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Despite considerable advances, studying electrocommunication of weakly electric fish,

particularly in pulse-type species, is challenging as very short signal epochs at variable

intervals from a few hertz up to more than 100Hz need to be assigned to individuals.

In this study, we show that supervised learning approaches offer a promising tool to

automate or semiautomate the workflow, and thereby allowing the analysis of much

longer episodes of behavior in a reasonable amount of time. We provide a detailed

workflow mainly based on open resource software. We demonstrate the usefulness by

applying the approach to the analysis of dyadic interactions of Gnathonemus petersii.

Coupling of the proposed methods with a boundary element modeling approach,

we are thereby able to model the information gained and provided during agonistic

encounters. The data indicate that the passive electrosensory input, in particular,

provides sufficient information to localize a contender during the pre-contest phase,

fish did not use or rely on the theoretically also available sensory information of the

contest outcome-determining size difference between contenders before engaging in

agonistic behavior.

Keywords: supervised learning, agonistic behavior, weakly electric fish, passive electric image, active electric

image

INTRODUCTION

Weakly electric fish are active at night and are frequently found in dark and turbid environments
(Moller et al., 1979). The specialized electric sense enables weakly electric fish well adapted to cope
with the specific challenges imposed by this lifestyle (Carlson and Sisneros, 2019). They produce
electric signals for both, electrolocalization and electrocommunication with conspecifics (Möhres,
1957; Lissmann, 1958; Lissmann and Machin, 1958; Moller, 1970). These signals are generated
through an electric organ (EO) distributed along the trunk (South American weakly electric fish)
or the tail (African weakly electric fish). The synchronous discharge of these organs [electric organ
discharge (EOD)] is used to emit either intermittent or continuous electric fields (Gallant, 2019).
EODs are low in amplitude (often in the order of 1mV) and, in addition, these signals attenuate
steeply with distance from the emitting fish (Rasnow, 1996; Sicardi et al., 2000; Chen et al., 2005;
Nelson and MacIver, 2006).

With respect to electrolocation, it is known that weakly electric fish electrically locate
objects in the dark and even discriminate between objects relying on various object features
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(von der Emde, 1990, 1999; von der Emde and Bleckmann, 1998;
Schwarz and von der Emde, 2000). Furthermore, it has been
investigated that electric fish also use their electric sense for
spatial navigation (Jun et al., 2016; Jung et al., 2019). The role of
EODs in electrocommunication has also been studied although
these studies until recently were constrained to lab conditions
(Moller, 1970; Walz et al., 2013). Recent (costly) advances have
made it possible to now also study electric communication (of
wave-type species) in the wild (Henninger et al., 2018, 2020;
Madhav et al., 2018; Raab et al., 2021).

Weakly electric fish are either a wave type, i.e., emitting
EODs continuously, or a pulse type, i.e., emitting short EOD
pulses with variable intervals between pulses. Wave-type weakly
electric fish emit with relatively stable EOD frequencies (Walz
et al., 2013; Henninger et al., 2020) and this continuous
discharge at stable and individual-specific frequencies makes
the attribution to individuals comparatively easy (Madhav
et al., 2018). In pulse-type electric fish, however, the inter-
discharge time is typically larger than the EOD duration,
making a frequency-based assignment of EODs impossible.
Furthermore, the EODs of pulse-type species typically show
relatively small intrasexual individual differences (Carlson and
Arnegard, 2011; Krahe, 2019). In Gnathonemus petersii, the role
of androgens and estrogen on the EOD waveform has been
demonstrated (Landsman et al., 1990). In captivity, without any
hormonal treatment, interindividual EOD differences are rather
small. This holds specifically true for individuals of the same
sex (Landsman et al., 1990; Landsman, 1993). The study of
electrocommunication in pulse-type species is still limited by
the laborious manual analysis of very short behavioral sequences
(Moller and Bauert, 1973; Gebhardt et al., 2012). A successful
workaround has been the use of artificial fish that emit pre-
defined EOD sequences. This has proven as a successful means to
study the impact of the defined EOD sequences on the behavior
groups of fish and individuals (Donati et al., 2016; Pannhausen
et al., 2018; Worm et al., 2018).

Our study aims to provide tools to facilitate the assignment
of EOD in pulse-type fish. While we establish a workflow for the
interaction of dyads, the approach in principle can be scaled up to
larger groups. In contrast to the aforementioned techniques that
allow purely electrical tracking and identification of individuals,
the workflow established in this study aims to facilitate offline and
lab-oriented work and requires the extraction of fish locations
using common visual tracking methods.

In brief, our approach employs supervised learning methods
to first track fish individuals and then use the position data to
assign EODs to the individuals. The position tracking is based
on open-source software (https://sleap.ai/, version: 1.016) that is
used for estimating the positions of animal body parts (Pereira
et al., 2019, 2020). It supports multianimal pose estimation and
tracking and includes an advanced labeling/training graphical
user interface (GUI) for active learning and proofreading.
Implementing a decision-tree model that was trained with
prerecorded data, we then used the position data to attribute
EODs to individuals. The model is part of the Scikit-learn
package, implemented in Python, and also freely available
(Pedregosa et al., 2011). The combination of visual tracking and

supervised learning resulted in high performances and accuracy
of position estimation and the attribution of EODs to individuals.
Error rates were below 5% and could be reduced further with a
small to an intermediate effort by using the interactive social leap
estimates animal poses (SLEAP) GUI and resorting to themanual
assignment of EODs in a small and automatically identified
subset of the data.

To demonstrate the suitability of the proposed workflow,
we applied it to study the aggressive behavior in G. petersii
during dyadic interactions. These fish are territorial and often
live in fixed groups with social ranking. In residence-intruder
interactions, the aggression of the resident fish toward an
intruder has been described (Crockett, 1986). The outcome of
such encounters can depend on the body size, meaning that
the larger fish has a higher probability to win the fight (Bell
et al., 1974; Terleph, 2004). As agonistic behavior can be costly,
we now ask if the electric sense contributes to a precontest
assessment of the quality of a potential contender before engaging
in agonistic interactions. The resource holding potential (RHP),
i.e., the ability to win a possible fight, is frequently assessed
based on far-ranging sensory input (Nelson, 2006), but these
are unavailable or unreliable during the nocturnal encounters of
weakly electric fish. Therefore, we ask if G. petersii can evaluate
the outcome of a fight before the first physical contact: We
hypothesized that fish would not initiate an aggressive contact
if they can determine beforehand that they are likely to lose.
If so, the electrosensory information may either be passive
and/or active. The former modality allows the perception of
external electric fields created by inanimate or living organisms,
including the EODs of other weakly electric fish. In contrast,
the active electrosensory modality relies on the perceptions of
the self-generated electric field. Here, the modulation of this
field through nearby objects having a different conductivity or
capacity from the surrounding water provides environmental
information used by these fish to reconstruct their surrounding
(Knudsen, 1975; von der Emde, 1999). A previous study on the
South American weakly electric fish Gymnotus omarorum tested
the RHP of the contender through modeling of the sensory input
(Pedraja et al., 2016). We do a follow up on this study using an
evolutionary distinct weakly electric fish lineage to demonstrate
the power of supervised learning methods for research on weakly
electric fish communication. Passive and active electroreception
is mediated through different electroreceptors that both occur
and are distributed over the animal skin. The electric pattern,
i.e., the distribution of local field intensities, provides the relevant
input to both modalities. This spatial distribution is referred to as
the electric image (EI) (Caputi and Budelli, 2006). To distinguish
between active and passive sources, we will refer to the sensory
images generated by the presence of external electric fields as
passive EI and to those images generated by the distortions
through elements in the electrosensory scenery as active EI.

