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Abstract 

Background:  Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2, previously named 2019-nCov), a novel coronavirus that emerged in China in December 2019 and was 
declared a global pandemic by World Health Organization by March 11th, 2020. Severe manifestations of COVID-19 
are caused by a combination of direct tissue injury by viral replication and associated cytokine storm resulting in 
progressive organ damage.

Discussion:  We reviewed published literature between January 1st, 2000 and June 30th, 2020, excluding articles 
focusing on pediatric or obstetric population, with a focus on virus-host interactions and immunological mechanisms 
responsible for virus associated cytokine release syndrome (CRS). COVID-19 illness encompasses three main phases. 
In phase 1, SARS-CoV-2 binds with angiotensin converting enzyme (ACE)2 receptor on alveolar macrophages and 
epithelial cells, triggering toll like receptor (TLR) mediated nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-ƙB) signaling. It effectively blunts an early (IFN) response allowing unchecked viral replication. Phase 2 is 
characterized by hypoxia and innate immunity mediated pneumocyte damage as well as capillary leak. Some patients 
further progress to phase 3 characterized by cytokine storm with worsening respiratory symptoms, persistent fever, 
and hemodynamic instability. Important cytokines involved in this phase are interleukin (IL)-6, IL-1β, and tumor necro-
sis factor (TNF)-α. This is typically followed by a recovery phase with production of antibodies against the virus. We 
summarize published data regarding virus-host interactions, key immunological mechanisms responsible for virus-
associated CRS, and potential opportunities for therapeutic interventions.

Conclusion:  Evidence regarding SARS-CoV-2 epidemiology and pathogenesis is rapidly evolving. A better under-
standing of the pathophysiology and immune system dysregulation associated with CRS and acute respiratory 
distress syndrome in severe COVID-19 is imperative to identify novel drug targets and other therapeutic interventions.

Keywords:  COVID-19, SARS-CoV-2, Pathophysiology, Cytokine release syndrome, Angiotensin converting enzyme 2, 
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Introduction
Since it was first reported from Wuhan, China in Decem-
ber 2019, Coronavirus Disease 2019 (COVID-19) has 
rapidly spread across the globe and was declared a global 
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pandemic by the WHO on March 11th, 2020 [1]. As of 
July 18th, 2020, 188 countries have been affected with 
more than 14 million confirmed cases and over 600,000 
fatalities [2]. Being a novel virus, there has been a steep 
learning curve about its microbiology, host interactions, 
mechanism of immune dysregulation in humans, and tis-
sue injury. Multi-modality therapeutic options are being 
explored on an emergent basis with limited evidence of 
efficacy [3].

We provide a focused review of the published litera-
ture regarding the pathophysiology of COVID-19 with 
an emphasis on the anti-viral and immunomodulatory 
therapies.

Methodology
We conducted searches on PubMed and Google Scholar 
for any articles between January 1st, 2000 and June 30th, 
2020, with the search terms “Coronavirus or COVID-
19” in conjunction with the search terms “transmission”, 
“pathogenesis”, “immune response”, “cytokines”, “interleu-
kin (IL) inhibitor”, “antiviral therapy”. Due to limited pub-
lished literature related to COVID-19 in the pediatric and 
obstetric population and their unique aspects, we exclude 
articles pertaining to that population. We also reviewed 
information published on the World Health Organiza-
tion (WHO), Centers for Disease Control and Prevention 
(CDC), and John Hopkins University Center for Systems 
Science and Engineering (CSSE) websites.

Epidemiology
The Huanan Seafood Wholesale Market in Wuhan, 
China, the purported origin site of Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2), was the 
epicenter of new cases of COVID-19 from December 
2019 to January 2020. In February 2020, the epicenter 
shifted initially to Italy and Spain, and subsequently to 
the United States of America (USA) in March 2020 [4, 5]. 
Estimated case fatality rate with COVID-19 ranges from 
0.5 to 3% [6, 7]. However, mortality is higher in males, 
patients with comorbidities including diabetes mel-
litus, heart disease or hypertension, and those over age 
60 years [8, 9].

Wu et al. reviewed the epidemiology of 72,314 COVID-
19 patients in China and noted that the predominant 
age distribution was 30–79  years of age, but observed 
increasing  case fatality rate (CFR) in older patients 
(> 80) [10]. Less than 2% of identified patients were less 
than 18  years of age. While similar patterns have been 
reported in Europe and the United States, the interpre-
tation of epidemiological data is limited by the testing 
characteristics of the specific community, with likely 
under-representation of asymptomatic patients [2]. Fur-
ther, variable transmission rates are also observed based 

upon characteristics of the local community (e.g. urban 
vs rural, age distribution, etc.) and any public health 
policies in place for containment or mitigation such as 
quarantines, shelter-in-place orders, mask-wearing, or 
contact tracing.

