© pLos one

OPEN 8 ACCESS Freely available online

Type 2 Diabetes Is Associated with Altered NF-kB DNA
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Abstract

Systemic inflammation is often associated with impaired glucose metabolism. We therefore studied the activation of
inflammatory pathway intermediates that interfere with glucose uptake during systemic inflammation by applying a
standardised inflammatory stimulus in vivo. After ethical approval, informed consent and a thorough physical examination,
10 patients with type 2 diabetes and 10 participants with normal glucose tolerance (NGT) were given an intravenous bolus
of E. coli lipopolysaccharide (LPS) of 0.3 ng/kg. Skeletal muscle biopsies and plasma were obtained at baseline and two, four
and six hours after LPS. Nuclear factor (NF)-kB p65 DNA binding activity measured by ELISA, tumor necrosis factor-o. and
interleukin-6 mRNA expression analysed by real time reverse transcription polymerase chain reaction, and abundance of
inhibitor of NF-kB (IkB)a, phosphorylated c-Jun-N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), and acetyl-
CoA carboxylase measured by Western blotting were detected in muscle biopsy samples. Relative to subjects with NGT,
patients with type 2 diabetes exhibited a more pronounced increase in NF-kB binding activity and JNK phosphorylation
after LPS, whereas skeletal muscle cytokine mRNA expression did not differ significantly between groups. AMPK
phosphorylation increased in volunteers with NGT, but not in those with diabetes. The present findings indicate that
pathways regulating glucose uptake in skeletal muscle may be involved in the development of inflammation-associated
hyperglycemia. Patients with type 2 diabetes exhibit changes in these pathways, which may ultimately render such patients
more prone to develop dysregulated glucose disposal in the context of systemic inflammation.
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Introduction [5]. Phosphorylated JNK (p-JNK) induces serine phosphorylation of

insulin receptor substrate (IRS)-1, which inhibits insulin signal

Type 2 diabetes is associated with low-grade systemic inflamma-
tion [1-4], and increased levels of circulating proinflammatory
mediators, e.g. tumour necrosis factor-alpha (TNFo) and gut-derived
lipopolysaccharide (LPS), may play a role in the pathogenesis of
insulin resistance, the hallmark of type 2 diabetes [5-8]. In diabetic
patients as well as in non-diabetic persons, the binding of TNFa, LPS
or other pro-inflammatory ligands to their membrane-bound
receptors, activates intracellular signaling pathways that facilitate
the dissociation of nuclear factor (NI)-kB from inhibitor of NF-xB
(IxB) proteins [9,10]. NF-xB subsequently enhances the transcrip-
tion of a vast array of genes encoding inflammatory mediators, e.g.
TNFa and interleukin (IL)-6 [11-13]. Apart from inducing further
NT-xB activity, the concurrent increase in circulating TNFo may
mediate the phosphorylation and activation of the intracellular
signaling molecule c-Jun-N-terminal kinase (JNK) in skeletal muscle
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transduction [14-17]. Thus, excessive and inappropriate activation
of NF-xB and JNK in skeletal muscle may lead to insulin resistance.
Accordingly, the NF-kB pathway and JNK activities have been
found to be increased in skeletal muscle of patients with type 2
diabetes [18-20].

Systemic inflammation may also affect non-insulin dependent
pathways regulating glucose disposal. AMP-activated protein
kinase (AMPK) is a fuel-sensing enzyme present in all mammalian
cells, which upon phosphorylation and subsequent activation
regulates glucose uptake in skeletal muscle by increasing GLUT4
translocation via signaling pathways that are distinct from those of
insulin  [21,22]. AMPK may link non-insulin dependently
regulated glucose disposal in skeletal muscle to inflammatory
signaling, since TINFa seems to inhibit the activation of AMPK
[23]. However, the reports on AMPK activity in the skeletal
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muscle in type 2 diabetes have so far been ambiguous [24-26].
Although it is well known that circulating proinflammatory
mediators induce insulin resistance in skeletal muscle [5], it is
presently unknown how a standardized inflammatory stimulus
affects the activity of NF-xB, JNK and AMPK in skeletal muscle of
diabetic patients. Aberrations in the inflammation-induced respons-
es of these central intermediates may potentially contribute to the
disturbances in glucose disposal observed in diabetic patients.

