organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Fluorophenyl)-1-phenyl-1*H*benzimidazole

K. Jayamoorthy,^a S. Rosepriya,^b A. Thiruvalluvar,^b* J. Jayabharathi^a and R. J. Butcher^c

^aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, ^bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 7 August 2012; accepted 8 August 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.063; wR factor = 0.160; data-to-parameter ratio = 36.9.

In the title molecule, $C_{19}H_{13}FN_2$, the benzimidazole unit is close to planar [maximum deviation = 0.0342 (9) Å] and forms dihedral angles of 58.94 (3) and 51.43 (3)° with the phenyl and fluorobenzene rings, respectively; the dihedral angle between the phenyl and fluorobenzene rings is 60.17 (6)°. In the crystal, three $C-H\cdots F$ hydrogen bonds and two weak $C-H\cdots \pi$ interactions involving the fused benzene ring lead to a threedimensional architecture.

Related literature

For linear and non-linear optical properties of benzimidazole compounds, see: Cross *et al.* (1995); Bu *et al.* (1996); Dirk *et al.* (1990). For a related structure, see: Rosepriya *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{13}FN_2\\ M_r = 288.31\\ \text{Monoclinic, } P2_1/n\\ a = 8.7527 \ (4) \ \text{\AA}\\ b = 10.1342 \ (4) \ \text{\AA}\\ c = 17.0211 \ (6) \ \text{\AA}\\ \beta = 104.187 \ (4)^\circ \end{array}$

$V = 1463.75 (11) \text{ Å}^3$	
Z = 4	
Mo $K\alpha$ radiation	
$\mu = 0.09 \text{ mm}^{-1}$	
T = 123 K	
$0.47 \times 0.42 \times 0.15 \text{ mm}$	r

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{\rm min} = 0.961, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	199 parameters
$wR(F^2) = 0.160$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
7347 reflections	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

13721 measured reflections

 $R_{\rm int} = 0.031$

7347 independent reflections

5352 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the fused benzene ring (C4-C9).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4 - H4 \cdots F4^{i}$	0.93	2.46	3.3640 (14)	164
$C7 - H7 \cdot \cdot \cdot F4^{ii}$	0.93	2.43	3.3058 (13)	157
C26−H26···F4 ⁱⁱⁱ	0.93	2.52	3.4348 (14)	166
$C16-H16\cdots Cg2^{iv}$	0.93	2.75	3.5443 (12)	144
$C22 - H22 \cdots Cg2^{v}$	0.93	2.80	3.5245 (13)	136

Symmetry codes: (i) x, y + 1, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x, -y + 1, -z; (v) -x + 1, -y + 1, -z.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

KJ thanks the DST (No. SR/S1/IC-73/2010) for a fellowship. JJ thanks the DST (No. SR/S1/IC-73/2010), and the UGC [F. No. 36–21/2008 (SR)] and the DRDO (NRB-213/MAT/10–11) for providing funds to this research study. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5141).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Bu, X. R., Li, H., Derveer, D. V. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331–7334.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cross, E. M., White, K. M., Moshrefzadeh, R. S. & Francis, C. V. (1995). *Macromolecules*, 28, 2526–2532.
- Dirk, C. W., Katz, H. E., Schilling, M. L. & King, L. A. (1990). Chem. Mater. 2, 700–705.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Rosepriya, S., Thiruvalluvar, A., Jayamoorthy, K., Jayabharathi, J. & Linden, A. (2011). Acta Cryst. E67, 03519.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o2708 [doi:10.1107/S1600536812035155]

2-(4-Fluorophenyl)-1-phenyl-1*H*-benzimidazole

K. Jayamoorthy, S. Rosepriya, A. Thiruvalluvar, J. Jayabharathi and R. J. Butcher

Comment

Benzimidazole based chromophores have received increasing attention due to their distinctive linear, non-linear optical properties and also due to their excellent thermal stability in guest-host systems (Cross *et al.*, 1995). The imidazole ring can be easily tailored to accommodate functional groups, which allows the covalent incorporation of the NLO chromophores into polyamides leading to NLO side chain polymers (Bu *et al.*, 1996). Most π -conjugated systems play a major role in determining second-order NLO response (Dirk *et al.*, 1990). Since our group is doing research in organic light emitting devices (OLEDs), we are interested in using the title compound as a ligand in the preparation of Ir(III) complexes and in studying the photophysical properties of these complexes. Rosepriya *et al.* (2011) have reported a related crystal structure, namely 1-(4-Methylbenzyl)-2-(4-methylphenyl)-1*H*-benzimidazole.

