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Abstract: We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli iso-
lated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562
Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was
significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poul-
try and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid
(53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and
53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-
PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase
(ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was signif-
icantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers
and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials.
We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and
quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and
5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of
resistance render this portfolio of antibiotics ineffective for their intended use.

Keywords: poultry; domestic pigs; antibiotics; antimicrobial resistance; Msimbazi basin; farmers;
Enterobacteriaceae

1. Introduction

Antimicrobial resistance (AMR) is a complex global matter, which requires concerted
efforts to curb its serious consequences [1]. Globally, it is estimated that 10 million peo-
ple will die annually by 2050 if no appropriate measures are taken [2]. It is projected,
by that time, that AMR will be the leading cause of death worldwide [3]. This has
prompted research on natural products such as ascidians that have shown broad an-
timicrobial (antibacterial, antifungal, and antiviral) activity [4]. The emergence and spread
of AMR genes have been largely associated with human activities such as inappropriate
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use of antimicrobials in human healthcare, crop and animal farming, and weak infection
prevention and control practices/biosecurity in both human and animal healthcare facil-
ities [5]. Globally, in 2014, the consumption of antibiotics for human use was estimated
to be 70 billion standard units/year, while for livestock, the amount was approximately
63,151 tons/year [6]. It is predicted that by 2025, this amount will increase by 30% and
67% for humans and animals, respectively [7]. Global trends in sales of antimicrobials for
animal production show an 11.5% rise by 2030, mainly due to increased demand in animal
proteins [8]. Other studies have estimated that 73% of all antimicrobials sold in the world
are used in animal production [9].

AMR in humans has been associated with high morbidity and mortality rates, espe-
cially in low-income countries, due to an inability to detect resistance and limited treatment
options [10–12]. In Tanzania, infections with AMR and multidrug-resistant (MDR) bacte-
ria, especially extended-spectrum beta lactamase (ESBL) and carbapenemase producers,
have been associated with increased morbidity and mortality [13–15]. Some of the stud-
ies conducted in the country have associated AMR with inappropriate prescriptions and
self-medication [16,17], and often antibiotics are dispensed without a prescription [18].
In animals, AMR, which is largely due to intensive farming associated with over-use of
antimicrobial agents, has been shown to contribute to reduced productivity and economic
crisis, as well as spreading resistance organisms to humans and the environment and
causing infections that are hard to treat [19,20].

In Tanzania, the demand for short-cycle animal stocks is expected to increase sharply
within a short period. For example, pork consumption has been projected to increase
from 42.7 thousand to 170 thousand metric tons from 2017 to 2030 [21]. Likewise, esti-
mates show that annual chicken meat production will increase from 22,000 tons in 2017 to
37,200 tons in 2022 [21]. This increased demand has led to intensified farming systems and
increased use of antimicrobials, including antibiotics [22,23]. In a recent study conducted
among poultry and pig farmers in the Msimbazi River basin, we found high usage of
veterinary antimicrobials mainly for prophylaxis (87.6%) compared to therapy (80.5%) [24].
Unfortunately, regulation of antibiotic use in animal food production in Tanzania faces
several challenges such as weak regulation in the use of antimicrobials, weak surveillance
systems, the tendency for animal owners to stock drugs, engaging unskilled people to treat
animals, and a high degree of drug abuse by livestock keepers [25–27]. Not surprisingly,
antibiotic-resistant bacteria have been reported in about three quarters of food animals,
mainly in rural and suburban areas [28–31]. Food animals carrying AMR organisms can
affect human health [32] and eventually contaminate the environment [33], and therefore
monitoring the magnitude and pattern of resistance in them is essential in curbing the
spread of resistant genes [34].

We deliberately conducted this study in the Msimbazi River basin, a unique ecosystem
and the most densely populated area in Tanzania, which supplies most of the poultry,
eggs, and domestic pigs for the city of Dar es Salaam [35–37]. The aim was to determine
phenotypic AMR profiles of MDR Escherichia coli in domestic pigs and poultry. E. coli
harbor mobile genetic elements such as plasmids and transposons which facilitates the
rapid spread of resistance genes from animals to humans via the environment [38]. Our
focus was on genes encoding for ESBL production and quinolone resistance, responsible
for resisting the most frequently used antibiotics in animal production and in the treatment
of human infections in Tanzania and many African countries [19,24,39].