In order to perform a comparative investigation of intra-
muscular changes in inflammatory intermediates during standard-
ised conditions, we subjected patients with type 2 diabetes and
subjects with normal glucose tolerance to the human endotoxin
model [27]. We hypothesised that the inflammatory stimulus, an
intravenous bolus injection of Escherichia coli LPS, would increase
the activity of intermediates associated with insulin resistance, i.e.
NF-kB and p-JNK, more profoundly in patients with type 2
diabetes, while the phosphorylation of AMPK was expected to be
diminished.

Materials and Methods

Ethics statement

The Ethical Committee of Copenhagen and Frederiksberg
Municipalities approved the study protocol (KI* 01-320695). This
study was conducted according to the guidelines laid down in the
Declaration of Helsinki, written informed consent was obtained
from all subjects, and the trial was registered at www.clinicaltrials.
gov (NCT 00412906). The protocol, flowchart and supporting
CONSORT checklist for this trial are available as supporting
information; see Checklist S1, Flowchart S1 and Protocol SI.

Subjects

The study was carried out between November 2006 and July
2009. Ten subjects with normal glucose tolerance (NGT) and 10
age-matched patients with type 2 diabetes were selected from a
larger cohort of diabetic or non-diabetic males, who had all been
subjected to LPS injection [28]. The inclusion age was from 18 to 80
years. Type 2 diabetes was defined by the WHO classification
criteria [29], in which glucose tolerance was determined by an oral
glucose tolerance test (OGTT). Exclusion criteria were symptoms or
a medical history of cardiovascular, pulmonary, renal or autoim-
mune diseases, as well as treatment with insulin, systemic anti-
inflammatory drugs, anti-coagulants, ACE-inhibitors or angiotensin
II-antagonists. Of the 10 patients with diabetes, six were medically
treated for their diabetes. Three received treatment with metformin,
two with sulfonylurea, one with thiazoledinediones, and three with
statins, either as single-drug or combination therapy. All-diabetes-
related medications, including statins, were withheld for seven days
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prior to the study. No volunteer experienced fever or any symptoms
of infection during the fortnight preceding the study.

Endotoxin injection. The endotoxin model has been
described previously [30]. After an overnight fast, volunteers
reported to the Intensive Care Unit, where they were bed-rested
and remained fasting for the entire study day. Intravenous
catheters were inserted into cubital veins bilaterally and, after
obtaining baseline skeletal muscle biopsies and blood samples, an
intravenous bolus injection of E. coli LPS of 0.3 ng/kg was
administered. Additional blood samples and biopsies were
obtained two, four and six hours after the LPS injection. Blood
samples were spun at 3,500%g for plasma isolation. Plasma was
stored at —80°C. until the later measurement of TNFa and IL-6.
The study design is schematically presented in Figure 1.

Biopsies. After anesthetising the skin with 2 ml Lidocain 2%,
~100 mg of skeletal muscle tissue was extracted with a Bergstrém
biopsy needle under sterile conditions. The tissue samples were
rinsed with sterile saline, and any visible vasculature was removed.
The samples were then immediately frozen in liquid nitrogen and
stored at —80°C: until analysis. Skeletal muscle tissue from the 10 +
10 subjects was analysed en bloc for NF-kB p65 DNA binding
activity (ELISA), phosphorylated and total JNK, phosphorylated
AMPK (p-AMPK) and total AMPK (Western blot), as well as
TNFo and IL-6 mRNA expression (PCR). In order to confirm our
findings on NF-xB binding activity, biopsies were analysed for the
abundance of the primary inhibitor of NF-kB (IxB)a (Western
blot), while the phosphorylated and the total amount of acetyl-
CoA carboxylase (ACC), a downstream target molecule of AMPK
was measured as a control of our AMPK analyses (Western blot).