In the title molecule, $C_{19}H_{13}FN_2$ (Fig. 1), the benzimidazole unit is almost planar [maximum deviation = 0.0342 (9) Å for C6]. The dihedral angles between the planes of the benzimidazole and the phenyl and the fluorobenzene groups are 58.94 (3) and 51.43 (3)°, respectively. The dihedral angle between the planes of the phenyl and the fluorobenzene rings is 60.17 (6)°. Intermolecular C4—H4…F4, C7—H7…F4 and C26—H26…F4 hydrogen bonds and weak C16—H16… π and C22—H22… π interactions involving the fused benzene ring are found in the crystal structure (Fig. 2, Table 1).

Experimental

To *N*-phenyl-*o*-phenylenediamine (3.128 g, 17 mmol) in ethanol (10 ml) was added 4-fluorobenzaldehyde (1.9 ml, 17 mmol) and ammonium acetate (3 g) over about 1 h while maintaining the temperature at 353 K. The reaction mixture was refluxed until the completion of reaction, as monitored by TLC. The reaction mixture was extracted with dichloromethane. The solid that separated out was purified by column chromatography using petroleum ether: ethyl acetate as the eluent. Yield: 2.47 g (50%). The title compound was dissolved in acetonitrile and allowed to slowly evaporate for two days to obtain crystals suitable for X-ray diffraction studies.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

The packing of the title compound, viewed down the *b* axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

F(000) = 600

 $\theta = 3.1 - 37.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Plate, colourless

 $0.47 \times 0.42 \times 0.15 \text{ mm}$

T = 123 K

 $D_{\rm x} = 1.308 \text{ Mg m}^{-3}$ Melting point: 369 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3202 reflections

2-(4-Fluorophenyl)-1-phenyl-1*H*-benzimidazole

Crystal	data
---------	------

C₁₉H₁₃FN₂ $M_r = 288.31$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.7527 (4) Å b = 10.1342 (4) Å c = 17.0211 (6) Å $\beta = 104.187$ (4)° V = 1463.75 (11) Å³ Z = 4

Data collection

Agilent Xcalibur Ruby Gemini	13721 measured reflections
diffractometer	7347 independent reflections
Radiation source: Enhance (Mo) X-ray Source	5352 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\rm max} = 37.7^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
ω scans	$h = -12 \rightarrow 15$
Absorption correction: multi-scan	$k = -12 \rightarrow 17$
(CrysAlis PRO; Agilent, 2012)	$l = -28 \rightarrow 24$
$T_{\min} = 0.961, T_{\max} = 1.000$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
S = 1.04	H-atom parameters constrained
7347 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0685P)^2 + 0.2726P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F4	0.45822 (10)	-0.05502 (7)	0.23042 (4)	0.0296 (2)
N1	0.25329 (11)	0.44506 (9)	-0.01000 (5)	0.0181 (2)
N3	0.32447 (11)	0.53932 (9)	0.11392 (5)	0.0204 (2)
C2	0.30699 (12)	0.42744 (10)	0.07314 (6)	0.0181 (2)
C4	0.27719 (14)	0.77382 (11)	0.06432 (7)	0.0224 (3)
C5	0.22041 (14)	0.84918 (11)	-0.00490 (7)	0.0241 (3)
C6	0.16727 (14)	0.79006 (11)	-0.08140 (7)	0.0242 (3)
C7	0.17379 (14)	0.65470 (11)	-0.09192 (6)	0.0227 (3)
C8	0.23331 (12)	0.57999 (10)	-0.02222 (6)	0.0184 (2)
C9	0.28005 (12)	0.63684 (10)	0.05527 (6)	0.0192 (2)
C11	0.21724 (12)	0.34608 (10)	-0.07164 (6)	0.0181 (2)
C12	0.29236 (14)	0.34944 (12)	-0.13497 (6)	0.0250 (3)
C13	0.25650 (17)	0.25270 (14)	-0.19472 (7)	0.0326 (4)
C14	0.14865 (18)	0.15428 (13)	-0.19126 (7)	0.0342 (4)
C15	0.07463 (16)	0.15197 (12)	-0.12781 (8)	0.0296 (3)
C16	0.10831 (13)	0.24826 (11)	-0.06771 (6)	0.0222 (3)
C21	0.34251 (12)	0.29683 (10)	0.11128 (6)	0.0184 (2)
C22	0.43985 (13)	0.20730 (11)	0.08453 (6)	0.0207 (3)
C23	0.47933 (13)	0.08832 (11)	0.12460 (6)	0.0226 (3)
C24	0.41834 (13)	0.06137 (11)	0.19050 (6)	0.0216 (3)
C25	0.31950 (14)	0.14570 (11)	0.21819 (6)	0.0240 (3)
C26	0.28287 (14)	0.26534 (11)	0.17816 (6)	0.0224 (3)
H4	0.31207	0.81317	0.11491	0.0269*
Н5	0.21753	0.94056	-0.00049	0.0289*
Н6	0.12661	0.84318	-0.12621	0.0290*
H7	0.14030	0.61573	-0.14271	0.0273*
H12	0.36522	0.41522	-0.13727	0.0299*

