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KEY LEARNING POINTS

What is already known about this subject?
• Chronic kidney disease (CKD) is now considered as a major worldwide public health problem and the death rate due
to cardiovascular disease (CVD) is significantly higher in patients with CKD than in the general population. However,
conventional cardiovascular (CV) risk factors do not appear to fully account for this elevated risk of CVD.

• For many years, urea was considered to be a relatively inert, nontoxic molecule. But several studies have shown that urea is
a direct and indirect uraemic toxin. Although the mechanisms of urea’s direct toxicity still require further investigation, in
vitro and in vivo studies have shown that uraemiamodulates the smoothmuscle cell’s phenotype, induces the expression of
pro-apoptotic family genes.Other studies have shown that urea has an indirect toxic effect via protein carbamylation, which
interferes with the proteins’ molecular and cellular functions and is associated with CKD progression after adjustment for
conventional risk factors. However, it is still not clear whether serum urea levels are related to CV outcomes in patients
with moderate-to-advanced CKD.

What this study adds?
• Among 2507 patients with CKD not receiving maintenance dialysis attending nephrology outpatient facilities, we showed
that patients with moderately elevated serum urea were at high risk of developing adverse CV outcomes. The association
was independent of CV risk factors including estimated glomerular filtration rate.

What impact this may have on practice or policy?
• Considering the toxic effect of elevated serumurea levels in themanagement of patients withmoderate to advanced chronic
renal failure is important, given the actual body of evidence. Given the dietary origin of a proportion of the urea in the
circulation, nutritional therapy could be used to counter an elevation in urea levels. Interventional studies of various diets
and their impacts on CV outcomes (and especially non-atheromatous events) in non-dialysed patients with CKD are
warranted.

ABSTRACT

Background. Elevated serum urea levels are common in
moderate-to-advanced chronic kidney disease (CKD). Several
studies have shown that urea is a direct and indirect uraemic
toxin, especially with regard to cardiovascular disease. We
sought to determine whether serum urea levels are associated
with adverse cardiovascular events and death before renal
replacement therapy (RRT) in patients with CKD.
Methods. CKD-REIN is a prospective cohort of CKDnephrol-
ogy outpatients not receiving maintenance dialysis. The 2507
patients included in the analysis were divided into three
groups according to the baseline serum urea level (T1 <10.5,
T2 10.5–15.1 and T3 ≥15.1 mmol/L). Cox proportional
hazard models were used to estimate hazard ratios (HRs)
for first atheromatous or non-atheromatous cardiovascular
(CV) events and all-cause mortality before RRT. The models
were adjusted for baseline comorbidities, laboratory data and
medications.
Findings. Of the 2507 included patients {median [in-
terquartile range (IQR)] age: 69 [61–77]; mean (standard
deviation) estimated glomerular filtration rate (eGFR) 33.5
(11.6) mL/min/1.73 m2}, 54% had a history of cardiovascu-
lar disease. After multiple adjustments for CV risk factors
(including eGFR), patients in T3 had a higher risk of athero-
matous and non-atheromatous CV events than patient in T1 (n
events= 451,HR [95%CI]: 1.93 [1.39; 2.69]). The adjustedHRs
for death before RRT (n events= 407)were 1.31 [0.97; 1.76] and
1.73 [1.22; 2.45] for patients T2 and those in T3, respectively.
Interpretation. Our data suggested that urea is a predictor of
CV outcomes beyond CV risk factors including eGFR.

Keywords: cardiovascular disease, chronic kidney disease,
urea, uraemic toxin

INTRODUCTION
Chronic kidney disease (CKD) is now considered as a major
worldwide public health problem [1]. It directly affects the
overall burden of morbidity and mortality and its increasing
prevalence is being driven primarily by population ageing and
increases in the prevalence of diabetes, hypertension and obe-
sity [2]. Although the death rate due to cardiovascular disease
(CVD) is significantly higher in patients with CKD than in the
general population [3, 4], the underlying pathophysiological
mechanisms are not fully understood. Indeed, conventional
cardiovascular (CV) risk factors do not appear to fully account
for this elevated risk of CVD.