Plasma analyses. Plasma levels of TNFa and IL-6 were
determined in duplicate, using ELISA (R&D Systems, Minneapolis,
MN, USA). The effect of inter-assay variation was minimised by
performing the time-consecutive measurements of each subject as
well as analysing matched pairs of patients with type 2 diabetes and
subjects with NGT on the same ELISA plates. Intra-assay variation
was evaluated by the coeflicient of variation (CV) of the duplicate
measurements. The duplicate TNFo and IL-6 measurements had a
CV above 20% in 1% and 2.3% of the measurements, respectively,
and were therefore excluded from the subsequent analyses. Of the
remaining measurements, the mean intra-assay variation was 4.5%
in the TNFo measurements and 5.4% in the IL-6 measurements.

RNA isolation, reverse transcription and real-time
polymerase (PCR). Total RNA was
extracted from the muscle biopsy by means of the following
procedure: Skeletal muscle tissue was homogenised in 1 ml Trizol
Reagent (Invitrogen, Carlsbad, CA, USA) for 15 seconds using a
Qiagen Tissuelyser (Qiagen Nordic, Copenhagen, Denmark).
Chloroform was then added and the phases separated by

chain reaction
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Figure 1. Schematic overview of the study design. Fig. 1 10 patients with diabetes and 10 volunteers with NGT were included in the study.
After obtaining skeletal muscle biopsies and plasma samples at baseline (0 h), subjects received an intravenous bolus injection of LPS, 0.3 ng/kg.
Muscle tissues biopsies and plasma samples were also obtained at 2, 4 and 6 hours after LPS. NGT: Normal glucose tolerance, LPS: lipopolysaccharide.

doi:10.1371/journal.pone.0023999.g001
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centrifugation. The RNA-containing aqueous phase was
transferred to a fresh tube and incubated with isopropanol at
room temperature for 10 minutes for the precipitation of RNA.
After another centrifugation, the RNA pellet was washed in 75%
ethanol and finally dissolved in 15 ul Ultrapure DNAse/RNAse-
Free Distilled Water (Invitrogen, Carlsbad, CA, USA).

The RNA concentration was determined spectrophotometri-
cally on a NanoDrop 1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, US) and 5 ug total RNA was reversed-
transcribed in a total volume of 200 ul, using the High Capacity
cDNA Reverse Transcription kit (Applied Biosystems, Branch-
burg, NJ, US) and run on a GcneAmp® PCR System 9700
(Applied Biosystems, Branchburg, NJ, US). Real-time PCR was
performed using an ABI 7900 Sequence Detection System
(Applied Biosystems, Branchburg, NJ, US). TNFo and IL-6
cDNA were amplified using molecular primer/probe assays with
the TagMan® Universal PCR Master Mix (Applied Biosystems,
Branchburg, NJ, US). Primer and probe sequences were as
follows: TNFo: forward 5'- GGAGAAGGGTGACCGACTCA-
3’; reverse: 5'- TGCCCAGACTCGGCAAAG-3'; Probe: FAM-
5'- CGCTGAGATCAATCGGCCCGACTA-3'-TAMRA; IL-6:
forward 5- CCAGGAGCCCAGCTATGAAC-3'; reverse: 5'-
CCCAGGGAGAAGGCAACTG-3’; Probe: FAM-5'-CCTTC-
TCCACAAGCGCCTTCGGT-3'-TAMRA. Primers and probe
for 18S ribosomal RNA were pre-developed Tagman assay from
Applied Biosystems, Branchburg, NJ, US (catalog # 4310893E).
Primer pair efficiencies were determined and primer/probe
concentrations were optimised in the validation of each primer
set. The threshold cycle (Ct) value for 18S was subtracted from the
Ct value for the target gene (obtaining ACt) to adjust for any
variations in the cDNA synthesis, and the 97 AACT method [31]
was used to calculate the relative changes in mRINA abundance.