supplementary materials

H13	0.30549	0.25419	-0.23741	0.0391*	
H14	0.12581	0.08983	-0.23133	0.0410*	
H15	0.00225	0.08581	-0.12547	0.0355*	
H16	0.05837	0.24707	-0.02538	0.0266*	
H22	0.47838	0.22748	0.03966	0.0248*	
H23	0.54500	0.02834	0.10762	0.0271*	
H25	0.27886	0.12332	0.26204	0.0288*	
H26	0.21808	0.32514	0.19596	0.0269*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F4	0.0397 (4)	0.0227 (3)	0.0241 (3)	0.0008 (3)	0.0033 (3)	0.0082 (3)
N1	0.0235 (4)	0.0161 (3)	0.0140 (3)	-0.0019 (3)	0.0035 (3)	-0.0001 (3)
N3	0.0259 (4)	0.0195 (4)	0.0158 (3)	-0.0011 (3)	0.0051 (3)	-0.0005 (3)
C2	0.0208 (4)	0.0193 (4)	0.0144 (3)	-0.0009 (3)	0.0047 (3)	0.0010 (3)
C4	0.0266 (5)	0.0188 (4)	0.0221 (4)	-0.0028 (4)	0.0065 (4)	-0.0029 (4)
C5	0.0275 (5)	0.0183 (4)	0.0280 (5)	-0.0008 (4)	0.0096 (4)	0.0009 (4)
C6	0.0279 (5)	0.0209 (5)	0.0235 (4)	0.0007 (4)	0.0059 (4)	0.0055 (4)
C7	0.0279 (5)	0.0217 (5)	0.0174 (4)	-0.0007 (4)	0.0032 (3)	0.0028 (3)
C8	0.0214 (4)	0.0170 (4)	0.0167 (4)	-0.0021 (3)	0.0045 (3)	0.0002 (3)
C9	0.0214 (4)	0.0197 (4)	0.0167 (4)	-0.0021 (3)	0.0048 (3)	-0.0003 (3)
C11	0.0203 (4)	0.0186 (4)	0.0148 (3)	0.0007 (3)	0.0030 (3)	-0.0010 (3)
C12	0.0285 (5)	0.0289 (5)	0.0192 (4)	0.0028 (4)	0.0091 (4)	0.0010 (4)
C13	0.0437 (7)	0.0362 (7)	0.0192 (4)	0.0128 (6)	0.0102 (5)	-0.0029 (4)
C14	0.0464 (8)	0.0263 (6)	0.0244 (5)	0.0114 (5)	-0.0017 (5)	-0.0089 (4)
C15	0.0329 (6)	0.0203 (5)	0.0307 (5)	0.0001 (4)	-0.0017 (4)	-0.0051 (4)
C16	0.0236 (5)	0.0207 (4)	0.0211 (4)	-0.0011 (4)	0.0034 (3)	-0.0015 (4)
C21	0.0211 (4)	0.0194 (4)	0.0144 (3)	-0.0013 (3)	0.0039 (3)	0.0009 (3)
C22	0.0230 (4)	0.0222 (5)	0.0180 (4)	0.0003 (4)	0.0073 (3)	0.0027 (3)
C23	0.0244 (5)	0.0219 (5)	0.0218 (4)	0.0019 (4)	0.0062 (4)	0.0024 (4)
C24	0.0266 (5)	0.0189 (4)	0.0170 (4)	-0.0022 (4)	0.0010 (3)	0.0042 (3)
C25	0.0322 (5)	0.0244 (5)	0.0167 (4)	-0.0023 (4)	0.0086 (4)	0.0027 (4)
C26	0.0278 (5)	0.0233 (5)	0.0178 (4)	0.0009 (4)	0.0090 (4)	0.0008 (3)