2. Results
2.1. Detection of Enterobacteriaceae Isolates, Prevalence of Resistance, and Comparative Analysis of
Antibiotic-Resistant Profiles from Poultry and Domestic Pig Samples

As shown in Table 1, a total of 562 Enterobacteriaceae isolates were obtained from
698 samples (390 and 308 from poultry and domestic pigs, respectively). About 80.5%
of the isolates were E. coli. Isolation of E. coli was higher in domestic pigs (73.1%) than
in poultry (60.5%) (p = 0.000), while poultry harbored more K. pneumoniae (2.3%) com-
pared to domestic pigs (1.9%). Other Enterobacteriaceae detected were Klebsiella oxytoca,
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Pantoea species, Leclercia adercarboxylate, Citrobacter species, Erwinia species, Serratia odorifera,
and Salmonella enterica.

Table 1. Frequency of Enterobacteriaceae isolates from poultry and domestic pigs.

Organism
Isolates Recovered from Poultry (n = 310) Isolates Recovered from Domestic Pigs (n = 252)

Number Percentage Number Percentage

Escherichia coli 236 60.5 225 73.1
Klebsiella pneumoniae 9 2.3 6 1.9

Klebsiella oxytoca 5 1.3 2 0.6
Pantoea spp. 32 8.2 2 0.6

Leclercia adercarboxylate 5 1.3 1 0.3
Citrobacter spp. 5 1.3 1 0.3
Kluyvera spp. 4 1.0 4 1.3
Erwinia spp. 8 2.1 - -

Serratia odorifera 3 0.8 5 1.6
Salmonella enterica 2 0.5 1 0.3

Overall, the highest percentage of resistance in both poultry and domestic pigs was for
tetracycline (63.5%), followed by nalidixic acid (53.7%), ampicillin (52.3%), and trimetho-
prim/sulfamethoxazole (50.9%). As shown in Figure 1 and Table 2, poultry harbored
more resistant isolates (55.2%) to almost all tested antibiotics compared to domestic pigs
(44.8%). The resistances against nalidixic acid (p = 0.006), trimethoprim/sulfamethoxazole
(p = 0.005), and cefotaxime (p = 0.016) were significantly different between poultry and
domestic pigs.

Figure 1. Percentage of antibiotic resistance from the poultry and domestic pig isolates. Key:
CIP, ciprofloxacin; CHL, chloramphenicol; NAL, nalidixic acid; GEN, gentamycin; AMP, ampi-
cillin; TET, tetracycline; DOX, doxycycline; SXT, trimethoprim/sulfamethoxazole; CTX, cefotaxime;
MEM, meropenem.

As shown in Table 3, isolates from poultry showed no significant variations in resis-
tance by location against all of the tested antibiotics except for gentamycin (p = 0.046),
ampicillin (p = 0.026), and doxycycline (p = 0.018). For domestic pigs, there were significant
variations by location in resistance against all the tested drugs except for doxycycline
(p = 0.101) (Table 4).

2.2. Multidrug Resistance of E. coli Isolates in Cloacal and Rectal Swabs from Poultry and
Domestic Pigs

Table 5 shows that out of 461 E. coli isolates, 51.6% (n = 238) were MDR against the tested
drugs. The most common resistance patterns observed were QNL/PHE/AMN/PEN/TET/
SUL/CEP (62 isolates), QNL/PHE/AMN/PEN/TET/SUL (20 isolates), QNL/PHE/PEN/TET/
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SUL (16 isolates), QNL/PEN/TET/SUL (15 isolates), and PEN/TET/SUL (14 isolates). Eight iso-
lates were resistant to eight classes of antimicrobials.

2.3. ESBL-Producing E. coli Isolated from the Cloacal and Rectal Swabs from Poultry and
Domestic Pigs

From the 461 E. coli isolates of cloacal and rectal swabs screened for ESBL production using
2 µg/mL cefotaxime, 65.3% (301/461) were positive, and of these positive isolates, all were
confirmed to be extended-spectrum beta lactamase-producing Enterobacteriaceae (ESBL-PE).
The ESBL isolates were significantly more resistant to tetracycline, CIP, doxycycline, trimetho-
prim/sulfamethoxazole, and nalidixic acid than non-ESBL producers (Table 6).

Table 2. Comparative analysis of antibiotic resistance of isolates from poultry versus domestic pigs.

Antibiotic % of Resistance in Poultry (n = 236) % of Resistance in Domestic Pigs (n = 225) Chi-Square p-Value

CIP (n = 199) 28.5 28.6 0.360 0.835
CHL (n =190) 27.2 27.3 0.360 0.835
NAL (n = 303) 47.3 38.0 10.090 0.006
GEN (n = 188) 27.7 26.0 0.845 0.655
AMP (n = 295) 39.0 46.4 3.997 0.136
TET (n = 358) 51.3 51.3 0.447 0.800
DOX (n 270) 38.5 39.0 0.346 0.841
SXT (n = 278) 35.9 47.7 10.566 0.005
CTX (n = 233) 36.4 29.5 8.265 0.016
MEM (n = 24) 3.3 3.6 0.168 0.919

Key: CIP, ciprofloxacin; CHL, chloramphenicol; NAL, nalidixic acid; GEN, gentamycin; AMP, ampicillin; TET, tetracycline; DOX,
doxycycline; SXT, trimethoprim/sulfamethoxazole; CTX, cefotaxime; MEM, meropenem.