MATERIALS AND METHODS

Setup
The experimental tank had a size of 66× 72 cm and was filled up
to a water level of 12 cm. Seven pairs of electrodes were mounted
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on the tankwalls. Electrodes weremade of coated thin silver wires
attached to plastic rods, the tips of the wires were exposed for
about 1–2mm and placed 5 cm above the tank floor. The floor
of the tank was filled with small glass beads to allow illumination
from below.

Electric organ discharges were recorded with an Axon
Instruments amplifier (Foster City, CA, USA; Cyber Amp
380), digitized at 125 kHz (National Instrument, Austin, TX,
USA; PCI-6251M, 24 bit). Amplification and filter settings
(high-pass 300Hz and low-pass 10 kHZ) of the amplifier were
controlled through the software (National Instruments, Austin,
TX, CyberControl, 1.1.0.12).

IR-LEDs (880 nm) were placed below the tank to illuminate
the tank from below. G. petersii has been reported to not
perceiving IR light of this wavelength (Ciali et al., 1997). Videos of
fish were captured from above (Mako 130B mono, AVT imaging,
frame rate: 30 or 10Hz, stored in an AVI format). Each exposure
also triggered a transistor-transistor logic (TTL) pulse that was
recorded alongside the EOD data (125 kHz sampling rate, 12 bit,
audio card). These pulses were used to synchronize video and
EOD data. EOD and video recordings were initiated through
custom written MATLAB scripts (32 bit; R2013, MathWorks,
Natick, MA, USA).

Animals
Fish (n = 6) were housed in a large tank with partitions to keep
individuals from physical interactions outside the experimental
time. The light/dark cycle was 12/12 h, and all experiments were
conducted during the subjective night time of the fish. Water
conductivity in the experimental tanks was 120 ± 5 and 160 ±

20 µS/cm in the holding tanks. Water temperature was regulated
to 22 ± 2◦C by heating the experimental room to avoid electric
noise through aquarium heaters.

Data Sets
Two different data sets were acquired. Data set I is based on two
fish of equal size, where we obtained 20 60 s recordings of each
of these fish exploring the tank individually. This data set was
used to train supervised learning models such as the random
forest regressor (RFR) model and multilayer perceptron (MLP)
models (see section Types of Supervised Learning Models for
Regression). To estimate the performance of EOD allocation, we
also recorded and analyzed 10 60-s long videos with both fish
interacting in the tank. The performance of EOD allocation was
analyzed by contrasting this automated allocation to a human-
observer-based allocation of EODs (see section Using Supervised
Learning to Predict the Fish Position of Real Fish).

With data set II, we then further evaluate the suitability of
the workflow by addressing aggressive behavior during dyadic
interactions of fish of different sizes (n = 6). Size difference and
thus the differences in EOD amplitude could in theory influence
the accuracy of the EOD allocation, thus this data set also served
to test for the robustness of the used model. Our behavioral
analysis focuses on the first approach between two fish. With the
6 individuals, we could have tested 15 possible pairings. However,
we excluded the interaction of the two fish used in the first data
set to make sure that fish had not a chance to have a priori

knowledge about their contender. Of the remaining 14 pairings,
we needed to exclude 1 pairing, where fish approached each other
swimming backward making it impossible to determine who
initiated the contact.

Two-Dimensional Representation of
Electric Potentials
Python (Version 3.7) was used to simulate the potential at the
electrodes in the horizontal plane of the experimental setup.
For this, virtual electric dipoles (virtual fish) were randomly
positioned and oriented in this plane (2,500 positions tested). To
minimize border effects, virtual fish were at least 10 cm from the
walls of the tank. In total, 20 virtual fish of 8–15 cm length were
simulated. Thus, the used data set contained the variables fish
length, x and y coordinates of the fish center, and the sine and
cosine of the angle, the virtual fish was oriented at and the seven
potentials of the electrodes.

The electric field of the virtual fish was modeled based on
a simple dipole, i.e., point charges of equal amplitude and
opposite polarity located in the tail and the head of the animals,
respectively. The potential at the electrodes was calculated using
the equation for an electric dipole potential:

V = k∗q∗(1/R1− 1/R2) (1)

where V is the resulting voltage, k is the Boltzmann constant, and
R1 and R2 are the distances of the head and tail position to the
electrodes of interest, respectively.

We were only interested in the relative differences between
electrode pairs. Therefore, charge q was set to 1/k throughout
all simulations, this resulted in electrode voltages within the
range of ±1V irrespective of the position of the fish in
the tank. For the electrodes, we simulated both differential
and single-ended recordings against the ground. Differential
recordings were simulated as the potential difference of electrode
pairs, whereas single-ended recordings were simulated with the
reference potential in the center of the tank.

Types of Supervised Learning Models for
Regression
We tested several types of supervised learning models to predict
fish position and orientation based on the electric potentials. We
now describe the twomodels that we determined as suitable from
pretests. To compare their performance, we used the estimation
errors of the models when allocating EODs for real fish (data set
I) (Figure 1).

Random Forests Regressor

A nonparametric supervised learning method, decision trees, is
used for classification and regression (Figure 1A). The objective
of a decision tree is to establish a model for predicting the value
of a target from the input data features through learning simple
decision rules. Each decision tree has branches and three types
of nodes: the root node is the initial node, which represents
the entire sample (in this case electrode potentials). The interior
nodes represent the features of a data set, and the branches
represent the decision rules. Finally, the leaf nodes represent the
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FIGURE 1 | Supervised learning methods for regression. (A) A decision tree comprises a root node containing all input data features, interior nodes containing

subsets of the data, and leaf nodes containing the final target values. A decision tree can have different numbers of interior nodes and leaf nodes. The goal of a

decision tree is to create a model that predicts the value of a target variable (x and y position of the six fish skeleton coordinates) by learning the decision rules derived

from the data (electrode potentials). (B) A multilayer perceptron (MLP) model can learn a nonlinear function approximation from a set of features and a target. The

input layer comprises a set of neurons representing these input features (electrode potentials). Each neuron in the hidden layer transforms the values from the previous

layer through a weighted linear summation followed by a nonlinear activation function. However, in case of a regressor model, the activation function is omitted (set to

the identity function). The output layer receives the values from the last hidden layer and transforms them into output values (x and y positions of the fish skeleton). (C)

Comparison of the regression performance of the random forest regressor (RFR) and MLP models with different numbers of hidden layers. The spatial error is defined

as the average distance between true and the model-estimated head position (anchor point, see also Figure 2).

outcome (in this case x and y positions of the fish skeleton).
Decision-tree models are prone to overfitting. Random forests
are an ensemble learning method for classification, regression,
and the other tasks that operate by constructing a multitude
of decision trees at training time. They provide a solution to
the problem of overfitting. In random forests, each tree in
the ensemble is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. For random
forest regression tasks, the average/median/most common vote
prediction of the individual trees is returned.