Skeletal muscle lysate. Skeletal muscle lysate was prepared
by mixing the muscle tissue with cell lysis buffer A (containing
30 mM Hepes pH 7.4, 2.5 mM EGTA, 3 mM EDTA, 20 mM
KCl, 40 mM B-glycerol phosphate, 40 mM NaF, 4 mM NaPPj,
1 mM Na3sVOy, 32% Glycerol, 0.1% Ipegal CA-630, containing
Phosphatase Inhibitor Cocktail 1 and 2 (Sigma-Aldrich, St. Louis
MO, USA) and a complete protease inhibitor cocktail (Roche,
Basel, Switzerland)), followed by homogenisation in precooled
racks using a tissue lyser (Qiagen, Valencia, CA, USA) for 1 min at
30 Hz and 5 min incubation on ice. Homogenisation and
incubation were repeated two or three times to obtain the
required degree of homogenisation. Homogenates were then
centrifuged at 16,000%g at 4°C for 10 min. The supernatant was
transferred to a new tube and an equal amount of cell lysis buffer B
(similar to buffer A with the following exceptions: 70 mM KCI,
20 mM pB-glycerol phosphate, 20 mM NaF, 2 mM NaPPi, 0%
glycerol) was added. The resulting protein lysates were centrifuged
at 16,000*g and 4°C for 10 min and the supernatant transferred to
a new tube. Protein concentrations were measured using the Bio-
Rad DC kit (Bio-Rad, Hercules, CA, USA) using BSA as standard.
All measurements were done in triplicate.

Western blot. Aliquots of lysate from skeletal muscle
corresponding to 25 pg of total protein were electrophoresed in
4-12% polyacrylamide gradient gels and then transferred onto
polyvinylidene fluoride (PVDF) membranes. The membranes were
blocked with 5% milk in Tris-buffered saline (pH 7.5) containing
0.05% Tween 20 (IBST) for 1 h at room temperature. The blots
were first incubated overnight with primary antibody, including
anti-p-AMPKa-Thr'”?, anti-AMPKa, anti-p-ACC-ser’®, anti-p-
JNK (recognizing phosphorylation of the 46- and 54-kDa isoforms
of JNK at Thr'®® and Tyr'®), anti-JNK, anti-IkBa (Cell
Signaling, Danvers, MA, USA) or anti-ACCf (Santa Cruz
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Biotechnology, Santa Cruz, CA, USA). Primary antibodies were
diluted 1:1,000 in TBST containing 5% BSA. The blots were then
incubated in TBST containing 5% nonfat dry milk and the
appropriate secondary antibody conjugated to horseradish
peroxidase at a 1:5,000 dilution. Each membrane was afterwards
stained with Reactive brown in order to ensure sufficient blotting,
even protein loading and to achieve a measure of total protein
content in each lane.

In order to minimize bias from inter-assay variation, gels
including only baseline samples were run for the comparison of
baseline values of diabetic patients and healthy controls.
Furthermore, time consecutive samples (0, 2, 4, 6 h post LPS) of
each subject were run on the same gel, and each gel included
samples from participants with NGT as well as from patients with
diabetes. Bands were detected using Supersignal West Femto
(Pierce, Rockford, IL, USA) and quantified using a CCD image
sensor (ChemiDocXRS, Bio-Rad) and software (Quantity One,
Bio-Rad). The two bands of p-JNK / JNK (46 and 54 kDA) were
quantified together.

All intensities of IkBa, p-JNK, total JNK, p-AMPKa, total
AMPKao, p-ACC and total ACCB were divided by those from the
Reactive brown staining of the corresponding membranes.
Abundance of IkBat and p-JNK in the time-consecutive measure-
ments are expressed as arbitrary units to Reactive brown. Baseline
p-JNK and all measurements of p-AMPK and p-ACC are
expressed as arbitrary units to the total JNK, AMPK and ACC,
respectively. Fold increases after LPS was calculated with each
subject serving as his own control.

NF-kB p65 DNA-binding activity. DNA-binding activity of
the p65 NF-xB subunit was measured in protein lysates using an
enzyme-linked immunosorbent assay (ELISA) kit (Active Motif,
Rixensart, Belgium) according to the manufacturer’s instructions.
Activity at baseline is expressed as absorbance at 490 nm; fold
increases after LPS was calculated with every subject serving as his
own control.