Clinical presentation
The spectrum of clinical manifestations ranges from 
asymptomatic to life-threatening. However, more than 
80% of patients have mild symptoms or are asympto-
matic [11, 12]. The  most frequently reported  symp-
toms  include  fever (80–90%) and dry cough (50–70%). 
There may be associated severe fatigue and dyspnea. Loss 
of taste and smell have also been reported. Gastrointes-
tinal symptoms (nausea, vomiting, diarrhea) are present 
in less than 5% of patients. Symptoms typically resolve 
within 5–10  days. However, approximately 14% of 
patients have severe disease requiring hospitalization and 
5% may have critical illness evidenced by adult respira-
tory distress syndrome (ARDS), respiratory failure, shock 
and/or multi-organ dysfunction [13, 14].

Predictors of severe disease
Clinical predictors of poor outcome include advanced 
age, male gender, hypertension, diabetes mellitus  and 
coronary artery disease [15, 16]. Laboratory predictors 
of critical disease include lymphopenia, elevated levels 
of D-Dimer, pro Brain-type Natriuretic Peptide (pro-
BNP), troponin I, and creatinine [9, 15, 16]. High levels 
of inflammatory markers such as IL-6, C-reactive protein 
(CRP), and ferritin are also associated with more severe 
disease [17]. Qin et al. described that patients with severe 
COVID-19 infection had significantly lower circulat-
ing B cells, T cells, and Natural killer (NK) cells on flow 
cytometry as compared to non-severe cases, endorsing 
the hypothesis that immune dysregulation plays a role in 
disease severity [18].

Mode of transmission
SARS-CoV-2 is a member of the betacoronavirus (β-CoV) 
family. In the last 20 years, the most lethal strains of the 
β-CoVs causing epidemics include Severe Acute Res-
piratory Syndrome Coronavirus (SARS-CoV) in 2002, 
Middle Eastern Respiratory Disease coronavirus (MERS-
CoV) in 2011 and SARS-CoV-2 in 2020. SARS-CoV-2 is 
purportedly spread to humans from bats via intermedi-
ate hosts such as turtles and pangolins, however this is 
currently controversial [19–23]. The main mechanism 
of spread for both SARS-CoV and SARS-CoV-2 seems 
to be human-to-human transmission [3, 20]. COVID-19 
is predominantly thought to be spread via droplets and 
fomites [24], with very limited aerosolization, and recent 
data indicates possible fecal–oral spread as well [11, 24, 
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25]. Patients can be contagious for 24–48 h before symp-
tom onset [6, 10]. The incubation period is 2–15  days, 
with a mean of 5.1  days. Most (97.5%) patients develop 
symptoms within 11.5  days [11]. The virus can survive 
up to 1–2  days on glass and metal surfaces, and up to 
4–5 days on plastic surfaces [26]. It is unclear if a signifi-
cant amount of SARS-CoV-2 is present in breast milk, 
urine, or semen for transmission. Vertical transmission 
from pregnant mothers to infants remains a controversial 
topic, but there are emerging reports of damage to the 
placenta from COVID-19 [24], and SARS-CoV-2 RNA 
has been detected on the fetal side of the placenta [27].

Testing
Microbiologic diagnosis of SARS-CoV-2 is made by real-
time reverse transcriptase-polymerase chain reaction (rt 
RT-PCR), serology, and rapid antigen detecting kits [28]. 
True sensitivity of PCRs from nasopharyngeal swabs var-
ies from 30 to 70% depending on the phase of illness [29]. 
Since PCR has a significant false-negative rate, a negative 
PCR should be interpreted in context with the clinical 
manifestation, disease phase, and radiological findings. 
Virus-specific immunoglobulins (Ig)—IgG and IgM anti-
bodies can be detected beyond day 5 of infection and can 
be detected in those who have active disease or recov-
ered, although delays in seroconversion beyond 14  days 
have been reported [30]. Further, there are some reports 
that antibodies produced against SARS-CoV-2 are short-
lived and may not be fully protective [31]. The sensitivity 
and specificity of serologic assays differ based on the spe-
cific methodology utilized (e.g. ELISA, agglutination, or 
complement-fixation). Numerous serology kits with vari-
able false negative and false positive rates are currently in 
the process of being developed, and appropriate imple-
mentation requires validation.

Serological testing as a diagnostic tool for COVID-19 
is limited by the fact that seroconversion may be signifi-
cantly delayed after the onset of illness, although it may 
have increasing utility during later phases of disease 
when viral loads are lower [32]. A clearer understanding 
of the kinetics of antibody production during infection is 
critical for understanding the specific role of serological 
testing as a diagnostic tool, as well as an instrument for 
seroepidemiological and vaccine evaluation studies [33].

SARS‑COV‑2 structure
Coronaviruses are spherical, positive-sense, single-
stranded, non-segmented ribonucleic acid (RNA) sur-
rounded by a lipid capsule derived from the host cell 
membrane, which has a characteristic surface spike gly-
coprotein [34]. The general structure comprises of four 
essential proteins: the spike (S) protein responsible for 
attachment to host cell receptors, the membrane (M) 

protein which promotes membrane curvature and binds 
to the nucleocapsid), the envelop (E) protein which helps 
with viral assembly and release, and the nucleocapsid 
N protein (helps with viral replication) [35, 36]. In vitro 
studies demonstrate that viral non-structural proteins 
and E2 glycoprotein have a high affinity binding to the 
porphyrin portion of heme of infected cells [36]. The rep-
lication of SARS-CoV-2 is shown in Fig. 1.