Multilayer Perceptron Model for Regression

This type of model can learn a function approximation from
a set of features and the target (Figure 1B). The input layer
comprises a set of neurons representing the input features (in
this case: electrode potentials). Each neuron in the hidden layer
transforms the values from the previous layer with a weighted
linear summation. In a classification model, this is followed by
a nonlinear activation function. However, in case of regression,
the activation function is set to an identity function. The output
layer receives the values from the last hidden layer and transforms
them into output values (in this case: x and y positions of the
fish skeleton).

Using Supervised Learning to Predict Fish
Position and Orientation of Simulated Data
A supervised learning algorithm was applied to predict fish
position and orientation based on the simulated potentials.
Specifically, we used the RFRmodel from the Scikit-learn package
(Version 0.22.2) with default settings and the number of trees
in the forest set to 25 (Pedregosa et al., 2011). The electrode
potentials to the model were provided as independent variables
from which the location, orientation, and size of the fish had to

be predicted. A grid search optimization (“GridSearchCV” from
the Scikit-learn package) was used with 25 iterations to tune the
RFR. To evaluate the learning, the data set was split into a training
(75% of the data) and a test set (25% of the data) that was not
included in the learning phase. The supervised learning success
was verified by a built-in metric (“score” function in the Scikit-
learn package). The score function returns the coefficient R² that
is defined as (1-u/v), where u is the residual sum of squares: sum
[(true position–predicted position)2], and v is the total sum of
squares: sum [(true position–mean (true position))2]. Thismetric
thus ranges between zero and one for optimal performance.

To verify the suitability of different electrode configurations
in more detail, the deviation between the predicted values of the
test set and the true virtual fish size, position, and orientation was
calculated. In the following, we focus on the position error as we
only used this in the behavioral experiments. Matplotlib (Version
3.2.1) was used for visualizing the results (Hunter, 2007).

Using Supervised Learning to Predict Fish
Position of Real Fish
We used supervised learning methods to predict fish position
based on the recorded EOD data with the aim to assign EODs
to individual fish. The workflow (Figure 2) consisted of several
interacting steps as described in detail in the following.

The RFR model was used again for the behavioral data; in
addition, we also tested different MLP models. There were a
few changes with respect to the setup and the data estimated.
Fish were allowed to move freely within the experimental tank,
including tank boundaries. Furthermore, we did not estimate the
virtual fish position and orientation, but rather the position of the
six nodes of the skeleton of an animal (Schnauzenorgan, head1,
head2, mid1, mid2, and tail) as previously defined in SLEAP (see
section Fish Position Tracking). We used the default parameter
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FIGURE 2 | An Illustration of the workflow. Electric organ discharge (EOD) detection was done in Matlab (white background), whereas fish tracking and pose

estimation were based on Python (gray). The tracking in the open-source package social leap estimates animal poses (SLEAP) is based on deep neuronal networks

that are computational demanding. Therefore, we relayed the training and final tracking of the data onto the CoLab platform (medium gray). The RFR (dark gray) was

trained using the EOD waveform vectors as an input and the tracked (single fish) position data as the target. After training, the EOD waveform vectors were used to

estimate fish position. This estimate from the RFR then was compared to the tracked fish position to assign the EOD identity in Matlab (see also Figure 7). The later

behavioral analysis of agonistic behavior relied on the data set generate in this way to analyze the electrosensory information provided by the active and passive

electrosensory system during the observed behavior (blue background).

settings of the RFR model from the Scikit-learn package, also the
“n_estimators” was set to 100.

We used an MLP model from the Scikit-learn package
(Version 0.22.2) with default settings (except for the two

parameters) to construct neuronal networks of different size.
The size of the hidden layer was 50, 100, or 200, respectively.
The number of iterations was 10,000 to ensure that all models
converged (Pedregosa et al., 2011).
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To train the supervised learning models, 40 videos from the
data set I with single fish swimming in the area were used (58.385
EODs and corresponding fish positions). The EOD waveform
vectors [see section EOD Detection; Figure 3A(iii)] were used
as the input, and the positions of the six skeleton nodes of
the fish midline (Figure 4) were the target to be learned. The
performance between models and model configurations was
assessed using 25% of the data previously not included in the
model training. From the four options, the RFR model was the
best in localizing the position of the emitting fish as verified using
the head position of an animal now (Figure 1C). This model thus
was used on data set I with both fish swimming together (15.763
EODs and positions). While the network estimated the position
of six nodes for each individual, we are primarily interested in
the identity of the EOD-emitting fish. Therefore, we calculated
the root mean square (RMS) error (summed over all six nodes)
between the model estimated fish positions of the true fish
positions (Figure 7A). The fish with the smallest RMS error was
labeled as the EOD-emitting fish.

To compare this automated identification to the human-
observer identification, we first manually assigned all 15.763
EODs based on visual inspection to the individual fish. To
estimate the precision of this human-observer approach, the
process was conducted a second time after 3 months, and a
disagreement in about 1% of the cases was found. Because the
error rate using the network was substantially larger than 1%, we
manually corrected those EODs presumably wrongly assigned by
the model.

EOD Detection
For EOD detection, a custom written Matlab program was used
(Figures 2, 3). To obtain the EOD vector later used for EOD
assignment in the supervised learningmodels, the following steps
were taken (Figure 3A):

i) Electric organ discharge threshold detection: EODs were
detected using a separate threshold for each of the seven
channels. The thresholds were set such that they were clearly
above the noise level and low enough that each EOD was
detected at least from one channel.

ii) Waveform extraction: to temporally align the EODs, we
took the average of the absolute values on all channels
[Figure 3A(ii)]. Then, the original EOD channels were aligned
to the maximum peak of the mean absolute trace. We cut
individual EODs using a temporal window of 272 µs before
and 128 µs after the peak.

iii) Waveform vector normalization: a row vector was created
containing the data of an EOD of all seven electrodes. This row
vector was then normalized by the absolute maximum peak
resulting in a voltage range of±1V [Figure 3A(iii)]. This step
was taken to make the EOD assignment more robust against
variable fish sizes.

Temporally overlapping EODs of two fish were detected in the
following way (Figure 3B):

iv) EOD doublet detection: each normalized EOD waveform
was automatically compared to the average normalized

EOD [Figure 3B(iii) top]. To obtain the normalized average
EOD waveform, the absolute values of the EOD recordings
were averaged across all detections and channels and then
normalized by dividing the average by the peak amplitude.
Correspondingly, the normalized EOD was obtained by
averaging the absolute values of the seven EOD channels and
then normalized by the maximum.