Statistical analysis. Subject characteristics (age, body mass
index (BMI), fasting glucose, fasting insulin, HbAlc, NF-kB DNA
binding activity, and IxBo abundance, p-JNK, p-AMPK and p-
ACC) are presented as mean and standard deviation (SD). Plasma
cytokine concentrations logarithmically
transformed prior to statistical analysis and the estimated mean
and 95% confidence intervals (95% CI) transformed back to the
original scale, providing geometric means for the presentation of
results. TNFo and IL-6 mRINA expression at baseline is given as
the ratio between ACt of patients with diabetes to that of
volunteers with NGT.

Between-group comparisons (patients with diabetes vs. partic-
ipants with NGT) at baseline were performed with a one-way
ANOVA. Within-subject and between-group variations over time
were analysed with two-way ANOVAs for longitudinal measure-
ments (SAS 9.1 proc mixed), investigating the effect of time (hours
post LPS), the effect of diabetes, and the effect of time in
interaction with diabetes on the outcome variable. Models were
fitted by backward regression, and goodness-of-fit was assessed by
evaluating the distribution of the residuals. If the ANOVA
indicated a significant effect of time, Dunnett-adjusted post-hoc
t-tests were subsequently performed to identify significant
differences from baseline. In case of missing data, we performed
the statistical analyses without the measurements from the specific
time points. The number of missing data points were minimal and
restricted to a few sporadic Western blot analyses and ELISA
analyses.

P<<0.05 was considered to indicate statistical significance. SAS
statistical software 9.1 was used for all statistical analyses.

measurements were
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Results

The baseline characteristics and plasma cytokine concentrations
of a larger cohort have been reported as part of a separate
manuscript [28].

At baseline, patients with type 2 diabetes demonstrated
increased plasma glucose and HbAlc when compared to subjects
with NGT, while groups were similar with regard to age and BMI,
fasting plasma insulin, and NF-kB p65 DNA binding activity,
IxkBa abundance, p-AMPK, p-ACC, and TNFa and IL-6 mRNA
expression in skeletal muscle (Table 1). Patients with type 2
diabetes exhibited a trend towards higher p-JNK at baseline
(P=0.09).

Compared to baseline, LPS administration induced an increase
in NF-xB p65 DNA binding activity, JNK phosphorylation and
expression of TNFa and IL-6 mRNA in skeletal muscle (Figure 2).
The NF-kB DNA binding activity was overall higher in type 2
diabetic patients when compared to NGT subjects (ANOVA, effect
of diabetes: P<<0.05). We expected a concurrent reduction in the
abundance of the primary inhibitor of NF-xB, IxBa, as this would
indicate a degradation of the IxB subunits subsequent to the
separation from NF-xB. In contrast, levels of IxBa were slightly, but
highly significantly increased in patients with diabetes compared to
subjects with NGT (ANOVA, effect of diabetes: P<<0.0001).
Increases in p-JNK were more pronounced among patients with
diabetes (ANOVA, effect of interaction between diabetes and time:
P<<0.05), while the expression of TNFo and IL-6 mRNA did not
differ significantly between diabetic and non-diabetic volunteers. p-
AMPK increased in subjects with NGT, while this response was
blunted in diabetic patients (ANOVA, effect of interaction between
diabetes and time: P<<0.05) (Figure 3). However, this difference
was not reflected in the phosphorylation of ACC, a downstream
target molecule of AMPK.

LPS induced a systemic inflammatory response with increases in
plasma TNFo and IL-6 in both diabetic and non-diabetic

LPS Affects Signaling Pathways in Skeletal Muscle

volunteers (Table 2). There was a trend towards lower plasma
TNFa response during endotoxemia in patients with diabetes
(ANOVA, effect of diabetes: P=0.07), while the two groups did
not differ with regard to the IL-6 response.

Discussion

The present study demonstrates that skeletal muscle tissue of
patients with type 2 diabetes exhibits a different response to LPS
than subjects with normal glucose tolerance with: 1) increased NF-
kB p65 DNA binding activity, 2) increased JNK phosphorylation,
and 3) blunted AMPK phosphorylation.