SARS-CoV-2 shares structural similarity to both Severe 
Acute Respiratory Syndrome Coronavirus (SARS-CoV) 
(approximately 80% similarity) and Middle Eastern Res-
piratory Disease Coronavirus (MERS-CoV); thereby 
studies on SARS and MERS are extrapolated and applied 
to COVID-19 [37]. There is a possibility of emerg-
ing strains within SARS-CoV-2, including the so-called 
S-type and L-type. At present, there is no clear evidence 
that one strain is more virulent than another, and the two 
strains do not represent distinct targets for drugs and 
vaccine development [38, 39].

SARS‑COV‑2 invasion of host cell using angiotensin 
converting enzyme‑2 (ACE2) receptor
As shown above, SARS-CoV-2 enters the host by bind-
ing to the host cell ACE2 receptor, a membrane-bound 
protein found on the surface of type 2 pneumocytes, epi-
thelial cells, and enterocytes [34].  In addition to ACE2 
mediated endocytosis, direct entry into cells may also 
occur from cell surface. Transmembrane protease serine 
2 (TMPRSS2) is another host cellular protein which has 
been described as a co-factor for SARS-CoV-2 entry into 
cells, and Camostat is a clinically relevant drug has been 
observed to be inhibitory towards SARS-CoV-2 particles 
in cell culture systems [40].

ACE2 exists in a soluble form in the alveolar fluid 
where it potentially  plays  an important role in  protec-
tion from ARDS [30, 41]. ACE2 receptor expression on 
epithelial cells increases with age and may partly explain 
why children are less prone to infection by SARS-CoV-2 
[42]. Further, children have higher levels of soluble ACE2 
activity within alveolae during ARDS, which has been 
hypothesized to cause improved lung repair mechanisms 
compared to adults and be protective against developing 
COVID-19 [42].

There is controversy regarding the role of ACE inhibi-
tors or ARBs in potentially increasing the virulence of 
COVID-19 via the upregulation of ACE2 [43]. Although 
there is currently no convincing evidence to suggest that 
ACE inhibitors or ARBs have a beneficial or harmful role 
in COVID-19, further studies are needed to resolve this 
question. Current consensus by several societies such as 
the European Society of Cardiology is that there should 
be no change in the utilization of these agents in patients 
infected with COVID-19 [44, 45].



Page 4 of 18Khadke et al. Virol J          (2020) 17:154 

Fig. 1  Viral replication pathway of Covid-19. The virus first attaches to the ACE2 receptor and internalizes into the respiratory epithelial cell and 
causes the release of its genome. The S protein (spikes on the viral surface responsible for attachment to host cell receptors), M protein (shapes the 
virion, promotes membrane curvature and binds to the nucleocapsid), E protein (helps with viral assembly and release)
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Since ACE2 is vital for viral entry to a host cell, a novel 
treatment strategy  utilizing  recombinant human ACE2 
protein is being studied in a randomized trial in China, 
looking at its use as a competitive inhibitor as well as a 
mediator to promote lung repair.  Meanwhile, the Uni-
versity of Minnesota has launched a phase  2  clinical 
trial (NCT04312009) to evaluate the efficacy of losartan, 
which is an ARB, in COVID-19 pneumonia.

SARS COV‑2 replication and evasion of the immune system
Virus-infected cells typically activate the immune system 
via cytotoxic cells, interferons or antibodies. The MHC1 
(Major Histocompatibility Complex 1) is an antigen 
presenting cell that causes resultant autophagy by lyso-
somal degradation. The ORF-2 protein of SARS-CoV-2, 
which is expressed by both L-type and S-subtypes, down-
regulates MHC1 by decreasing total protein and beta-2 
microglobulin expression in a dose-dependent and 
incubation time dependent manner [46]. This causes a 
decrease in cell surface expression, and hence decreases 
lysosomal degradation by autophagy, and subsequently 
decreases cell elimination. This is similar to viruses that 
cause chronic infection such as HIV (Human Immuno-
deficiency Virus), which lead to maladaptive immune sys-
tem while maintaining active replication.

Another mechanism that aids with the elimination of 
virus-infected cells is increased expression of cytokines. 
IFN alpha and IFN beta are produced systemically by epi-
thelial cells, monocytes and alveolar macrophages and 
aggravate lung pathology during respiratory infections. 
Human intestinal epithelial cells (HIEC) are known to 
be infected by SARS-CoV-2 and can assist by generating 
an IFN-mediated intrinsic immune response [47]. IFN 
gamma is produced locally by lung resident dendritic 
cells and has been shown to inhibit lung epithelial repair 
after viral recognition [48, 49]. Non-Structural Protein 1 
(NSP1) is another protein that decreases IFN production 
by preventing translation of IFNs and pro-inflammatory 
cytokines and IFN-stimulated anti-viral components by 
binding mRNA translation machinery and enucleated 
cleavage and degradation of lost mRNA [50].