Table 3. Prevalence of antibiotic-resistant E. coli from poultry by ward.

No. of E. coli per Ward
% of Resistance to the Tested Antibiotic

CIP CHL NAL GEN AMP TET DOX SXT CTX MEM

Ukonga (30) 56.7 43.3 73.3 22.4 70.0 61.2 59.7 49.3 63.3 3.0
Kipawa (67) 32.8 29.9 64.2 30.0 52.2 80.0 66.7 56.7 43.3 10.0

Gongolamboto (22) 50.0 36.4 72.7 31.8 36.4 81.8 63.6 54.5 68.2 0.0
Buguruni (15) 33.3 20.0 46.7 40.0 40 60.0 20.0 26.7 33.3 6.7
Kinyerezi (53) 39.6 39.6 56.6 50.9 50.9 64.2 43.4 41.5 39.6 5.7
Segerea (47) 34.0 31.9 63.8 34.0 53.2 72.3 46.8 55.3 61.7 4.3

Overall resistance 39.3 34.2 63.2 34.2 52.1 68.4 52.1 48.7 50.4 4.7
p-value 0.237 0.569 0.419 0.046 0.223 0.254 0.018 0.315 0.026 0.599

Key: CIP, ciprofloxacin; CHL, chloramphenicol; NAL, nalidixic acid; GEN, gentamycin; AMP, ampicillin; TET, tetracycline; DOX,
doxycycline; SXT, trimethoprim/sulfamethoxazole; CTX, cefotaxime; MEM, meropenem.

Table 4. Prevalence of antibiotic-resistant E. coli from domestic pigs by ward.

No. of E. coli per Ward
% of Resistance to the Tested Antibiotic

CIP CHL NAL GEN AMP TET DOX SXT CTX MEM

Ukonga (42) 23.8 21.4 33.3 19.0 27.8 50.0 27.8 33.3 42.9 5.6
Kipawa (18) 11.1 5.6 33.3 11.1 54.8 64.3 54.2 61.9 55.6 7.1

Kinyerezi (35) 34.3 25.7 37.1 25.7 54.3 51.4 37.1 62.9 20.0 0.0
Segerea (58) 24.1 22.4 43.1 22.4 48.3 53.4 41.4 41.4 27.6 1.7

Kisarawe (51) 60.8 62.7 64.7 47.1 76.5 80.4 60.8 80.4 47.1 11.8
Pugu station (18) 38.9 38.9 44.4 44.4 72.2 66.7 50.0 50.0 38.9 0.0
Overall resistance 34.2 32.0 44.6 28.8 57.2 62.2 46.8 57.7 36.7 5.0

p-value 0.000 0.000 0.031 0.006 0.003 0.033 0.101 0.000 0.034 0.022

Key: CIP, ciprofloxacin; CHL, chloramphenicol; NAL, nalidixic acid; GEN, gentamycin; AMP, ampicillin; TET, tetracycline; DOX,
doxycycline; SXT, trimethoprim/sulfamethoxazole; CTX, cefotaxime; MEM, meropenem.
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Table 5. Multidrug resistance patterns among 431 E. coli isolated from poultry and domestic pigs.

No. of Antibiotics Classes Resistance Pattern No. of Isolates Prevalence (%)

3

TET/SUL/CEP 4 0.87
QNL/PEN/SUL 6 1.30
AMN/PEN/TET 3 0.65
QNL/AMN/TET 8 1.73
QNL/PEN/TET 3 0.65
PEN/SUL/CEP 2 0.43
QNL/PEN/TET 5 1.08
PEN/TET/SUL 14 3.04
QNL/TET/SUL 6 1.30
PHE/TET/SUL 3 0.65
QNL/TET/CEP 3 0.65

4

QNL/AMN/TET/CEP 5 1.08
QNL/PEN/SUL/CEP 4 0.87
QNL/AMN/TET/SUL 3 0.65
QNL/PEN/TET/SUL 15 3.25
PHE/QNL/PEN/TET 3 0.65
PHE/PEN/TET/SUL 4 0.87
PEN/TET/SUL/CEP 2 0.43
QNL/TET/SUL/CEP 4 0.87