The histogram of the difference between the normalized single
EODwaveforms and the normalized average EODwaveform was
long-tailed in each data set. The majority of EOD doublets was
found in this tail of the histogram [Figure 3B(i,ii)], allowing
to focus the manual correction to a fraction of the actual
data: if the absolute deviation exceeded a threshold, EODs were
visually inspected by the user to determine if doublets occurred
[Figure 3B(iii)]. We stored the time point of the doublet and
reassigned the EOD to both fish after the automatic assignment
of the EODs with the RFR model.

Fish Position Tracking
For video-based tracking of the fish positions, we used SLEAP
(Pereira et al., 2019, 2020; Figures 2, 4). SLEAP is a framework
for multi-animal body part position estimation via deep learning.
It is written in Python and comes with a labeling and training
GUI that supports active learning. We used the multi-animal
top-down approach because an initial comparison showed better
results than the bottom-up approach also available in this
framework. The top-down approach complements two different
models: the centroid model first predicts the location of each
animal in a given frame. Then, the instance centered confidence
map model is used to predict the locations of all the nodes
(“posture”) for each animal separately.

The use of SLEAP is well documented elsewhere (https://sleap.
ai) (Pereira et al., 2019, 2020). However, in short, our workflow
consisted of the following steps (Figure 2; light and medium
gray panels).

i) Creating the skeleton: the skeleton consisted of six user defined
nodes (e.g., Schnauzenorgan, head positions 1 and 2, mid
positions 1 and 2, and tail) and the corresponding edges (e.g.,
connection between Schnauzenorgan and head position 1).

ii) Initial labeling: about 50 randomly chosen frames out of 10
videos (data set I, two interacting fish) were used for the
initial labeling. To account for a variation in the setup, we
chose the videos where the background differed, i.e., the glass
beads covering the floor were manually shuffled, resulting in a
heterogeneous distribution of the background intensity.

iii) Creating a custom training profile: the SLEAP-label GUI
was used to create a custom training profile for the multi-
animal top-down model. The profile must be adjusted to
match the animal under investigation. Specifically, we adjusted
the anchor part and the input scaling. The anchor part is
an important parameter as it is used to estimate where each
animal is located. We chose head position 2 as the anchor part
as it was in a relatively central position and can be precisely
located as the midpoint between the pectoral fins. The input
scaling of the centroid model was set to 0.5, which enabled
matching of the receptive field size to the actual fish size. In
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FIGURE 3 | (A) Extracting EOD input vector for the RFR model. (i) EODs were extracted by a threshold operation. The threshold was defined differently for each

channel. It could be set way above noise level as EODs had to be detected only in one of seven electrode recordings. If two EODs were separated in time by less than

400 µs, the later EOD was deleted. Interfering EODs of two fish were detected in an additional step. (ii) To align EODs, we took the absolute values and averaged

across all electrodes. EODs were cut 272 µs before and 128 µs after the EOD peak. (iii) The concatenated EODs were stored as a vector. (B) Detection of interfering

EODs. (i) Histogram of the residual errors of single EOD waveforms from an average EOD waveform. EODs were normalized to the absolute maximum peak

beforehand. Inset: enlargement of the histogram including the threshold above which EOD waveforms were checked. (ii) Percentage of EOD doublets of the total

number of EODs checked (blue) and the absolute number of EOD doublets found (red) plotted against the number of EODs checked. With the threshold shown in red

in the inset in [B(i)], 119 EODs needed to be inspected. Of these 98% are doublet EODs, which accounts for almost 90% of all doublets in the data set. Thus, the

manual re-analysis can be made very efficient by concentrating on this “suspicious” fraction of the total data. (iii) Example of two overlapping EODs. EOD doublet can

be easily identified by visual inspection. Upper panel: normalized average EOD waveform (black) and single EOD waveform (red); middle panel: EOD recordings

aligned to the maximum peaks. Lower panel: EOD recordings including the EOD detection surrounding the current “doublet” EOD (green).
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FIGURE 4 | An example of single video frames shows the superimposed skeletons tracked using SLEAP. In the majority of cases (see i,ii), the tracking using SLEAP

was sufficiently precise. When tracking a single fish, the error rate was low and errors occur when fish took unusual postures (see iii). For dyadic interactions, errors

were more frequent and dependent on the distance between animals (see iv).

addition, the input scaling of the centered instance model was
set to 1.25, to obtain a smaller receptive field than for the
centroid model.

iv) Training: the customized training profile and the training
data set were transferred to Google Colab. Training was then
run in Google Colab using a Python script based on the
example notebooks for top-down models (function: SLEAP-
train; profiles: centroid.json and centered_instance.json). We
used “flow” as the tracking method. Here, SLEAP takes
instances from the prior frames. Then, points in the instance
are shifted based on the use of optical flow (Xiao et al., 2018).
These shifted points are used as the candidate instances.

v) Retraining: after training, the network was used to predict
the skeleton positions of the fish for 5 of the previous 10
videos. These predictions were transferred back to our local
PC. We manually picked 10 frames per video where the
quality of the labeling was low. Incorrect labels were corrected,
and a new training data set was created, including the
previously randomly chosen 50 data frames and now selected
and corrected 50 data frames. In this way, the network got
randomly chosen data as an input as well as the data that were
specifically hard to allocate correctly. This data set was again
transferred to Google Colab, and the model was retrained.
Afterward, following the abovementioned procedure, the

remaining five videos were used to add more labels to the
training data set. In a total of 150 frames that were used to train
the network, 50 of those were randomly chosen, and 100 were
chosen based on the detection performance of the neuronal
networks from the different training iterations.

vi) Analyzing videos: following steps i–v, we analyzed all videos
(single- and multi-animal videos) using Colab. The obtained
videos were then further processed using the SLEAP-label GUI
to correct the remaining errors on local PCs (Figure 4). The
results were then saved in hdf5-format for further processing
in Matlab.

Dyadic Interactions
To study dyadic interactions, fish were placed on opposite sides
of the experimental setup. A gate prevented them from entering
the inner part of the arena, and the gates were operated remotely
and opened simultaneously after an acclimatization time of
10min. Behavior was videotaped at 30 frames/second for the first
min following gate opening, and the first contact behavior was
analyzed based on these videos. First contact was defined as the
first time fish touched each other. EIs were calculated from the
simultaneously recorded EODs.
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FIGURE 5 | The transition from the fish skeleton estimated by SLEAP to a three-dimensional (3D) model was used to model the electric images (EIs). The skeleton

obtained from the tracking procedure is shown in the upper panel and is fitted by a third-order polynomial. A set of pre-defined ellipses that form the body of the 3D

fish are then distributed along the polynomial (middle). Note that the ellipses can be scaled in size and distance to match the true size of the fish. The points of the

ellipses represent the nodes that are connected to form a total of 1,666 triangles for which we then calculated the EIs using a well-established boundary element

method (BEM) (bottom).
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FIGURE 6 | (A) Performance of the tracking with respect to six different electrode configurations. Electrode pairs are marked with different colors, where +

corresponds to the positive and – to the negative pole. With the exception of the arrangement shown in (iii), all recordings were differential (refer to matching colors of

electrodes, depicted as circles). In the setup shown in panel (iii), the ground electrode was situated in the middle of the tank. The top view of the arena shows where

tracking errors larger than 3 cm occurred. The magnitude of these errors is color coded (see bar). (B) Box-and-whisker plots of the spatial error for the six electrode

configurations. The configurations 1, 3, and 4 had the best performance and configuration 1 was further used in the behavioral experiments on dyadic interactions

(see text for details).