TLR3 is activated by sensing viral replication from 
dying cells. It causes increase in IFN gamma, which 
results in compromise by epithelial cells and predisposes 
to secondary bacterial infections.

Emerging anti‑viral therapeutic options
Our knowledge of clinical manifestations and pathogene-
sis of COVID-19 is rapidly evolving as is our understand-
ing of how best to manage this illness and associated 
complications. Given the rapidly changing data, several 
therapies are being used solely based on anecdotal evi-
dence. While immediate access to new data is critical in a 

pandemic such as COVID-19, it can also propagate mis-
information as the data is not verified or peer-reviewed 
in many instances.

Several anti-viral therapies are under investigation for 
the treatment of COVID-19, either as monotherapies or 
in combination with other agents [51]. The only medica-
tion for which FDA has issued emergency use authoriza-
tion (EUA) is Remdesivir, which was approved on May 
1st, 2020. Table 1 summarizes the key anti-viral therapies 
currently being investigated in clinical trials. We will dis-
cuss some of the promising therapies based on mecha-
nisms of action.

Viral mRNA synthesis inhibitors
Remdesivir (GS-5734) is a viral nucleotide (adenosine) 
analog, which incorporates into nascent viral RNA chains 
and results in premature termination [51–53]. In  vitro 
studies suggest that the combination of remdesivir and 
CQ could inhibit viral replication even at low concen-
trations [51]. The multi-center trial, commonly known 
as SOLIDARITY (NCT04321616), was one of the first 
large-scale trials aiming to compare HCQ, remdesivir, 
and the combination of HCQ/remdesivir in hospitalized 
COVID-19 patients. This trial was started as a five-arm 
adaptive design trial aimed at studying the primary out-
come of in-house mortality at 3 weeks. Other outcomes 
measures included comparison of mechanical ventilation 
occurrence, viral clearance, and markers of inflammation 
[54]. On March 24th, 2020, the Czech Republic approved 
the use of remdesivir in critically ill patients [39]. Some 
adverse effects of remdesivir are transaminitis, nausea, 
and vomiting—further studies are underway to evaluate 
for side effects.

Based on the finding of the Adaptive COVID-19 treat-
ment trial (ACTT), Remdesivir may be most beneficial 
if given to patients with severe COVID-19 lung involve-
ment before mechanical ventilation [55]. Remdesivir use 
was associated with a reduced median time to recovery 
(11d v 15 days). A mortality benefit was observed (8% v 
11.6%) but was not statistically significant.

Favipiravir (T-705), a synthetic nucleoside analog, 
functions as a chain terminator at the site of incorpo-
ration of the viral RNA, thereby inhibiting the RNA-
dependent RNA polymerase. Umifenovir is a membrane 
fusion inhibitor originally developed for influenza. A 
multicenter trial comparing favipiravir to umifenovir 
in COVID-19 patients with moderate symptoms and 
chest imaging abnormalities showed a 71% recovery at 
day 7 for those receiving favipiravir, compared to 55% 
in the group receiving umifenovir [43]. Another trial in 
China on 80 patients infected with SARS-CoV-2 com-
pared response to Interferon (IFN)-α combination with 
either favipiravir or lopinavir (LPV)/ritonavir (RTV). The 
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combination with favipiravir was shown to expedite viral 
clearance (4  days versus 11  days, shorten recovery time 
(statistically significant at 92% versus 62%) and cause 
improvement in chest imaging [56]. Based on these stud-
ies, Favipiravir received marketing approval in China on 
February 17th, 2020. Common side effects of favipiravir 
include nausea, headache, and diarrhea. Favipiravir may 
cause embryotoxicity [57].

Endosomal function inhibitors
CQ and its derivative, HCQ have historically been used 
for malaria and amebiasis. They are also widely utilized in 
the treatment of auto-immune conditions such as rheu-
matoid arthritis (RA) and systemic lupus erythematosus 
(SLE), and in recent years have been seen to have activ-
ity against a wide range of viruses in-vitro such as Ebola 
virus and SARS-CoV-1 [58, 59].

Their anti-viral effects are achieved by multiple mech-
anisms, primarily by alkalinizing the normally acidic 
endosomal pH of the infected cells, limiting virus-cell 
fusion, and modifying glycosylation of receptors [60]. 
They also affect cell signaling and have an immunomod-
ulatory effect by blocking proinflammatory cytokines, 
particularly tumor necrosis factor-alpha  (TNFα)  and 
IL-6, IL-1β production by activated alveolar macrophages 
and downregulation of TNF receptors on monocytes 
resulting in decreased monocyte activation. They also 
reduce the severity of ARDS by decreasing TNF-α medi-
ated opening of tight junctions of epithelial cells, as well 
as upregulation of leukocyte adhesion molecules (LAM) 
and hence decreasing leukocyte extravasation into dam-
aged alveoli [61, 62]. Apart from these, another mecha-
nism by which CQ/HCQ is postulated to interfere with 
SARS-CoV-2 relates to the virus’s ability to block hemo-
globin synthesis. CQ/HCQ competes with the porphyrin 
to bind  to the E2 portion of the virus, thus freeing the 
porphyrin to incorporate into hemoglobin [36].