Urea is a product of protein metabolism that is often used
as a proxy for CKD severity and dialysis adequacy in clinical
settings. For many years, urea was considered to be a relatively
inert, nontoxic molecule. However, several studies have shown
that urea is a direct and indirect uraemic toxin [5]. Although
the mechanisms of urea’s direct toxicity still require further
investigation, in vitro and in vivo studies have shown that
uraemia modulates the smooth muscle cell’s phenotype and
induces the expression of pro-apoptotic BCL-2 family genes;
this might explain the elevated apoptosis rate observed in the
arterial wall in uraemic patients [6, 7]. Furthermore, a high
urea concentration in endothelial cell progenitor cultures has
been associated with increased senescence and free radical
formation [8]. In a study of nephrectomized mice, inhibition
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of the urea transporter was associated with reductions in
hypertension and cardiac fibrosis and an improvement in
cardiac function [9].

Other studies have shown that urea has an indirect
toxic effect via protein carbamylation [10], which interferes
with the proteins’ molecular and cellular functions. Protein
carbamylation is associated with CKD progression after ad-
justment for conventional risk factors [11]. Furthermore, the
exacerbation of vascular calcification by carbamylation [12], or
atherosclerosis with lipoprotein carbamylation might explain
the high incidence of CVD and mortality in CKD [13].

Thus, urea might contribute to the elevated CV risk in
patients with CKD. However, no clinical studies we are aware
of have reported an association between the occurrence of
CV events (whether fatal or nonfatal) and serum urea levels
in pre-dialysis patients with CKD. Thus, the objective of the
present study was to determine whether serum urea levels
are associated with adverse outcomes such as CV events
(both atheromatous and non-atheromatous) and death before
renal replacement therapy (RRT) in patients with CKD after
adjustment for the estimated glomerular filtration rate (eGFR).

MATERIALS AND METHODS
Study design and participants
CKD-REIN is a prospective cohort study conducted by

40 nationally representative nephrology outpatient facilities
in France. Details of the study protocol have been published
[14]. Briefly, the main inclusion criteria are ≥18 years, a
confirmed diagnosis of moderate or advanced CKD, an
eGFR <60 mL/min/1.73 m2 and the absence of dialysis or
transplantation. Between July 2013 and April 2016, 3033
patients were enrolled during a routine nephrology outpatient
appointment and are actively followed up for 5 years at
most. The recruitment of outpatients ensured that the study
participants did not present with acute illness (such as acute
kidney injury or digestive tract haemorrhage) on inclusion.
Furthermore, all patients were receiving stable background
therapy. The study protocol was approved by the institutional
review board at the French National Institute of Health and
Medical Research (INSERM; reference: IRB00003888) andwas
registered at ClinicalTrials.gov (NCT03381950).

For the purposes of the present analysis, we excluded
patients with missing data for the serum urea level at baseline
or who had an aberrant serum urea value (i.e. <2.5 or
>100 mmol/L). To limit the effects of nonrenal factors on
serum urea levels, patients who were on corticosteroids or had
a history of metastatic cancer were excluded. Patients who had
an eGFR <15 mL/min/1.73 m2 at baseline were also excluded,
considering that they had reached the stage of kidney failure
(Figure 1). A total of 2507 patients were analysed here.

Study data
Trained clinical research associates (CRAs) collected data

from patient interviews and medical records at baseline
and then annually. The patients’ characteristics (age, sex
and smoking status) were recorded and the patients were

FIGURE 1: Study flowchart. eGFR, estimated glomerular filtration
rate.

screened for a history of hypertension, diabetes, CVD or acute
kidney injury (definitions in Supplementary data, Table S1).
Blood pressure was measured, as were height and weight to
calculate body mass index (BMI). All patients were prescribed
a set of standard blood and urine tests (recommended by
French health authorities for routine CKD care), with sample
to be taken at their usual medical laboratory. Data on
the serum creatinine, serum urea level, blood haemoglobin,
serum albumin and albumin- or protein-to-creatinine ratio
(Supplementary data, Table S1) were recorded. The GFR was
estimated using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) creatinine equation and the isotope
dilutionmass spectrometry-traceable creatinine concentration
determined in a Jaffe assay (in 38% of participants) or an
enzymatic assay (in 57%; the assay type was unknown for 5%)
[15].