FIGURE 7 | (A) Estimation error calculation. The distance between each skeleton node of the predicted fish (based on the RFR) and the tracked fish (based on

SLEAP) was measured. The predicted fish location that had the smallest sum of distances from either of the two tracked fish (estimation error) was considered as the

EOD producing fish. (B) Histogram of correct (black) and incorrect (red) identity assignments as a function of the difference in estimation error of both fish

(abs(errorID1-errorID2, red)). (C) We tested different parameters to assess the likelihood that the model erroneously assigned EODs to individuals. The first parameter

used was the distance between individual fish (black), the second the estimation error (blue), and the third the difference between the estimation errors of both fish

(red). The percentage of mislabeled EOD-IDs found during manual re-inspection of the data is plotted against the percentage of data that had to be checked for

different measurements. Reading example: checking 5% of the data using a threshold criteria based on the difference between both fish resulted in a capture of 30%

of all errors, or in other words the 5% of the data that had the smallest difference between both fish contained 30% of all mislabeled EODs. When checking 5% of the

data using a threshold criteria relying on the estimation error alone allowed an identification of only 18% of all errors. However, when checking 5% of the data using the

threshold criteria based on the difference in estimation error, 40% of all errors could be found. Hence, using the threshold criteria based on the difference in the

estimation error is the most efficient way to find wrongly assigned EODs.

Within the first 10min after the first contact, a 5-min
video was recorded at 10 frames/second. This video was
used to evaluate the fight resolution. Fight resolution

was determined by counting the number of attacks and
observing the chasing behavior from these videos. An
attack was defined as a contact between both animals in
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which at least one individual changed body posture as
a result of the contact. Chasing was defined as one fish
being followed by the other fish using approximately the
same trajectory.

Modeling the EIs
Passive and active electroreception is mediated through different
electroreceptors that both occur and are distributed over the skin
of an animal. The electric pattern, i.e., the distribution of local
field intensities, provides the relevant input to both modalities.
This spatial distribution is referred to as the EI (Caputi and
Budelli, 2006). To distinguish between active and passive sources,
we will refer to the sensory images generated by the presence of
external electric fields as passive EI and to those images generated
by the distortions through elements in the electrosensory scenery
as active EI.

Electric images were computed with the software originally
developed by Rother (2003). This approach was verified and
utilized in previous studies (Rother et al., 2003; Migliaro et al.,
2005; Sanguinetti-Scheck et al., 2011; Hofmann et al., 2013, 2017;
Pedraja et al., 2014). The model estimates the transcutaneous
current density for each of the points on the surface of the animal
and is based on the following assumptions:

(1) All media are ohmic conductors. This means that the vector
representing the current density at the point x (J(x)) is
proportional to the vector electric field at the same point
E(x). Then,

J(x) = σ(x)E(x), σ(x) > 0. (2)

The proportionality constant σ (x) is the volumetric
conductivity at the point x.

(2) The model neglects capacitive effects, that is, we assume that
there is no accumulation of charge p(x) at any point in space.

δp(x)/δ(t) = 0. (3)

(3) Given that the dielectric relaxation of the media in general
is shorter than the minimum significant period of the
EOD Fourier components, the model is an electrostatic
approximation (Bacher, 1983).

(4) The space is divided into volumes of homogeneous
conductivity. The fish and the different objects are defined
as the zones of different conductivity immersed in an infinite
water medium. Each object is covered by a thin resistive layer
(the skin in the case of the fish), which can be homogeneous or
heterogeneous (magnitudes specified as desired).
The model is based on the charge density equation which,
under the above assumptions, implies that the charge
generated by the sources f (x) is equal to the charge diffusion:

δp(x)/δ(t) = f(x)− ∇ · J(x) (4)

Using Equation (3) and then Equation (2)

∇·J(x) = f(x) H⇒ σ∇·E(x) = f(x) (5)

The electric field E(x) can be expressed as E(x) = –
∇ϕ, therefore,

σ∇2ϕ(x) = −f(x), (6)

where ϕ(x) is the local potential at point x.

Equation (6) is a partial differential equation known as the
Poisson equation and can be solved for every point in space,
in our case the fish boundaries by using the boundary element
method (BEM) as proposed by Assad (1997). For a formal
explanation of the BEM (please see Assad, 1997; Hunter
and Pullan, 2001; Rother, 2003; Brebbia et al., 2012). Briefly,
this method determines the boundary conditions by solving
a linear system of M · N equations for M poles and N
nodes, with the unknown variables being the transepithelial
current density and potential at each node (Pedraja et al.,
2014). The transepithelial current density and potential are
calculated for each node and linearly interpolated for the
triangles formed by the nodes. The choice of nodes allows for
an approximation of the shape of objects and fish, and by
scaling the number of nodes the spatial resolution of the EIs
can be chosen to match the computational power available.
We based our model on a set of 49 ellipses composed of
17 nodes each (835 nodes forming 1,666 triangles) (Rother,
2003). The size of the fish can be scaled by changing the
two diameters of each ellipse and changing the distance
between ellipses.

To adjust the model to the actual fish posture, a third-
order polynomial was fitted to the six skeleton points of the
actual fish (see above). The fish-body ellipses were realigned
according to the first derivative of the fitted polynomial to
match the rotation of the ellipses to the curvature of the
posture of the fish. From this, nodes and surfaces are produced
to result in the final three-dimensional (3D) reconstruction
for which the electric current and the transcutaneous voltage
were calculated (Figure 5, Hofmann et al., 2014; Pedraja et al.,
2020).

For our analysis, we separated passive and active EI
information. This basically means that for each EOD we
calculated the resulting EI perceived by the EOD-emitting fish
(active EI) and the EI provided to the non-emitting receiving
fish (passive EI). This was done for all EODs up to the first
physical encounter of the fish. Active EIs were calculated as the
difference between the electrosensory stimulus (scene with both
fish) and the basal field (scene with just the discharging fish) at
the discharging fish sensory surface. Passive EIs were obtained
by using the electrosensory stimulus at the sensory surface of the
nondischarging fish (Pedraja et al., 2016). Based on the EIs, we
estimated which fish could have obtained sufficient information
to detect the other fish first. For this, we consider the moment
where the EI amplitude of one fish exceeded that received
by the other fish by a factor of two. This was independently
determined for both passive and active EI. This analysis was
limited to inter-fish distances where EI amplitudes exceeded
currents above 0.1 µA as this is the internal noise range of
the model.
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RESULTS

In the following, we will first detail the steps we took in
optimizing the EOD recording setup using supervised learning
methods to then demonstrate how two different models
performed in automatically localizing an EOD-emitting fish in
the setup.