Geometric parameters (Å, °)

F4—C24	1.3633 (13)	C21—C22	1.3952 (15)
N1C2	1.3890 (13)	C21—C26	1.4005 (15)
N1—C8	1.3877 (14)	C22—C23	1.3867 (15)
N1-C11	1.4298 (13)	C23—C24	1.3825 (15)
N3—C2	1.3186 (13)	C24—C25	1.3787 (16)
N3—C9	1.3908 (13)	C25—C26	1.3893 (15)
C2—C21	1.4735 (14)	C4—H4	0.9300
C4—C5	1.3897 (16)	С5—Н5	0.9300
С4—С9	1.3976 (15)	С6—Н6	0.9300
С5—С6	1.4050 (16)	С7—Н7	0.9300
С6—С7	1.3864 (16)	C12—H12	0.9300
С7—С8	1.3961 (14)	C13—H13	0.9300
С8—С9	1.4052 (14)	C14—H14	0.9300

C11—C12	1.3939 (15)	C15—H15	0.9300
C11—C16	1.3883 (15)	C16—H16	0.9300
C12—C13	1.3919 (17)	C22—H22	0.9300
C13—C14	1.384 (2)	C23—H23	0.9300
C14—C15	1.3891 (19)	C25—H25	0.9300
C15—C16	1.3920 (17)	C26—H26	0.9300
C2—N1—C8	106.15 (8)	F4—C24—C25	118.13 (9)
C2—N1—C11	128.03 (9)	C23—C24—C25	123.67 (10)
C8—N1—C11	125.75 (8)	C24—C25—C26	117.52 (10)
C2—N3—C9	104.91 (8)	C21—C26—C25	120.69 (10)
N1-C2-N3	113.10 (9)	C5—C4—H4	121.00
N1-C2-C21	123.13 (9)	С9—С4—Н4	121.00
N3—C2—C21	123.76 (9)	C4—C5—H5	119.00
C5—C4—C9	117.69 (10)	С6—С5—Н5	119.00
C4—C5—C6	121.32 (10)	С5—С6—Н6	119.00
C5—C6—C7	121.80 (10)	С7—С6—Н6	119.00
C6—C7—C8	116.45 (10)	С6—С7—Н7	122.00
N1—C8—C7	131.97 (9)	С8—С7—Н7	122.00
N1—C8—C9	105.45 (8)	C11—C12—H12	121.00
С7—С8—С9	122.51 (9)	C13—C12—H12	121.00
N3—C9—C4	129.50 (9)	C12—C13—H13	120.00
N3—C9—C8	110.38 (9)	C14—C13—H13	120.00
C4—C9—C8	120.12 (9)	C13—C14—H14	120.00
N1—C11—C12	119.29 (10)	C15—C14—H14	120.00
N1—C11—C16	119.75 (9)	C14—C15—H15	120.00
C12—C11—C16	120.96 (10)	C16—C15—H15	120.00
C11—C12—C13	118.90 (11)	C11—C16—H16	120.00
C12—C13—C14	120.69 (12)	C15—C16—H16	120.00
C13—C14—C15	119.87 (12)	C21—C22—H22	120.00
C14—C15—C16	120.29 (12)	C23—C22—H22	120.00
C11—C16—C15	119.30 (10)	C22—C23—H23	121.00
C2—C21—C22	121.34 (9)	C24—C23—H23	121.00
C2—C21—C26	118.84 (9)	C24—C25—H25	121.00
C22—C21—C26	119.75 (10)	C26—C25—H25	121.00
C21—C22—C23	120.23 (10)	C21—C26—H26	120.00
C22—C23—C24	118.14 (10)	C25—C26—H26	120.00
F4—C24—C23	118.21 (10)		
C8—N1—C2—N3	-0.88(13)	C6—C7—C8—N1	178.40 (12)
C8—N1—C2—C21	179.88 (10)	C6—C7—C8—C9	1.94 (17)
C11—N1—C2—N3	-178.02(10)	N1—C8—C9—N3	-1.25(12)
$C_{11} - N_{1} - C_{2} - C_{21}$	2.74 (17)	N1—C8—C9—C4	178.72 (10)
C_{2} N1 $-C_{8}$ $-C_{7}$	-175.66(12)	C7-C8-C9-N3	176.02 (10)
C2—N1—C8—C9	1.24 (12)	C7—C8—C9—C4	-4.00(17)
C11—N1—C8—C7	1.56 (19)	N1-C11-C12-C13	-179.97(12)
C11—N1—C8—C9	178.46 (10)	C16—C11—C12—C13	0.00 (17)
C2—N1—C11—C12	-123.95 (12)	N1—C11—C16—C15	-179.68 (10)
C2—N1—C11—C16	56.07 (16)	C12—C11—C16—C15	0.33 (17)
	× · · /		× · /