Based on these observations, these agents were thought 
to be promising prophylactic and therapeutic options 
for COVID-19. HCQ was investigated both as mono-
therapy as well as in combination with Azithromycin (an 
antibiotic added to prevent bacterial super-infection) for 
COVID-19 [63]. Preliminary data from the open-label 
non-randomized French trial on six patients of this com-
bination showed viral load reduction [63]. On March 28, 
2020, Chloroquine and Hydroxychloroquine sulfate were 
issued EUA to treat hospitalized adults and adolescents 
who were unable to be enrolled in a clinical trial. How-
ever, based on continuous review of the available scien-
tific evidence, the EUA was revoked on June 15, 2020, as 
there was no clear demonstratable effect [64].

Adverse effects of CQ and HCQ include prolonged 
QTc interval, arrhythmias, and dilated cardiomyopathy 

which may be of concern given the high incidence of car-
diac arrhythmias and sudden cardiac death being noted 
in critically ill COVID patients [65–67]. Photosensitivity 
and retinal damage can also occur, and rare cases of Ste-
vens-Johnson syndrome have been reported [68]. They 
should be avoided in patients with glucose-6-phosphate-
dehydrogenase (G-6-PD) deficiency or porphyrias [67].

Other therapies to inhibit viral host attachment and viral 
replication
LPV and RTV are both antiviral agents used in combi-
nation to treat human immunodeficiency virus (HIV). 
LPV is a protease inhibitor that acts by preventing mat-
uration of the HIV-1 virus, while RTV is a  cytochrome 
P3A4 (CYP3A4)  inhibitor which  increases plasma levels 
of  LPV. In a randomized study,  involving  199 patients 
with severe COVID-19,  there was some anecdotal suc-
cess, but the combination did not demonstrate significant 
improvement in  death rates,  rates of oxygen desatura-
tion, and rates of intubation compared to the standard of 
care treatment in  matched controls [36]. In SARS, LPV 
and RTV were most effective when used in combina-
tion with ribavirin [69]. There is some evidence based on 
viral-host cell proteomic mapping demonstrating SARs-
CoV-2 binds directly to a protein that is targeted by riba-
virin [70]. Adverse effects may include diarrhea, nausea, 
rash, and asthenia.

Other anti-viral therapies currently in clinical trials are 
summarized in Table 1.

COVID associated cytokine storm and lung injury
Some patients with COVID-19 undergo progressive 
clinical decline which is characterized by the following 
phases: early phase, pulmonary phase, and hyper inflam-
mation phase. We describe the phases of COVID-19 
infection, discuss immune dysregulation resulting in 
cytokine storm, and review immunomodulatory options 
being studied in this disease. Therapeutic options are 
summarized in Table 1.

Early phase: phase one
The first phase of COVID-19 infection generally presents 
as fever and cough triggered by robust viral replication 
within the respiratory epithelium. The innate immune 
system is the primary mediator of inflammation dur-
ing this phase. Viral particles are recognized by Toll-like 
receptors (TLR) on macrophages, neutrophils and den-
dritic cells (DC), which typically activate nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-ƙβ) 
pathways leading to transcription of several cytokines 
including IL-6 and IFNƴ [71–73]. IFNs induce Janus 
Kinase (JAK) and activator of transcriptor (STAT) path-
ways, which promote expression IFN-stimulation genes 
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[74]. SARS-CoV-2 appears to inhibit the NF-ƙβ -TLR4 
pathway and thereby delays IFN production, allowing 
unchecked viral replication [75]. The N protein of SARS-
CoV-2 appears to antagonize the host response and the 
IFN response. This provides a potential therapeutic tar-
get, as utilizing IFN gamma earlier could help modulate 
the immune response and potentially decrease disease 
severity.

Pulmonary phase: phase two
Progression to the second phase of SARS-CoV-2 infec-
tion is characterized by the development of hypoxia. 
The direct virus-induced cytopathic effect on type two 
pneumocytes via ACE2 receptors activates the innate 
immune system, resulting in a large influx of monocytes, 
macrophages, and heavy infiltration of neutrophils [76]. 
They produce nitric oxide, growth factors, and trans-
forming growth factor-beta  (TGF-β) which contribute 
to oxidative injury, leading to capillary leak and alveolar 
basement membrane damage utilizing the TLR-4- NF-ƙβ 
pathway [77]. Loss of the type two pneumocytes also 
impairs endogenous lung repair mechanisms, leading to 
the cascading progression of injury.

Hyperinflammation phase: phase three
As COVID-19 disease progresses to Phase 3, which 
appears approximately 9–12  days after the onset of ill-
ness, there may be development of ARDS, CRS, septic 
shock and cardiac complications [9, 18].