To further demonstrate the robustness of the approach we
found to be best suited, we then will report data where the RFR
model approach is being used on dyadic interactions of fish to
investigate if and how the RHP may be perceived and used in
conflict resolution between dyads of G. petersii.

Using Supervised Learning to Predict Fish
Position and Orientation of Simulated Data
The positioning of the electrodes in the experimental arena
is important to obtain suitable coverage of the EODs and
sufficient resolution to distinguish EODs between individual
fish. By combining a simulated electric field to mimic a
swimming electric fish with a supervised learning-based
algorithm that predicted the position of this fish mimic, we
compared six different electrode arrangements, including
both differential and unipolar recordings (Figure 6). For
this, electrode arrangement along the tank walls was
altered. We did not test electrodes on the floor as this
would have interfered with the video recordings, but the
methodology of optimizing the electrode arrangement described
here is applicable to arbitrary experimental layouts and
electrode configurations.

The degree to which the supervised learning model was
able to correctly locate the fish mimic was used to obtain the
best of the six arrangements tested. Configurations 1–6 are
shown on Figure 6A(i–vi), respectively. With one exception,
the model performance was good, as indicated by R² scores
>0.9. The exception is the arrangement two. Here, the axis
of neighboring (differential) recording pairs was continuously
rotated from one pair to the next, leading to a comparatively
good resolution in the middle of the tank, while positioning
was poor toward the tank walls. A similar arrangement
(configuration 3) with the reference in the center of the tank
improved the performance, particularly avoiding errors between
fish positions at opposite electrodes, but still mislocating the
mimicked fish toward the walls. Similar problems occurred
for the configurations 5 and 6. Configuration 6 used the five
electrode pairs that form a perpendicular net, whereas two
electrodes pair have a different angle by crossing from corner
to corner. This resulted in satisfactory spatial resolution at the
corners and the center of the tank but in larger errors in the
remaining arena.

In summary, configurations 1, 3, and 4 are determined
as suitable electrode configurations, in the majority of mimic
positions and orientations, the mislocation of the mimic EOD
was below 2 cm (Figure 6B). Given that the fish are at least
10 cm in length, an error of this magnitude was considered
acceptable. Fish tend to spend much time at the tank walls and
corners (personal observation; Teyke, 1989), configuration 3,
where errors were particularly high for the corners of the tank,

was also discarded. Configurations 1 and 4 were comparable, we
chose configuration 1 for all the following experiments. With
seven electrodes, we assumed (though we did not test this) that
we might have a slightly better performance close to the borders
of the setup when working on real data as there is a higher spatial
sampling of EOD data.

EOD Detection
The analysis of EOD data involved detecting the time point of
the event and extracting the EOD waveform in a standardized
manner (Figure 3A). Both are needed as an input for our RFR
model to estimate fish position from the field geometry. As the
initial training of the network was based on the data with a single
fish in the tank, it could not correctly assign EODs of two fish that
occurred simultaneously within the time window of 400 µs used
during the training. EOD doublets were reliably found by looking
at the deviation of the EOD waveforms from the average EOD
waveform (Figure 3B). False EOD doublet detections typically
occurred when the electric potentials were low on all electrodes.
This process could also be fully automated in the future. Note,
however, that the used algorithm is limited to dyadic interactions.

Tracking With SLEAP
The performance of the tracking model was different for single-
(n = 72,000 frames) vs. multi-animal videos (n = 18,000
frames) (Figure 4). Tracking of single animal was efficient. The
fish was detected in all frames but one and the body posture
needed to be corrected in <2% of the frames (Figure 4, bottom
left). Corrections to the tracking were thus limited and mainly
restricted to situations where the fish made unusual movements,
e.g., tried jumping. With two fish in the arena, one of either fish
was not detected in less than 1% of the frames. This was typically
the case when fish were very close to each other or partially
overlapped (Figure 4, bottom right). The posture, i.e., the six
nodes of the midline of the animal needed adjustment in about
5% of the frames.

Using Supervised Learning to Predict Fish
Position of Real Fish
We tested an RFR model and different MLP models of various
numbers of hidden layers to predict the fish position from the
EOD data. Using the single fish recordings from data set I, we
could establish how well the models fared in predicting the fish
position. For simplicity, we now only considered the error in the
anchor point (second head node, see Figure 7). The error that
is the distance between the tracked anchor point and the EOD
predicted anchor point was the smallest (median: 1.48 cm) for
the RFR model but the MLP model with 200 hidden layers had
an almost comparable performance (median: 2.18 cm). Given its
performance, we chose to continue with the RFR model only.

Indeed, the RFR model was further found to be valuable in
identifying the EOD-emitting fish in dyadic interactions (data
set I). Here, the performance that is correctly labeling EOD-IDs
(and the localization of the emitting individual) was around 95%.
Errors mainly occurred for short distances between individuals
(Figure 7C) and are also dependent on fish positions.
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With this, it was possible to further improve the performance
focusing on the data most likely to cause problems. Therefore,
we calculated the difference of the estimation error for both
fish (see Figure 7A). By focusing on the 5% of the data where
the difference in the estimation error was the smallest, 40%
of all wrong assignments were found, enabling us to manually
improve the total error to <3%. The inclusion of 10% of the data
with the lowest difference in the estimation error resulted in an
assignment error of 2%.

Given the performance of the model and the enormous
reduction of observer-based annotation time, we applied the
workflow established now to dyadic interactions of new fish
pairs that differed in size from the fish used in training the
network (data set II). In addition, the interactions studied now
were limited to the initial approach phase, where the inter-fish
distances and relative orientations presumably will be different
from the training conditions. Despite these differences, the
performance was found to be robust: less than 6% (n = 348) of
the EODs (n = 5,848) were wrongly assigned (in 6% of all EODs
a human observer chose a different EOD-emitting fish).

Dyadic Interactions
About 13 pairings of fish that had not physically encountered
each other before were analyzed. In five pairings, the difference
in body size was 23–28%, whereas in the remaining eight pairings
the size difference was between 2 and 17%. We found no
dependency between the fish size and the animal that initiated the
first encounter (binomial test; for all pairings 7 (larger) fish in 13
pairings initiated an attack, p = 0.5; for length difference <20%
5 (larger) fish in 8 fish pairings initiated an attack, p = 0.36, and
for length difference >20% 2 (larger) fish in 5 pairings initiated
an attack, p > = 0.5; Figure 8A).

Based on the number of attacks initiated by an individual,
we determined the dominance status within each pairing
(Figure 8B). In pairings with a large size difference (>20%),
the larger fish was always the dominant individual, whereas the
outcome of the encounter was not predictable in the smaller
size difference pairings (binomial test; 5/5, p = 0.031 for length
difference >20% and 4/8, p = 0.636 for length difference <20%,
Figure 8B). Considering all pairings, no significant relation
between size difference and dominance was found (binomial test;
9/13, p= 0.133). We also measured the time individuals spent in
chasing each other. Aggression, as now measured by the number
of attacks a fish does, overall was higher in dyadic interaction of
low size differences (Figure 8C), whereas in interactions of larger
size differences there were fewer attacks that were predominantly
executed by the larger fish (Figure 8C).