Patients were asked to bring all their drug prescriptions
for the preceding 3 months to the enrolment visit. The CRAs
used an electronic case report form [linked to the international
Anatomical Therapeutic and Chemical (ATC) thesaurus] to
enter standardized ATC codes.

Longitudinal clinical data (nephrology consultations, hos-
pital admissions, laboratory test results, medications and any
transition to dialysis or transplantation) were collected every
year from medical records and patient interviews.

Study outcomes
CV events were assessed carefully according to the Cardio-

vascular and Stroke Endpoint Definitions for Clinical Trials
[16].

The primary endpoint was the occurrence of a first fatal
or nonfatal atheromatous or non-atheromatous CVD. Fatal or
nonfatal atheromatous CVD was defined as a composite of
(i) death (fatal myocardial infarction or stroke), (ii) hospital-
ization for myocardial infarction, silent ischaemia, unstable
angina, intrastent thrombosis, stroke or transient ischaemic
attack, peripheral artery disease, percutaneous coronary in-
tervention or coronary artery bypass graft, vascular surgery,
or amputation and, (iii) revascularization for coronary or
peripheral artery disease. Fatal or nonfatal non-atheromatous
CVD was defined as a composite of (i) sudden cardiac
death or death from heart failure, haemorrhagic stroke, or
other CV causes, (ii) death associated with a CV procedure,
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such as noncoronary or peripheral vascular procedure, (iii)
hospitalization for haemorrhagic stroke, heart failure, cardiac
rhythm/conduction disorders, pulmonary embolism or deep
vein thrombosis, valvular heart disease and, (iv) cardiac pro-
cedures such as valve prosthesis, cardioversion, implantation
of a pacemaker and implantable cardioverter defibrillator.

The secondary outcomes included first major CV events
(any CV death, myocardial infarction, stroke and hospitaliza-
tion for heart failure) and all-cause death. Deaths before RRT
were identified from medical records or reported by family
members at the annual follow-up visit.

All the considered events occurred before RRT. RRT was
defined in the present study as kidney dysfunction requiring
initiation of chronic dialysis or preemptive transplantation (as
identified from medical records or by linking to the French
National Kidney Failure Registry) [17].

CV events were available for the first 3 years of follow-up at
the time of analysis and so datawere censored on the date of the
patient’s third annual follow-up visit, the date of the last follow-
up before the third annual visit, the date of RRT or the date
of death from a non-CV cause. Each death occurring during
the 5-year follow-up period was used in the all-cause mortality
model and the data were censored at the date of RRT or the
date of the last follow-up.

Statistical analysis
The participants’ serumurea levels were divided into tertiles

(T1 <10.5, T2 10.5–15.1, T3 ≥15.1 mmol/L). The baseline
characteristics were described for the overall population
(n = 2507) and the subgroups (serum urea tertiles) and
reported as themedian [interquartile range (IQR)] or themean
[standard deviation (SD)] for continuous data (depending
on the distribution) and as the frequency (percentage) for
qualitative variables. An analysis of variance (ANOVA) or the
Kruskal–Wallis test was used to compare continuous variables,
depending on the data distribution and homoscedasticity.
Incidence rates and 95% confidence intervals (CIs) for each
event were computed as a function of the serum urea levels.
For each outcome studied, we used cause-specific Cox models
to estimate crude and adjusted hazard ratios (HRs) [95%
CI] associated with the serum urea level (in tertiles). HRs
were adjusted for relevant demographic variables and baseline
comorbidities (preselected in a review of the literature for each
outcome). Risks associated with serum urea were adjusted
for age at baseline, sex, smoking status, baseline eGFR,
urine albumin- or protein-to-creatinine ratio, BMI, diabetes,
systolic blood pressure, history of CVD, anaemia, serum
albumin, high-sensitivity C-reactive protein and prescriptions
of diuretics, statins and antiplatelet agents at baseline. The risk
of death before RRT was further adjusted for a history of acute
kidney injury and prescription of a proton pump inhibitor at
baseline. Each model’s validity (according to the proportional
hazard assumption) was checked by testing the Schoenfeld
residuals.

We used penalized splines in fully adjusted Cox models to
represent the functional relationship between serum urea and
the CVD risk. As a sensitivity analysis, we built a cause-specific
Coxmodel for each type of CVD outcome, i.e. an analysis of (i)

fatal and nonfatal atheromatous CVD events and (ii) fatal and
nonfatal non-atheromatous CVD events.