5

QNL/AMN/TET/SUL/CEP 3 0.65
QNL/PEN/TET/SUL/CEP 5 1.08

QNL/AMN/PEN/TET/SUL 4 0.87
QNL/PHE/TET/SUL/CEP 3 0.65
QNL/PHE/PEN/TET/SUL 16 3.47

6

QNL/AMN/PEN/TET/SUL/CEP 2 0.43
QNL/PHE/AMN/PEN/TET/CEP 2 0.43
QNL/PHE/PEN/TET/SUL/CEP 3 0.65

QNL/PHE/AMN/PEN/TET/SUL 20 4.34

7
QNL/PHE/PEN/TET/SUL/CEP/CAR 11 2.39
QNL/PHE/AMN/PEN/TET/SUL/CEP 62 13.45

8 QNL/PHE/AMN/PEN/TET/SUL/CEP/CAR 10 2.17

Total 238 51.6

Key: QNL, quinolones; PHE, phenocols; AMN, aminoglycosides; PEN, penicillins; TET, tetracyclines; SUL, sulfonamides; CEP,
cephalosporins; CAR, carbapenems.

Table 6. Comparative antibiotic resistance of extended-spectrum beta lactamase (ESBL)- and non-ESBL-producing E. coli in
cloacal and rectal swabs of poultry and domestic pigs.

Antibiotic % of Resistant ESBL E. coli Producers
(n = 301)

% of Resistant Non-ESBL E. coli Producers
(n = 160) p-Value

Ciprofloxacin 41.2(124) 30.6(49) 0.000
Chloramphenicol 36.2(109) 28.1(45) 0.000

Nalidixic acid 59.8(180) 45.0(72) 0.000
Gentamycin 33.6(101) 29.4(47) 0.000
Tetracycline 70.1(211) 57.5(92) 0.000
Doxycycline 52.5(158) 45.6(73) 0.000

Trimethoprim/Sulfamethoxazole 55.5(167) 50.0(80) 0.000

2.4. Quinolone-Resistant E. coli in Cloacal and Rectal Swabs from Poultry and Domestic Pigs

Out of 461 E. coli isolates tested for quinolone resistance, 37.5% (n = 173) were found to
be quinolone-resistant [40] and were significantly more resistant to all the tested antibiotics
compared with non-quinolone isolates (Table 7). As shown in Table 8, both ESBL producers
and quinolone resistance depicted the various level of resistance, with tetracycline receiving
significant resistance both in ESBL and quinolone-resistant isolates. About 68.1% of ESBL
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producers were resistant to quinolone. Quinolone resistance significantly predicted higher
resistance to CIP, CHL, GEN, TET, and SXT compared to the ESBL phenotype.

Table 7. Comparative antibiotic resistance of quinolone-resistant versus non-quinolone-resistant E. coli.

Antibiotic % Quinolone Resistance
(n = 173)

% Non-Quinolone Resistance
(n = 288) Chi-Square p-Value

Chloramphenicol 70.5(122) 11.1(32) 171.469 0.000
Gentamycin 60.1(104) 15.3(44) 99.683 0.000
Ampicillin 82.1(142) 37.2(107) 87.830 0.000

Tetracycline 92.5(160) 49.7(143) 88.022 0.000
Doxycycline 80.9(140) 31.6(91) 105.191 0.000

Trimethoprim/Sulfamethoxazole 82.7(143) 36.1(104) 94.152 0.000
Cefotaxime 52.0(90) 40.6(117) 5.675 0.017
Meropenem 11.0(19) 1.0(3) 24.028 0.000

Table 8. Comparative results of ESBL producers against quinolone-resistant E. coli isolates.

ESBL Producer Isolate Quinolone-Resistant Isolate

R S p-Value R S p-Value

CHL 36.2(109) 63.8(192) 0.080 CHL 70.5(122) 11.1(32) 0.000
GEN 33.6(101) 64.4(200) 0.360 GEN 60.1(104) 15.3(44) 0.000
TET 70.1(211) 29.9(90) 0.007 TET 92.5(160) 49.7(143) 0.000
DOX 52.5(158) 47.5(143) 0.160 DOX 80.9(140) 31.6(91) 0.000
SXT 55.5(167) 44.5(134) 0.261 SXT 82.7(143) 36.1(104) 0.000

Key: CIP, ciprofloxacin; CHL, chloramphenicol; NAL, nalidixic acid; GEN, gentamycin; AMP, ampicillin; TET,
tetracycline; DOX, doxycycline; SXT, trimethoprim/sulfamethoxazole; CTX, cefotaxime; MEM, meropenem.

2.5. Genotypic Identification of ESBL Resistant Genes (CTX-M, TEM, SHV) and
Quinolone-Resistant Genes (qnrA, qnrB, qnrS, qnrC, qnrD, aac(6′)-lb-cr, and qepA)

Out of 20 E. coli selected from MDR isolates, the CTX-M gene was detected in 16/20
(80%), while TEM and SHV were not detected. The quinolone-resistant genes (qrnB, aac(6)-
lb-cr, and qepA) were detected in 6/20 (30%) (Table 9 and Figure 2). One isolate from the
poultry harbored both qepA and aac(6)-lb-cr genes. The resistant genes qnrA, qnrS, qnrC,
and qnrD were not detected in any of the tested isolates.