Initial Approach Phase
Regardless of the size difference, the approaching fish always
initiated the first contact. In 9 of the 13 interactions, these
contacts were directed toward the tail of the opponent, in
the remaining 4 cases, the head was targeted. To understand
if the electric sense contributes to the behavior and whether
active or passive electrolocation is used, we next modeled the
electrosensory input for each first-approach trajectory. Figure 9
shows the results of the EI reconstruction for two exemplary

dyadic interactions. While Figures 9A,C depict the data for a
dyad with a large size difference, Figures 9B,D show the result
for a small size difference interaction. Although the trajectories
leading to a contact varied between fish, we frequently observed
that the passive and active EIs peaked on the head and tail
regions, almost irrespective of the relative orientation between
contenders (e.g., Figures 9A,B right).

Independent of the size differences, the passive EI could best
explain which fish approached first. In 10 of the 13 cases, the
fish initiating the attack is predicted to having perceived the
contenders passive EI before the contender would have detected
the approaching fish (binominal test; p = 0.046). In contrast, the
active EI was only more intense in the approaching fish in 6 of 13
cases (binomial test; p> = 0.71). With respect to size differences,
the passive EIs were the largest for the attack leading fish in
all cases for the >20% group (binominal test; 5/5, p = 0.031).
Meanwhile, this was not the case in the smaller size difference
pairings (binomial test; 5/8, p = 0.363). This indicates that the
information obtained from the passive EI guides the approach
leading to the first contact.

DISCUSSION

We now introduced the use of supervised learning models to aid
in the study of (pulsatile) weakly electric fish and applied the
methodology to investigate the role of electrosensory information
in the dyadic interactions of G. petersii. Our initial objective
was to introduce a workflow to overcome the bottleneck that
the time-consuming human-observer-based allocation of EODs
to individual fish poses to the study of electrocommunication,
especially in pulse-type species. For this, we first optimized the
recording configuration by combining a simple electric field
model that mimicked the electric field of the fish with an
RFR model from the open Scikit-learn package. By combining
the open-source tracking tool SLEAP with an RFR model, we
then showed that the EOD data recorded using the recording
configuration we had determined as the best for our setup
can be used to automatically assign EODs to two fish. As
expected, this automatic procedure was not free from errors.
However, by reanalyzing a well-defined subset of the data (frames
where the difference in the estimation error of two individuals
was low), the precision used for identifying EOD-emitting fish
was significantly improved without requiring substantial user
interference (Figure 7). Based on the automated EOD-labeling
and tracking of individuals, we were then able to model the
sensory input that each fish experiences by applying a BEM.

The obtained data revealed that in agonistic interactions
between fish of different sizes, the attack initiation appears to
be mediated by electrosensory information of the contender’s
direction (Figure 9). Specifically, the fish that finds the electric
field generated by the other fish first will initiate the approach
that leads to the first contact. However, despite the finding that
larger fish dominate in agonistic encounters (Figure 8), we found
no clear relation of the probability to lead the attack with respect
to the size difference between dyads. This makes it plausible that

Frontiers in Behavioral Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 718491

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Pedraja et al. Agonistic Behavior in Electric Fish

FIGURE 8 | Effect of fish size on first contact initiation and dominance status. (A) The first contact was initiate independent of fish size (binomial test, p = 0.5, 0.5, and

0.36 for all, >20%, and <20% size differences, respectively). (B) The dominance status dependent on fish size for size differences >20% (binomial test, p = 0.031).

No difference in dominance was found for small size differences (binomial test, p = 0.636). (C) Aggression level also was dependent on size difference. Big fish

attacked significantly more during dyadic interactions of large size differences while more aggressive behaviors (number of attacks) were found in an interaction among

fish of small size differences. Red and blue symbols represent the large and small fish, respectively.

the RHP of the contender is not available from either passive or
active images during first encounters.

Taken together, the supervised learning methods and the
workflow established now should prove valuable for future
studies of electrocommunication in weakly electric fish.

Supervised Learning Algorithms to Study
Interactions of Weakly Electric Fish
In this study, we used SLEAP to track individual fish from low-
resolution video recordings. Compared to DeepLabCut, another
open-source environment, which is capable of tracking multiple
individuals (Mathis et al., 2018; Nath et al., 2019), our choice
was based on the comparative ease to install SLEAP on local PCs
and the stability of the GUI on our PC (Windows 10, processor:
Intel R©Xeon R©CPU E3-1270 v5 @ 3.60GHz 3.60 GHz, working
memory: 32GB RAM). However, our approach could also be
implemented in DeepLabCut or similar constantly evolving
tracking toolboxes (Lauer et al., 2021). To enhance the efficiency
of model training and tracking, we decided to move to Colab.
As the data storage size is limited in Colab, video material
should not be too big and we would recommend to rely on local
high-performance clusters of PCs if possible.

The EOD allocation to fish-ID was implemented based on
an RFR model within the Scikit-learn package implemented
in Python (Pedregosa et al., 2011). This is just one of many
supervised learning methods. As an example, we tested an MLP
model on the single fish recording of data set I (Figure 1). The
RFR model outperformed the MLP models even for hidden layer
sizes of 200 (median estimation error: RFRmodel: 1.48 cm; MLP:
2.18 cm). Nevertheless, both approaches were comparable with
respect to their accuracy.

Our workflow was based on a laboratory condition in which
visual tracking is easy. We thus used actual fish recordings for
the training of the RFR model. Using real fish data instead
of simulated data has the advantage that we did not have to
model the boundary effects. However, more refined electric
field modeling (e.g., Comsol-based simulations) could also be
used.We would envision, however, that ourmeasurement-driven
approach will be swifter to implement, particularly for more
complex setups than the comparatively reduced arena used here.

Once trained, the RFR model could also be used to predict
the fish location without the need for additional video tracking if
precision must not be very high. The median error of the model-
tracked head position was about 1.48 cm, which is comparable
to the data reported for other electrical fish tracking algorithms
(Jun et al., 2013; average accuracy: 2.5 cm for eight-channel
configuration). A more refined electrode array would further
improve the precision attainable. Jun et al. (2013) used a dipole
model to create a lookup table that was later used to localize fish.
A dipole model can be used as a suitable approximation of the
electric field of the weakly electric fish in simple environments
but performance will degrade in a more complex environment as
model performance is reduced near objects (Jun et al., 2013). Our
approach is less sensitive to the complexity of the environment
as long as the complexity is already introduced during the
training sessions.