The association between systemic inflammation and aberrations
in glucose metabolism in type 2 diabetes, is well described in the
literature [3,32-34]. The increased NF-xB p65 DNA binding
activity and increased phosphorylation of JNK demonstrated in
diabetic skeletal muscle in the present study align with previous
studies, which functionally linked such changes to skeletal muscle
insulin resistance [16-19]. Although the underlying mechanisms
that prompted the accentuated LPS-induced changes in NF-xB
and p-JNK in the diabetic patients in this study remain obscure,
putative stimuli for the NF-kB and JNK pathways, such as
elevated free fatty acids (FFA), advanced glycation end products,
reactive oxygen species and endoplasmatic reticulum stress
[19,35-37], are frequently present in diabetic patients and may
act in synergy with LPS to compound the effects on NF-xB and
JNK activity. Previous studies demonstrate that both mRNA
expression and protein content of the membrane-bound receptor
of LPS, Toll-like receptor 4 (TLR4) [19], as well as NI-xB activity
are elevated in unstimulated conditions in skeletal muscle of
patients with type 2 diabetes. Although we did not detect higher
levels of NF-xkB binding activity at baseline in our diabetic
volunteers, we cannot exclude the possibility that increased TLR4
signaling could account for the fold increases in NF-kB activity
and JNK after endotoxin administration as observed in our study.

@ PLoS ONE | www.plosone.org

Table 1. Baseline characteristics.
NGT (n=10) Type 2 diabetes (n=10) P-value
Mean (SD) Range Mean (5D) Range
Age (years) 64 (11) (39-78) 54 (15) (32-73) NS
BMI (kg/m?) 276 (5.2) (22.9-38.8) 285 (8.3) (22.3-48.3) NS
Fasting glucose (mmol/l) 5.5(0.8) (4.7-6.3) 12.1 (4.1) (7.1-23.1) 0.002
HbA1c (mmol/l) 5.4 (0.4) (4.6-5.8) 8.6 (3.0) (6.0-13.4) 0.01
Fasting insulin (pmol/l) 56 (23) (29-105) 70 (26) (33-125) NS
NF-kB p65 DNA-binding activity (absorbance) 0.23 (0.12) 0.17 (0.07) NS
IkBa (arbitrary units) 1.5(1.2) 2.0 (1.3) NS
p-JNK (arbitrary units) 0.3 (0.1) 0.4 (0.2) NS *
p-AMPK (arbitrary units) 1.1 (0.4) 0.9 (0.2) NS
p-ACC (arbitrary units) 0.3 (0.14) 0.2 (0.1) NS
Mean (5D) P-value
TNFa mRNA content (Ratio, Diabetes vs. NGT) 1.0 (0.5) NS
IL-6 mRNA content (Ratio, Diabetes vs. NGT) 1.2 (0.7) NS
Baseline characteristics of 10 patients with type 2 diabetes and 10 volunteers with NGT are presented as mean (age, BMI, HbA1c, HOMA2-IR, NF-kB activity) and
standard deviation. Age, BM|, fasting glucose, HbA1c and fasting insulin are also represented with ranges. lkBa, p-JNK, p-AMPK and p-ACC are expressed as mean
arbitrary units relative to Reactive brown (IkBa), total JNK, total AMPK, or total ACC, respectively.
*P=0.09. SD: standard deviation, NS: Non-significant, BMI: Body mass index, TNFo: tumour necrosis factor-alpha, IL-6: interleukin-6, NF-«kB: nuclear factor kB, IkBo:
inhibitor of NF-«xB o, p-JNK: phosphorylated c-Jun-N-terminal kinase, p-AMPK: phosphorylated AMP-activated protein kinase, p-ACC: phosphorylated acetyl-CoA
carboxylase, NGT: normal glucose tolerance.
doi:10.1371/journal.pone.0023999.t001
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Figure 2. Fold increases in NF-kB, IkBa, p-JNK, TNFo mRNA and IL-6 mRNA after LPS. Fig. 2 Fold increases (mean and 95% confidence
interval) from baseline following an intravenous injection of LPS in 10 patients with diabetes (ll) and 10 volunteers with normal glucose tolerance
(0). * P<0.05 compared to baseline. LPS: lipopolysaccharide, NF-kB: nuclear factor kB, IxBa: inhibitor of NF-kB o, p-JNK: phosphorylated c-Jun-N-

terminal kinase, TNFo: tumour necrosis factor-alpha, IL-6: interleukin-6.
doi:10.1371/journal.pone.0023999.9002