SARS-CoV-2 drives a lower anti-viral transcriptional 
response compared to other respiratory viruses, resulting 
in low IFN-I and IFN-III levels and elevated chemokine 
levels [78]. T lymphocytes, activated macrophages, and 
neutrophils migrate towards and infiltrate the alveo-
lar microenvironment, releasing pro-inflammatory 
chemokines and cytokines including IL-1, IL-6, and IL-8, 
IL-17 and TNF [79, 80].

Cytokines implicated in COVID-19-associated lung 
injury and CRS include IL-1β, TNF-α and IL-6, which 
activate other proinflammatory pathways via the JAK-
STAT pathway and activation of Th cells [17, 77, 81, 82]. 
IL-6 also recruits macrophages at sites of injury and 
promotes inflammation and ARDS. The SARS E protein 
causes IL-1β secretion, leading to lung inflammation and 
injury [83]. IL-1β also accelerates the production of TNF-
α, which in turn promotes the apoptosis of lung epithelial 
and endothelial cells [84]. IL-1β, TNF-α and IL-6 provide 
an integrated, amplified inflammatory response, leading 
to a breach in alveolar basement membrane integrity. 
This subsequently increases vascular permeability, lead-
ing to pulmonary edema, which is associated with pul-
monary deterioration even with ventilator support. This 
is schematically represented in Fig. 2.

Secondary hemophagocytic syndrome (sHLH) may 
also develop during this phase, and is characterized by 
fever, cytopenias, hyperferritinemia, and an increase in 
proinflammatory cytokines including IL-6 and IL-18 
[85, 86]. This could be useful to consider when treat-
ing a patient with COVID-19—white blood cell count, 
CRP, and D-dimer may be helpful to monitor and to 
distinguish between CRS versus secondary bacterial 
infections.

Another aspect that warrants further study is the con-
sequence of elevated D-dimer, as it is unclear at present if 
it is reflective of an acute phase only, or potentially a dis-
seminated intravascular coagulopathy (DIC) phenomena 
occurring in the lungs secondary to the sHLH.

An overview of the immune dysregulation in COVID-
19 is shown in Fig. 3.

Recovery phase
This phase can occur at any time during the disease and 
is divided into the early recovery stage (ERS) and the 
late recovery stage (LRS). IL-6 production and circulat-
ing inflammatory monocytes were noted in ERS, with the 
potential for ongoing lung injury. In LRS, patients’ serum 
contains an abundance of antibodies. It is speculated that 
dendritic cells (DC) produce IL-18 which promotes pro-
liferation of B cells as well as IL-7 which promotes T cell 
proliferation, IL-2 secretion and B cell proliferation, and 
antibody production [87].

Non‑selective immunomodulators
Corticosteroids
The use of corticosteroids was much debated for COVID-
19 as steroids are immunosuppressive, potentially delay-
ing viral clearance and increased risk of secondary 
infection. An observational study on intensive care unit 
(ICU) patients with MERS reported that high doses of 
corticosteroids were associated with more severe disease 
but did not increase ninety-day mortality [88]. Other 
meta-analyses in SARS showed no benefit of steroid use 
[89, 90]. An observational trial by Yuan et al. showed no 
benefit from Methylprednisone. However, preliminary 
data from the UK RECOVERY trial showed that low dose 
dexamethasone (6 mg PO or IV daily for 10 days) reduced 
mortality by 35% in intubated patients and by 20% in 
hospitalized patients requiring oxygen supplementation 
compared to patients receiving standard of care, but had 
no effect in patients who did not require oxygen supple-
mentation [91]. Based on these data, Dexamethasone is 
now recommended for patients with severe COVID-19 
(requiring oxygen) including those on mechanical venti-
lation by the NIH and IDSA [92, 93].
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Non‑steroidal anti‑inflammatory drugs (NSAIDs)
There is controversy regarding NSAID use for symptom 
relief with COVID-19. The French National Agency for 
Medicines and Health Products Safety suggested that 
COVID-19 viral clearance may be delayed by NSAIDs. 
The European Medical Association (EMA) did not sup-
port this statement, due to lack of supporting evidence 
[94].

Thalidomide
Thalidomide blocks the NF-ƙB binding to gene pro-
motors, reducing the production of IL-6, TNF-α and 
chemokines [95]. It increases circulating NK cells 
and increases IFN-ƴ production by T cells. It is FDA 
approved to treat multiple myeloma in combination with 
low dose dexamethasone and trials suggest activity in 
influenza-associated lung injury. Trials are evaluating the 

Fig. 2  Alveolar micro-environment showing pathophysiology of acute respiratory distress syndrome (ARDS). The Th response causes the release 
of IL-17 which activates TNF alpha which enhances epithelial injury and activates neutrophils to cause degranulation. IL-6 is produced by alveolar 
macrophages which also stimulates neutrophils. Once the epithelial integrity of alveolus is breached epithelial sodium channel (Enac) channels 
and Na/K channels fail to maintain homeostasis eventually leading to an increase in permeability of capillaries causing exudation of fluids. T reg 
cells also trigger TGF beta which causes fibrosis to the damaged epithelial membrane. Most of the COVID-19 patients present with ground-glass 
opacities and fibrosis of their lungs
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role of Thalidomide in COVID-19 (NCT04273529). This 
drug has well-known teratogenic effects [96].