Table 9. Distribution of ESBL and quinolone-resistant genes from the selected multidrug-resistant
(MDR) E. coli (n = 20).

AMR Genes E. coli No (%)
Sample Type

Poultry Domestic Pigs

blaCTX-M 16/20 (80) 7 9
blaTEM 0/20 (0) 0 0
blaSHV 0/20 (0) 0 0
qrnA 0/20 (0) 0 0
qrnB 2/20 (10) 0 2
qnrS 0/20 (0) 0 0
qnrC 0/20 (0) 0 0
qnrD 0/20 (0) 0 0

aac(6)-Ib-cr 3/20 (15) 2 1
qepA 1/20 (5) 1 0
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Figure 2. Gel electrophoretic bands of ESBL and quinolone-resistant genotypes (qnrB, CTX-M, qepA, and aac(6)-lb-cr). Letters:
M—DNA ladder, N—negative control, and P—positive control. Positive samples are numbers 1, 10, 12, 13, and 16 (qnrB,
aac(6)-lb-cr, and qepA) and samples 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 20 (CTX-M).

3. Discussion

In this study, 80.5% of the isolates from 698 samples of rectal and cloaca swabs from
domestic pigs and poultry were recovered. The levels of resistance to the tested antibiotics
were higher especially for tetracycline (65.6%), nalidixic acid (53.7%), ampicillin (52.3%),
and trimethoprim/sulfamethoxazole (50.9%). Overall, 51.6%, which is close to half of all
E. coli isolates from the poultry and domestic pigs, exhibited multidrug resistance against
three to eight classes of antimicrobial agents tested, with the most resistant pattern being
against QNL/PHE/AMN/PEN/TET/SUL/CEP. The level of resistance identified in this
study compares with the findings reported in Zimbabwe, Nigeria, Ghana, and China which
were attributed to extensive use of veterinary drugs in animal farming [41–44]. These levels
of resistance in the current study were not surprising basing on the mode of animal farming
that involved intensive use of veterinary drugs for therapeutics and disease prevention.
Recent findings reported that the veterinary antimicrobial classes used most extensively
in animal farming are tetracycline, penicillin, quinolones, and sulphonamides [19,24,39],
thus leading to the higher resistance level. The findings on the levels of MDR are in
line with those reported in Tanzania, Ghana, and Angola, of which 42%, 56.9%, and 50%,
respectively, of the identified E. coli isolates from food animals were MDR [45–47]. However,
the percentages of MDR in this study are lower than the ones reported in Ghana, Nigeria,
and Zambia [43,48,49]. The possible explanation to the level of MDR in this study might
certainly be due to the selection pressure and environmental contamination by a variety
of wastes including plastic litter, industrial effluents, and uncontrolled disposal of human
and veterinary drugs [50,51]. We found that poultry harbored isolates that were more
resistant (55.2%) to almost all tested antibiotics. Previous findings from Tanzania reported
that poultry farming is associated with uncontrolled use of both human and veterinary
antimicrobials, mainly for growth promotion compared to therapeutics, and metaphylaxis
is very commonly practiced by the majority of farmers [24,52]. The level of resistance to
these tested antibiotics for isolates from poultry corresponds to previous studies [50,53,54],
showing poultry farming involves intensive and extensive use of antibiotics compared
to other domestic animals. Tetracycline, aminoglycosides, penicillin, quinolone, and
sulphonamides are among the antibiotics reported to be commonly used in poultry in
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Ghana, Cameroon, and Sudan [55–57], leading to the development of antibiotic resistance.
On the other hand, we found a low level of resistance against meropenem (less than
10%) both in poultry and domestic pigs, which is not surprising given the fact that these
antibiotics are not easily accessed due to cost [58,59].

Notably, we found significant variations in antibiotic resistance by wards among
isolates obtained from both poultry and domestic pigs, which may be due to variations in
farming conditions and the use of antibiotics [60,61]. However, this was not investigated
in this study and may therefore require further research. Nonetheless, this finding is
significant, showing a lack of professional guidance on the use of antimicrobials in animal
farming, supporting previous studies in the same area showing unregulated use of antibi-
otics that are largely obtained over the counter [24]. Farmers face several challenges that
include reduced drug quality, substandard/counterfeit veterinary drugs, and uncontrolled
use of drugs in healthcare, agriculture, and industrial settings, and lack of veterinary
services [62,63].