The tracking precision of the attack data set was reduced as
compared to the single fish tracking data (single fish: 1.48 cm and
dyadic interaction: 3.2 cm). This reduction in performance likely
has several causes: the trajectories may have covered different
parts of the experimental setup compared to the training data
set; secondly, fish in the attack group were more heterogeneous
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FIGURE 9 | Analysis of electrosensory input calculated for the initial approach phase during the agonistic encounter of dyads of Gnathonemus petersii. (A,B) Left:

approach trajectories of two fish of large (A) and small size differences (B). Points indicate the fish positions and gray lines indicate their orientations. Time from start

to the first physical encounter is depicted by the gray gradient of the orientation labels (light gray = start). Middle: color-coded RMS of the active EIs of the sequences

are shown on the left. Here, zero on the y-axis indicates the start of the experiment (see black arrow), and the images end with the first contact. Right: same as data

on the left but for passive EIs. (C,D) The maxima of active (left) and passive (right) EI of both fish are plotted against time. The distance between individuals is shown in

the color-coded bar above the plot. Blue colors indicate close distances, whereas yellow colors represent larger distances. Note that in C the distance does not

constantly reduce over time. The black arrows indicate the time point at which the EI of both fish start to diverge. The fish perceiving the strongest EI is shown in a

color-coded fashion. The data in C corresponds to the approach depicted in (A), whereas the data in (D) refer to the approach depicted in (B). Red and blue symbols

represent the large and small fish, respectively.

in size than the pair used in training, and finally, the pose of
animals during the dyadic interactions might have differed from
the training conditions. Most likely, the different spatial coverage
had the most significant effect. Even though we had split the
data for the initial training into training and a test set, both still
were taken from the same trajectories. Thus, the spatial coverage
along these trajectories was higher than that over the remaining
area of the setup. We did not attempt to quantify the magnitude
of this effect. One possibility to overcome it in the future is to
sample the training data set to achieve equal spatial sampling
of the arena. Furthermore, similar to the retraining approach
already applied for the pose estimation tracking using SLEAP,
it might be useful to add the corrected EOD assignments to the

training data set. Another option that would improve localization
performance would be to substantially enlarge the data set used
to train the model.

In principle, the training of the RFR model could also
be performed with the simulated data. For this, we would
recommend more sophisticated methods that incorporate a
boundary effect. Alternatively, one could exclude the data
obtained close to walls or close to electrodes (Jun et al., 2013).
Because the fields in our case can be viewed as static and no
capacitive properties needed to be included, the prior solution
could be achieved using analytically methods like the finite
element method or the boundary element method as used in
this case to model the EIs (Gómez-Sena et al., 2014). With
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the improvement (even sampling during training) as mentioned
earlier, we consider the training of the model with real fish data as
a suitable and fast approach, as demonstrated here. For laboratory
work conducted in large tanks, using an RFR model might also
be a promising approach. However, it seems advisable in such a
scenario to use the modeled and calibrated data as an input for
training, as equal spatial coverage of larger arenas would require
long sampling periods. For fieldwork, it appears questionable
whether reasonably small localization errors can be achieved. At
present, there are few methods available to track weakly electric
fish in the field. One particularly interesting study in this regard
was to estimate the position and orientation of fish (up to three
animals at a time) by solving an inverse problem based on
the known sensor geometry and an electrostatic dipole model
through Bayesian interference (Madhav et al., 2018). The spatial
precision is not sufficient to enable the resolution of directly
interacting fish, but certainly the approach will be of great interest
for investigating locomotor behavior on larger scales, such as
territorial or foraging movements and excursions in the field.

Although we now evaluated and studied the suitability of
the proposed methods and workflow for dyadic interactions, no
major constraints for working with more animals exist. The RFR
model estimates fish position based on the electric potentials
at the electrode. The number of fish in the tank does have
an influence on the precision of that measurement as they
usually have a different conductivity as the water. However, as
the position estimation of the RFR model is based on several
electrodes, it is likely relatively robust against this interference.
However, the likelihood of fish being close together and of similar
or identical orientation also increases with the number of fish in
the setup. Thus, the fraction of frames that will require manual
inspection is expected to scale up with the number of individuals.
A partial remedy to this would be a denser coverage of the arena
by using more electrodes. This will be of particular relevance for
setups with more water depth.

In conclusion, we are confident that our approach is also
suitable to track small groups of animals. However, the limitation
on the number of animals being tracked together will need to be
tested for each experimental setup.

The Role of the EI During Dyadic
Interactions
Agonistic behavior is one of a variety of behaviors that are
considered to be important in conflict resolution between
members of the same species (Lorenz, 1963; King, 1973).
It can include the emergence of individual aggression that
often occurs during the formation of hierarchical relationships
within populations (Kudryavtseva, 2000). The rank within
a group itself is often directly related to the access to
resources, including territories, sexual partners, or food.
Studying social interaction that shapes this access, in this
case, agonistic encounters, in electric fish is particularly
advantageous: Their social behavior includes both electric
and locomotor displays that in part depend on a well-
known and an experimentally accessible neural circuit.
Furthermore, the ability to computationally reconstruct the

electrosensory information that contenders could obtain in (or
prior to) agonistic encounters can provide access to a deeper
understanding of behavioral choices (and their outcomes) in
social interactions.

As expected from previous work with the same species as the
one investigated in our work, fish length was a good predictor
of the outcome of an aggressive encounter (Terleph, 2004). The
larger fish always dominated the encounter by showing a higher
number of attacks (Figure 8). However, when the size difference
between the two fish was smaller than <20%, the dominance
status could not be predicted by size alone. Furthermore, in
these encounters, the aggression level was higher as revealed by
the more frequent attacks (determined for 5min after the first
encounter). While size difference was predictive of the outcome
of the agonistic interaction, it did not correlate with the decision
which fish initiated the first approach. This may be explained in
two ways: either fish cannot infer the relative size difference based
on the active or passive electrosensory information received,
or the size difference is ignored in the decision to attack.
Meanwhile, more research is required to decide this question,
our analysis of the electrosensory input allowed us to conclude
that the passive electrosensory information rather than the active
electrosensory information would be the source most likely to
be of importance in this behavior. We found that indeed the
magnitude of the passive electrosensory image perceived by the
approaching fish was a suitable predictor of attack initiation.
This suggests that, while passive electrolocation mediates the
information about the position of a contender, the RHP (size)
is either ignored or not perceived at this stage. The finding
that EIs, both passive and active, were mainly focused on the
head in part is explained through the anatomy rather than the
trajectories. As a consequence of the tapering off of the body
thickness toward the tail, which reduces the cross-sectional area
and thereby increases the internal resistivity, current (generated
either by the fish itself or by external sources) is funneled to
the head region. As a result, the maximal current densities
(and transcutaneous voltages) occur at the head region. This
could aid in the detection of contenders and the assessment of
their RHP. While the latter was not found in our study, the
finding that passive EIs likely provide (spatial) information to
the fish initiating the first contact agrees well with the results
of dyadic interactions in G. omarorum, a South American
weakly electric fish species (Pedraja et al., 2016). The similarity
suggest that the role of the EI in agonistic encounters may
be shared between different independently evolved electric fish
species. With respect to the methodological aspect, the methods
established now seem suitable to further our understanding
of the role of active and passive electroreception in different
situations: agonistic contest, courtship display, exploration of
objects, and determination of different perceptual parameters in
collective behavior.
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