Cytokine inhibitors
IL‑6 inhibitors
IL-6 is one of the key players in accelerating a cytokine 
storm. Several IL-6 antagonists are being studied for 
safety and efficacy in COVID-19. Tocilizumab, a proto-
type IL-6 receptor antagonist, is the most studied and is 
currently used in managing cytokine storm in chimeric 
antigen receptor Antibody (CAR-T) therapy. It was 
approved in China for the treatment of severe COVID-
19 in March 2020. An initial trial in China where Toci-
lizumab was administered to 20 patients with severe 
COVID-19, targeting cytokine storm demonstrated 
promising results, with 19 patients discharged in stable 
condition 2  weeks after administration. Chest imag-
ing showed significant improvement on day four to five 
[97]. Anecdotal reports from other large centers suggest 
rapid improvement in some patients with improved 
oxygenation often within 24 to 48 h of administration. 
Also, treatment may be more effective earlier in the dis-
ease course than when ARDS fully develops. Typically, 
a single 8 mg/kg dose is administered. Notable adverse 

effects of Tocilizumab include increased risk of second-
ary infection, liver dysfunction, and cytopenias [98].

A similar anti-IL-6 agent, Sarilumab, is being 
investigated in clinical trials for COVID-19 (e.g. 
NCT04315298). Siltuximab is a chimeric anti-IL-6 
monoclonal antibody that binds to soluble and mem-
brane-bound forms of IL-6, preventing binding to sol-
uble and membrane-bound receptors. It is used in the 
treatment of CAR-T induced CRS not responding to 
tocilizumab, and hence may play a role in COVID-19 
induced CRS as well [99, 100]. Side effects include cyto-
penias, edema, hypotension, and increased risk of sec-
ondary infections.

IL‑1 inhibitors
IL-1 is another pro-inflammatory cytokine that feeds the 
cytokine storm. It mediates inflammation in the lungs, 
leading to fever, ARDS and fibrosis. Anakinra, an IL-1 
blocker, is used to treat RA in adults and neonatal-onset 
multisystem dysfunction (NOMID), as well as used off-
label for neurotoxicity complications of CAR-T ther-
apy. This is currently being investigated for COVID-19 
induced CRS [85, 101]. Adverse effects include hypersen-
sitivity, neutropenia, and infections [102].

Fig. 3  Immune dysregulation in cytokine release syndrome. The involvement of the immune system in COVID-19 is in 3 phases: initial inflammation 
which is characterized by delayed interferon response and robust viral replication, the pulmonary inflammation phase which is characterized 
by sub-optimal T-cell and antibody response, leading to increased vascular leakage and permeability and impaired viral clearance, and the 
hyperinflammation phase which is characterized by very severe infiltration of monocytes, macrophages and neutrophils—this leads to progressive 
lung injury and ARDS as well as hemodynamic instability and shock
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JAK inhibitors
The regulation of the JAK-STAT pathway is essential for 
cross interaction between various cytokine signaling 
pathways leading to an uncontrolled pro-inflammatory 
state. JAK inhibitors such as Ruxolitinib and Fedratinib 
target the pro-inflammatory JAK/STAT pathway and 
are approved for myeloproliferative disorders [17, 103, 
104]. Ruxolitinib is also approved for steroid-refrac-
tory graft versus host disease (GVHD) which are JAK/
STAT-driven diseases. Baricitinib is another JAK inhib-
itor currently used in RA which is being investigated 
for efficacy in COVID-19 (NCT04320277). It also may 
have anti-viral activity by reducing clathrin-mediated 
endocytosis [105]. Common dose-limiting side effects 
of JAK inhibitors include cytopenias, hyperlipidemia 
and increased risk of secondary infection.

Immune effector cell therapy
NK cell therapy
NK cells are recruited to site of infection by 
chemokines, activated by cytokines produced from 
infected cells, like IL-12, IL-15, IL-18, and IFN. Acti-
vated NK cells counter the virus by increased IFN-ƴ 
production and NK cell-mediated cytolysis of infected 
cells. Possible blunting of NK responses by SARS-
CoV-2 may allow disease progression [21, 106, 107]. 
Given its anti-viral properties, allogeneic, “off the shelf ”, 
NK cell infusions, derived from healthy donors, are 
being evaluated for efficacy in COVID-19 associated 
pneumonia. NK infusions are generally well tolerated.

Mesenchymal cells (MSC)
Cell-based therapy, especially mesenchymal stem cell 
therapy, is considered to be one of the most promis-
ing therapeutic approaches aiming to provide oppor-
tunities to treat several diseases. MSC have diverse 
immunomodulatory and regenerative properties [54]. 
Previous trials have shown evidence of stabilized and 
improved lung function in patients with ARDS who 
received MSC without any treatment-related adverse 
effects. Given the hypothesis that MSC therapy might 
prevent the triggering of cytokine storm and promote 
endogenous repair, several clinical trials are Looking at 
the safety and therapeutic potential of MSC from vari-
ous sources in SARS-CoV-2 (e.g. NCT04313322) [108, 
109]. Since infusions may carry the risk of microcir-
culation injury, MSC derived exosomes, which can be 
delivered by aerosol inhalation, are also being evaluated 
for safety and efficacy in severe COVID-19 pneumonia 
(NCT04276987). Availability and large-scale manufac-
turing are potential issues.