In this study, the majority of the E. coli isolates (65.3%) were found to be ESBL produc-
ers, a level similar to other studies [34,64–66] but higher than levels reported in Zambia
(20%), Nigeria (37.8%), and Ghana (29%) [49,67,68]. All ESBL producers were significantly
more resistant to all the tested antimicrobials as compared to the non-ESBL producers,
suggesting selective pressure due to extensive use of beta-lactam and cephalosporin in
animal farming, and the existence of multiple resistance mechanisms resulting from indis-
criminate use of veterinary drugs [69–72]. On the other hand, approximately half, 37.5%, of
all isolates were found to be quinolone (ciprofloxacin or nalidixic acid)-resistant and these
strains were more resistant to all the tested antibiotics compared to non-quinolone isolates,
probably due to persistent use of antibiotics for prophylaxis, therapeutics, metaphylaxis,
and growth promotion, a finding reported in other studies [42,73].

Notably, resistance to tetracycline and trimethoprim/sulfamethoxazole was higher
both in ESBL producers and quinolone-resistant isolates, suggesting the presence of an as-
sociation between ESBL producers and quinolone resistance, as previously reported [74,75].
The association between ESBL and quinolone resistance may highlight the presence of
similar resistance mechanisms in the clinical and environmental setup, and intensive and
prolonged use of beta-lactam drugs, cephalosporin, and quinolone drugs in poultry and
domestic pig farming [76]. The findings are in line with other studies that reported the
linkage between ESBL producers and quinolone-resistant genes due to co- transmission of
resistant genes among members of the family Enterobacteriaceae, leading to dissemination
of MDR organisms [70,72,74,76,77].

We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL
producers, and quinolone-resistant strains and found that about 80% harbored blaCTX-M,
15% aac(6)-Ib-cr, and 5% qepA. None of the isolates harbored TEM, SHV, qnrA, qnrS, qnrC,
or qnrD. We noted that some of the isolates that were sensitive by the phenotypic method
harbored resistance genes, a phenomenon that has been observed by others [72,78]. Studies
have shown that phenotypic resistance is dependent on the mode and level of gene expres-
sion [79,80]. On the other hand, some isolates that were phenotypically resistant did not
harbor the screened genes, implying that other genes such as ampC, VEB, OXA, PER, oqxA,
or oqxB might be responsible [74,81].

The high levels of AMR associated with poultry and domestic pig farming present a risk
to human health presented by the ineffectiveness of the currently used antibiotics [62,66,82],
thus causing human and animal infections that are difficult to treat [50,55,83]. This study has
some limitations.

Other Enterobacteria spp. isolates were too few for detailed subanalysis; therefore, we
decided to focus on E. coli. Secondly, we did not perform molecular characterization of all
of the resistant isolates, which may be considered as a limitation. However, the phenotypic
analysis conducted was based on the internationally recognized and standardized Clinical
Laboratory Standard Institute (CLSI) 2019 protocol and guidelines [84], thus reflecting the
real magnitude and pattern of AMR in the study setting. Nonetheless, we are planning
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to collect isolates from humans and the environment and perform genotypic studies in
order to understand the flow of resistomes across the human, animal, and environment
compartments. Lastly, we could not analyze samples coming from poultry and domestic
pigs not treated with antibiotics as we could not find such farms due to the widespread use
of antimicrobials in animal production in this community [19,26,39].

4. Methodology
4.1. Selection of Study Farms and Animals

This study was conducted in Kinondoni, Kisarawe, and Ilala districts that form part
of the Msimbazi River basin. Eight wards were included, namely, Kisarawe, Pugu station,
Gongolamboto, Ukonga, Kipawa, Segerea, Kinyerezi, and Buguruni. Poultry farms were
selected based on having more than 100 broilers and/or layers and 50 or more improved
local chickens kept for commercial purposes. For each poultry farm, 5% out of 100 flocks
were sampled. Animals of less than two weeks were not sampled under the assumption
that they were at the early stage of production. The selection of pig farms was based on the
herd having animals that were ready to be slaughtered in which 10% of the animals were
selected. Poultry and pig farms included in this study were randomly selected from a list
provided by the ward livestock officers within the study area.

4.2. Sample Collection

About 1 g of fecal materials from the cloaca and rectum from poultry and domestic
pigs was collected aseptically using a sterile cotton swab (Himedia, Mumbai, India). The
cotton swabs were then placed into the sterile tube filled with 3 mL Cary Blair medium
(Oxoid, Basingstoke, UK). All samples were transported in a cool box containing ice packs
at a temperature of 2 to 8 ◦C and processed within 2 h of collection in the Microbiology
Teaching Laboratory at the Muhimbili University and Allied Sciences (MUHAS).