The modest but significant LPS-induced increases in NF-xB
activity and p-JNK among the normal glucose tolerant volunteers
suggest that these pathways may also be involved in inflammation-
associated insulin resistance, even in the absence of diabetes, for
example in critical illness and sepsis.

Surprisingly, we detected an apparent temporal inconsistency
between the measured peak values of the NI-kB activity and
TNFa expression. According to the ANOVA, LPS-exposure
elicited an overall time-dependent change both in NF-kB binding

@ PLoS ONE | www.plosone.org

activity and in cytokine expression. However, TNFo expression
appears to peak prior to the NF-xB activity (Figure 2). This is
somewhat surprising, since NF-xB is an upstream activator of
TNFo upon LPS-exposure. Alternative pathways that are
independent of NF-kB may induce the early upregulation of
TNFo expression. Apart from JNK, these pathways may involve
LPS-induced activation of skeletal muscle MAP-kinases, such as
p38 and ERK [38]. It is also puzzling that NF-kB activity is
increased in patients with type 2 diabetes, while no significant
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Figure 3. Fold increases in p-AMPK and p-ACC after LPS. Fig. 3
Fold increases (mean and 95% confidence interval) from baseline
following an intravenous injection of LPS in 10 patients with diabetes
(M) and 10 volunteers with NGT ([J). LPS: lipopolysaccharide, NGT:
normal glucose tolerance, p-AMPK: phosphorylated AMP-activated
protein kinase, p-ACC: phosphorylated acetyl CoA carboxylase.
doi:10.1371/journal.pone.0023999.g003

overall differences in cytokine mRNA expression were detected
between groups. This discrepancy may be explained by tolerance
phenomena [39] or epigenetic changes [40,41]; however the
present study design did not allow us to investigate these
mechanisms further. Finally, we cannot exclude the possibility

LPS Affects Signaling Pathways in Skeletal Muscle

that the variability associated with human studies and the
relatively small sample sizes have affected the results.

The findings of a LPS-induced increase in NF-xB p65 DNA
binding activity could not be confirmed by an accompanying
decrease in the abundance of its primary inhibitor, IxkBe. In vitro
stimulation of fibroblasts with TNFa induces complex oscillations
in IxBa levels with decreases and increases that vary within
intervals as short as 30 minutes [9]. It is therefore likely that the
degradation of IxkBoat was not detected due to the longer time span
in between our samples being obtained, and that the nadir of IxBo
abundance occurred between two measurements. Considering the
previously detected fluctuations of IxBal, skeletal muscle biopsies
should ideally have been obtained at intervals as short as 15
minutes; however, this would neither have been ethically nor
practically possible.

Although skeletal muscle p-AMPK in volunteers with NGT and
diabetes was comparable at baseline, the LPS-induced p-AMPK
response was blunted in diabetic skeletal muscle. Previous studies
have provided no clear picture of how diabetes affects skeletal
muscle AMPK activity. Investigations during resting conditions
have revealed conflicting results [24,42,43]. During exercise,
obesity rather than diabetes seems to impact exercise-induced
AMPK activity [44]. Furthermore, age but not diabetes was found
to influence AMPK activation upon administration of AICAR, a
pharmacological activator of AMPK, to diabetic and non-diabetic
volunteers [45]. The two groups in the present study were
comparable with regard to age and BMI; hence, the blunted LPS-
induced p-AMPK response in diabetic skeletal muscle cannot be
attributed to weight or age differences, but is likely attributable to
additional factors, such as chronically elevated plasma glucose in
diabetic patients, which may inhibit AMPK activation in a similar
manner to what is observed during exercise [46].

