the aggregation criteria remain simple. In
analyzing these data, we explored trends in correlation between observed
compositional vs compositional-substructure abundance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The EPO N-glycan, IgG, glycolipid, mucin, and site-specific N-glycan abundance data
reformatted and re-analyized for this study as well as the HMO abundance data
generated in this study have been deposited in Zenodo at https://doi.org/10.5281/
zenodo.5072568. The data supporting this work is made available under a CC-BY 4.0
licence. Source data are provided with this paper.

Code availability

We provide the Glycompare python library (v1.1.3) described in this work and example
code used to perform analysis and generate figures are available through Github (https://
github.com/LewisLabUCSD/GlyCompare/tree/v1.1.3) and Zenodo (https://doi.org/
10.5281/zenodo.5072568). In addition to the Glycompare python library, we provide
jupyter notebooks to generate our figures and analysis. Finally, a dockerized environment
that supports Glycompare and all EPO and HMO analyses in the manuscript is available
at https://doi.org/10.24433/C0.9148600.v1. The glycompare python package and
examples are made available under an MIT licence.
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