4.3. Isolation of Bacteria

Specimens from cloacal/rectal swabs were directly streaked onto the MacConkey agar
(Oxoid, Basingstoke, UK) without antibiotics and incubated at 37 ◦C aerobically for 24 h.
A single colony from predominant morphologically similar colonies was picked from each
plain MacConkey agar plate and subcultured in a nutrient agar (Hi media, Mumbai, India).
Colonies on nutrient agar were identified by colonial morphology, Gram stain, catalase
and oxidase production [85], and various biochemical tests (indole, methyl red, Voges–
Proskauer, and citrate utilization test) and were later confirmed by API 20E following the
manufacturer’s recommendations (BioMérieux, Marcyl’Etoile, France) [86]. Briefly, a single
colony was emulsified into sterile saline and filled in the compartments and then incubated
at 37 ◦C for 18 to 24 h aerobically in a wet chamber of analytical profile index (API), API
20E strips (BioMérieux, Marcy-Etoile, France). E. coli and other Enterobacteriaceae were
identified at the species level.

4.4. Antibiotic Susceptibility Testing

The antimicrobial susceptibility testing was conducted using the Kirby–Bauer disc
diffusion method on Mueller Hinton Agar (Becton, Dickinson and Company, MD, USA)
based on the CLSI standards [76]. Antibiotics tested were doxycycline (30 µg), cefo-
taxime (30 µg), nalidixic acid (30 µg), ciprofloxacin (5 µg), ampicillin (10µg), tetracycline
(30 µg), chloramphenicol (30 µg), gentamicin (10 µg), meropenem (30 µg), and trimetho-
prim/sulfamethoxazole (1.25 µg/23.75 µg). These antibiotics are considered by the World
Health Organization (WHO) to be clinical and useful in animal production [87]. One to
two colonies from the pure culture of the identified lactose fermenters were emulsified into
5 mL of sterile saline. The suspensions were adjusted to achieve turbidity equivalent to
0.5 McFarland standard solutions [84], emulsified using sterile cotton swabs onto Mueller
Hinton Agar plate, and incubated at 37 ◦C for 16 to 18 h. The inhibition zone of each
antimicrobial agent was measured after 16 to 18 hours’ incubation. Results were inter-
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preted according to the CLSI standards, and E. coli strain American Type Culture Collection
(ATCC) 29522 and K. pneumoniae strain ATCC 700603 were used as controls. An isolate
was considered to be multidrug-resistant (MDR) if it was non-susceptible to three or more
drugs from different classes of antimicrobial [88].

4.5. Screening for ESBL

The confirmed E. coli isolates (by API 20E strips) from plain MacConkey agar were
inoculated onto MacConkey agar containing 2 µg/mL cefotaxime for preliminary screening
of ESBL production [89]. Confirmation of ESBL production was conducted using the
combination disk diffusion method, with cefotaxime (30 µg) alone and in combination
with clavulanic acid (10 µg), and with ceftazidime (30 µg) alone and combination with
clavulanic acid (10 µg), and a zone of inhibition of more than or equal to 5 mm confirmed
ESBL production. K. pneumoniae (ATCC 700603) was used as a positive control (ESBL-
positive strain) and E. coli (ATCC 25922) used as the ESBL-negative strain, and results were
interpreted as per CLSI standards 2019.

4.6. Polymerase Chain Reaction (PCR)
4.6.1. DNA Extraction

ESBL-producing E. coli isolates were inoculated on nutrient agar and incubated aero-
bically at 37 ◦C for 24 h. DNA was extracted by boiling in a water bath at 100 ◦C for 10 min,
followed by centrifugation at 1500 rpm for 3 min. The supernatant containing DNA was
transferred into a sterile Eppendorf PCR tube (Eppendorf AG, Hamburg, Germany) and
centrifugation and separation of supernatant were repeated three times. The concentration
of DNA was determined by a Nanodrop spectrophotometer (Biochrom LTD, Cambridge,
England) at 260/280 wavelength (ranging from 1.5 to 1.8). DNA was stored at −20 ◦C,
before being used for detection of ESBL genes (CTX-M, TEM, and SHV) and PMQR genes
(qnrA, qnrB, qnrS, qnrC, qnrD, qepA, and aac(6′)-Ib-cr).

The One Tag Master Mix Hot Start DNA polymerase kit (New England Biolabs,
Ipswich, MA, USA) was used in detection of resistance genes. Total PCR reaction volumes
were 25 µL, consisting of One Tag Master Mix 2X Standard buffer 12.5 µL, 10 µM forward
primer 0.5 µL, 10 µM reverse primer 0.5 µL, nuclease-free water 9.5 µL, and DNA template
2 µL. The primers used in amplification of the respective E. coli resistance genes are listed
in Table 10 below.

Table 10. PCR primers, sequences, and protocols used.