Complement inhibitors
In addition to DIC, the complement pathway contrib-
utes to lung injury in SARS, and  it may contribute to 
the high incidence of fatal microvascular and macro-
vascular thrombosis associated with COVID-19 [110]. 
Eculizumab, which is approved to treat rare complement-
mediated disorders like paroxysmal nocturnal hemo-
globinuria (PNH), atypical hemolytic uremic syndrome 
(aHUS), neuromyelitis optica spectrum disorder and 
myasthenia gravis, is being evaluated for safety and effi-
cacy in COVID-19 (NCT04288713). Immunosuppres-
sion is a major side effect. In general, patients should be 
vaccinated against meningococcus and pneumococcus 
prior to use [111]. However, this may not be possible in 
COVID-19 patients being considered for this therapy.

Programmed cell death (PD)‑1 inhibitors
These likely function by delaying T cell exhaustion. Cam-
relizumab, a fully humanized PD-1 monoclonal antibody, 
is currently approved to treat lymphoma in China and is 
now being investigated as an immunoregulatory thera-
peutic option for COVID-19. Clinical efficacy of camreli-
zumab plus thymosin in patients with COVID-19 will be 
evaluated in clinical trial NCT04268537 [112]. Adverse 
effects of immunotherapy are generally related to break-
through autoimmunity and may include rash, diarrhea, 
colitis, and thyroid dysfunction [112].

Therapies utilizing passive immunity
Convalescent plasma exchange, which utilizes passive 
immunity, may be an effective treatment strategy. Serum 
rich in anti-SARS-CoV-2 Ab can be obtained from recov-
ered donors and transfused to infected patients. Shen 
et  al. reported transfusing hyperimmune plasma on 5 
critically ill patients infected with COVID-19, who had 
severe pneumonia, rapid progression, and persistently 
high viral load despite treatment, as well as severe ARDS 
mechanical ventilation. These patients received trans-
fusion with convalescent plasma with SARS-CoV-2v-2 
specific antibody with the resultant resolution of ARDS 
within two weeks, and 3 of these patients were extubated 
within 2 weeks. All patients clinically improved around 
a week later [113]. This appears promising and is being 
investigated in several countries for critically ill patients 
[114].

A summary of all the therapies discussed above is listed 
in Table 1.

Conclusion
Given  the  worsening trajectory of the COVID-19  pan-
demic, there is a global  race  to develop effective thera-
peutic interventions. Since SARS-CoV-2 is a novel virus, 
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our understanding regarding its host interaction and 
resultant inflammatory responses is still evolving.  Most 
therapeutic agents currently under investigation are 
based on prior observations with SARS or experience in 
immune dysregulation. Moreover, with rapid publica-
tion pace and immediate access to data before formal 
peer-review, there are emerging challenges in ensuring 
the accuracy of published information for clinical use. 
The first medication to receive EUA was HCQ/chloro-
quine. However, based on subsequent data, this EUA was 
revoked. Currently, the only direct anti-viral agent with 
EUA for COVID-19 is Remdesivir.

A key mechanism driving COVID-19 associated mor-
tality may be the cytokine storm augmenting lung injury. 
While the precise pathways driving CRS and ARDS are 
yet to fully understood, high levels of pro-inflammatory 
cytokines such as IL-6, IL-1β, and TNF-α characterize 
the cytokine storm. There is encouraging preliminary 
data in CRS and ARDS with the immunomodulators like 
Tocilizumab, an IL-6 inhibitor. These agents may be used 
alone or in conjunction with other treatments, such as 
dexamethasone, in severe disease.

Cellular therapy may also have a role in treating and 
reducing lung injury in COVID-19. Based on their 
application as cancer treatments, NK cells are known to 
exert direct cytotoxic effects on virally infected cells and 
produce IFN-ƴ and TNFα to boost the host immune 
response. MSCs, with prior use in the treatment of 
GVHD, fibrotic liver, and lung diseases, may also improve 
COVID-19 associated lung damage. There is a potential 
role for the development of agents aimed at enhancing 
immune surveillance by specifically targeting ORF8 or 
NSP1 to impair MHC1 antigen presentation.

Convalescent plasma from recovered patients is also 
an attractive treatment option for critically ill or rapidly 
deteriorating patients. Ultimately, the hope is to develop 
vaccinations effective in prevention, but this may take 
several months or years to develop.

Most of the evidence on current therapeutic agents 
are based on small observational studies and need to be 
validated by larger studies and RCTs. Given the paucity 
of information regarding therapeutic agents and their 
administration, there is an urgent need for studies to 
evaluate all aspects of therapy, including the timing of 
administration, potential synergism between treatments, 
and potential toxicities. It is also crucial to balance the 
need to expedite the utilization of potentially helpful 
medications with the need to ensure patient safety.
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