Our findings in normal skeletal muscle are somewhat in contrast
to a previous study by Fredriksson et al [26], in which an LPS
injection at a dose of 4 ng/kg neither affected total AMPK or p-
AMPK. This discrepancy is likely explained by differences in study
designs, since only young and lean males with NG'T were included
in the previous study. Furthermore, AMPK phosphorylation is
inhibited by TNFo [23], at least in non-diabetic skeletal muscle.
The absent changes in p-AMPK in the study by Frederiksson et al
may therefore have been caused by the immense increase in
plasma TNFa that occur when LPS is administered at 4 ng/kg
[47]; this contrasts to the relatively moderate TNFo increases (at
20-25 fold) that were observed after a bolus injection of 0.3 ng/kg
in the present study.

Table 2. Plasma cytokines, glucose and free fatty acids before and after LPS administration.

Hours post LPS injection

0-h 2-h 4-h 6-h
TNFa (pg/ml) Type 2 diabetes 1.0 (0.8-1.3) 17.7 * (13.6-22.9) 7.0 * (54-9.0) 3.2 % (24-4.7)
NGT 1.3 (1.0-1.8) 245 * (18.4-32.8) 89 * (6.7-11.9) 3.8 * (2.8-5.1)
IL-6 (pg/ml) Type 2 diabetes 1.7 (1.2-2.5) 55.4 * (38.4-80.0) 23.5 * (16.5-33.6) 5.9 * (4.1-8.6)
NGT 1.6 (1.1-2.2) 50.0 * (34.7-73.0) 20.0 * (13.8-28.8) 4.8 * (3.3-7.0)

doi:10.1371/journal.pone.0023999.t002
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Plasma cytokines (geometric mean and 95% confidence interval) following an intravenous injection of LPS in 10 patients with diabetes and 10 volunteers with normal
glucose tolerance. Statistical analyses and comparison were performed on the log-transformed measured concentrations, and the predicted means and 95% Cl derived
from the ANOVAs were then transformed back to the original scale for presentation. ¥ P=0.07 (effect of diabetes, two-way ANOVA).

*P<0.05 (compared to baseline measurement, Dunnett-adjusted post-hoc t-tests). No differences were detected between groups at individual time-points, LPS:
lipopolysaccharide, TNFo: tumor necrosis factor-alpha, NGT: Normal glucose tolerance, IL-6: Interleukin 6.
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It is surprising that the increases in AMPK phosphorylation
were not accompanied by corresponding changes in the
downstream target of AMPK, ACC. The lack of ACC
phosphorylation may be due to changes in phosphorylation that
occur between sampling time points. Corresponding changes in p-
ACC would have increased the validity of the detected changes in
p-AMPK among the normal glucose tolerant volunteers, and
consequently the AMPK findings must be interpreted with
caution.

Having studied the specified intermediates NF-xB, IkBa,
TNFa, IL-6, JNK, AMPK and ACC, it is noteworthy that the
study does not provide a complete picture of the connection
between signaling pathways promoting inflammation and those
regulating insulin sensitivity in the skeletal muscle tissue of type 2
diabetic patients. Investigating other targets with central placements
in the insulin signaling cascade, e.g. insulin receptor substrate (IRS)-
1 and Akt, would possibly provide additional important information
in clarifying these connections. Unfortunately, the present study did
not provide biopsy material enough for such analyses and future
studies will have to address these topics.

In conclusion, we have demonstrated that subjects with NGT
and patients with type 2 diabetes responded differently to the
administration of LPS with regard to NF-kB p65 DNA binding
activity, JNK phosphorylation and AMPK phosphorylation in
skeletal muscle. The present findings provide evidence for an
enhanced response of the NF-kB and JNK pathways in diabetic
skeletal muscle upon an inflammatory insult; both may contribute
to inflammation-associated insulin resistance. Additionally, pa-
tients with type 2 diabetes appear not to mount the same increases
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