Gene Primer Set and Sequence (5′-3′) Amplicon Size Reference

CTX-M F: SCSATGTGCAGYACCAGTAA
R: ACCAGAAYVAGCGGBGC 585 bp [90,91]

qnrA F: TCAGCAAGAGGATTTCTCA
R: GGCAGCACTATTACTCCCA 627 bp [92]

qnrB F: GGMATHGAAATTCGCCACTG
R: TTTGCYGYYCGCCAGTCGAA 264 bp [92]

qnrS F: ATGGAAACCTACAATCATAC
R: AAAAACACCTCGACTTAAGT 467 bp [92]

aac(6′)-Ib-cr F: TTGCGATGCTCTATGAGTGGCTA
R: CTCGAATGCCTGGCGTGTTT 482 bp [92,93]

TEM F: ATGAGTATTCAACATTTCCG
R: CTGACAGTTACCAATGCTTA 868 bp [94]

SHV F: GGTTATGCGTTATATTCGCC
R: TTAGCGTTGCCAGTGCTC 867 bp [94]

qnrC F: GGGTTGTACATTTATTGAATC
R: TCCACTTTACGAGGTTCT 447 bp [75]

qnrD F: CGAGATCAATTTACGGGGAATA
R: AACAAGCTGAAGCGCCTG 582 bp [75]

qepA F: TGGTCTACGCCATGGACCTCA
R: TGAATTCGGACACCGTCTCCG 1137 bp [75]
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4.6.2. Molecular Detection of CTX-M Genes

ESBL-producing E. coli isolates were screened for the CTX-M gene using a uniplex
PCR-based technique [90]. PCR conditions involved initial denaturation at 96 ◦C for 5 min,
followed by 35 cycles of denaturation at 96 ◦C for 30 s, annealing at 56 ◦C for 40 s, extension
at 72 ◦C for 60 s, and final extension at 72 ◦C for 10 min.

4.6.3. Detection of TEM and SHV Genes

ESBL genes TEM and SHV were screened by a uniplex PCR-based assay involving
initial denaturation at 95 ◦C for 5 min, followed by 35 cycles of denaturation at 94 ◦C for
30 s, annealing at 56 ◦C (TEM and SHV) for 40 s, extension at 72 ◦C for 1 min, and final
extension at 72 ◦C for 10 min [94].

4.6.4. Detection of Quinolone-Resistant Genes (qnrA, qnrB, and qnrS)

The quinolone-resistant genes (qnrA, qnrB, and qnrS) were amplified and detected
using multiplex PCR assay [75]. This involved initial denaturation at 94 ◦C for 5 min,
followed by 32 cycles of denaturation at 94 ◦C for 45 s, annealing at 53 ◦C for 1 min,
extension at 72 ◦C for 1 min, and final extension at 72 ◦C for 10 min [75].

4.6.5. Detection of aac(6′)-lb-cr Gene

The aac(6′)-lb-cr gene was screened by a uniplex PCR-based assay [93] using the
following amplification conditions: initial denaturation at 94 ◦C for 5 min, followed by
34 cycles of denaturation at 94 ◦C for 45 s, annealing at 55 ◦C for 45 s, extension at 72 ◦C
for 45 s, and final extension at 72 ◦C for 10 min [93].

4.6.6. Detection of PMQR Genes (qepA, qnrC, and qnrD)

The qepA gene was screened by a uniplex PCR-based assay [93] using the following
amplification conditions: initial denaturation at 96 ◦C for 5 min, followed by 30 cycles of
denaturation at 96 ◦C for 30 s, annealing at 56 ◦C for 30 s, extension at 72 ◦C for 60 s, and
final extension at 72 ◦C for 5 min [75].

4.7. Ethical Considerations

The ethical clearance was provided by the Medical Research Coordinating Com-
mittee of the National Institute for Medical Research (NIMR) of Tanzania (Reference
No. NIMR/HQ/R.8a/Vol. IX/3133), and Muhimbili University of Health and Allied
Sciences (Permit No. DA.282/298/01.C). The permission was sought from the relevant
authorities that are the municipal directors at the three districts.

4.8. Data Management

The data were entered in Excel version Office 2007 and then transferred to SPSS version
20.0 for Windows (IBM Corp, Armonk, NY, USA) software for statistical analysis. Categorical
variables were described as frequencies and percentages. The chi-square test was used to
determine the difference, and a p-value of less than 0.05 was considered significant.

5. Conclusions

The high levels of AMR as well as ESBL producer, quinolone-resistant, and MDR (up
eight different classes) isolates associated with poultry and domestic pig farming seem to
render the currently used antibiotics ineffective for their intended use, and their continued use
potentially escalates the burden of antimicrobial resistance beyond these animal species.
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S.E.M. All authors have read and agreed to the published version of the manuscript.
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