C8—N1—C11—C12	59.44 (15)	C11—C12—C13—C14	-0.32 (19)	
C8—N1—C11—C16	-120.54 (12)	C12—C13—C14—C15	0.3 (2)	
C9—N3—C2—N1	0.11 (13)	C13-C14-C15-C16	0.1 (2)	
C9—N3—C2—C21	179.34 (10)	C14-C15-C16-C11	-0.36 (18)	
C2—N3—C9—C4	-179.25 (12)	C2—C21—C22—C23	176.01 (10)	
C2—N3—C9—C8	0.72 (12)	C26—C21—C22—C23	-0.90 (16)	
N1—C2—C21—C22	50.81 (15)	C2-C21-C26-C25	-177.04 (10)	
N1-C2-C21-C26	-132.26 (11)	C22—C21—C26—C25	-0.06 (17)	
N3—C2—C21—C22	-128.35 (12)	C21—C22—C23—C24	0.67 (16)	
N3—C2—C21—C26	48.58 (16)	C22—C23—C24—F4	-179.40 (10)	
C9—C4—C5—C6	0.15 (18)	C22—C23—C24—C25	0.53 (17)	
C5-C4-C9-N3	-177.21 (11)	F4—C24—C25—C26	178.48 (10)	
C5—C4—C9—C8	2.83 (17)	C23—C24—C25—C26	-1.45 (17)	
C4—C5—C6—C7	-2.2 (2)	C24—C25—C26—C21	1.18 (17)	
C5—C6—C7—C8	1.13 (18)			

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the fused benzene ring (C4–C9).

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4— $H4$ ···F4 ⁱ	0.93	2.46	3.3640 (14)	164
C7—H7…F4 ⁱⁱ	0.93	2.43	3.3058 (13)	157
C26—H26…F4 ⁱⁱⁱ	0.93	2.52	3.4348 (14)	166
C16—H16…Cg2 ^{iv}	0.93	2.75	3.5443 (12)	144
C22—H22···Cg2 ^v	0.93	2.80	3.5245 (13)	136

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1/2, -*y*+1/2, *z*-1/2; (iii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iv) -*x*, -*y*+1, -*z*; (v) -*x*+1, -*y*+1, -*z*.