Missing covariate data were managed by multivariate im-
putation by chained equations (MICE) [18]. The assumption
whereby data were missing at random was plausible. By using
the MICE package in R statistical software (version 4.0.3) [19],
we created 50 datasets (20 iterations). All covariates present in
the Coxmodels and baseline serum bicarbonate were included
in the imputationmodel. Fitted Coxmodels were generated for
each dataset and pooled regression coefficients were obtained
usingRubin’s rules. All statistical analyses were performedwith
R software.

RESULTS
Characteristics of the patients at baseline
Of the 3033 patients, 2507 patients were analysed (Table 1).

The median age was 69 years [61–77] and the mean (SD)
eGFRwas 33.5 (11.6)mL/min/1.73m2; 54% of the patients had
a history of CVD, 45% had diabetes and 38% had anaemia.
The mean (SD) serum urea was 8.3 (1.5) for T1, 12.6 (1.3)
for T2 and 20.3 (5.1) mmol/L for T3. We observed significant
difference in eGFR levels and the albumin- or protein-to-
creatinine ratio at baseline between the three groups. A
strong negative correlation was found between serum urea
and eGFR (r = −0.64). The BMI was significantly higher
in patients in T3. Compared with patients in T1, patients in
the other tertiles were more likely to have a history of CVD,
diabetes, anaemia, diuretic use and/or acute kidney injury.
Lower serum bicarbonates levels were found in patients in T3.
The proportion of patients with heart failure at baseline was
significantly higher in T3 (19%) than in T1 (9%) and T2 (16%)
(P < 0.001, not shown).

Fatal and nonfatal atheromatous or non-atheromatous
cardiovascular events
Of the 2507 patients, 451 experienced a first atheromatous

or non-atheromatous CV event (fatal or nonfatal) over a
median [IQR] follow-up period of 3.0 [2.2–3.1] years, leading
to a crude incidence rate [95% CI] of 7.1 [6.4; 7.7] per
100 person-years (PY). The incidence rate was highest in
patients in the third urea tertile (Supplementary data, Table
S2, Figure 2). After multiple adjustments, the risk of fatal
and nonfatal atheromatous or non-atheromatous CV events
was found to be significantly higher for patients in T3 than
in patients in T1 (HR [95% CI]: 1.93 [1.39; 2.69]; Figure 2,
Supplementary data, Table S3). A nonsignificant trend towards
a higher risk was also noted for patients in T2 (HR [95%
CI]: 1.24 [0.93; 1.66]). Penalized spline regression showed that
serum urea was linearly related to the CVD risk (Figure 3). The
interaction between serum urea and heart failure was tested
and turned out not to be significant (P = .15), as well as the
interaction between serum urea and eGFR (P = .69).

A sensitivity analysis failed to show an association between
the baseline serum urea level and atheromatous CV events
(fatal or nonfatal) (Supplementary data, Table S4). In contrast,
a significantly higher risk of non-atheromatous CV events
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Table 1. The baseline characteristics of the study population

Baseline serum urea (mmol/L)

Total
(N = 2507)

T1 <10.5
(N = 829)

T2 10.5–15.1
(N = 835)

T3 ≥ 15.1
(N = 843) P- value

Imputed data
(N = 2507)

Serum urea (mmol/L) 13.8 (5.9) 8.3 (1.5) 12.6 (1.3) 20.3 (5.1) 0%
Age at baseline (years) 69 [61–77] 68 [60–76] 69 [61–77] 69 [61–77] 0.13 0%
Men, n (%) 66 65 66 67 0.71 0
Smoking, n (%) 0.03 0.8
Never-smoker, n (%) 40.6 44.5 39.6 37.7
Current smoker, n (%) 12.6 11.7 11.8 14.4
Former smoker, n (%) 46.8 43.8 48.5 47.9

eGFR at baseline (mL/min/1.73 m2) 33.5 (11.6) 43.5 (9.9) 32.6 (8.9) 24.5 (7.0) <0.001 0%

Albumin- or protein-to-creatinine ratio <0.001 8.0
A1 (normal to mildly increased), n (%) 28.6 42.1 27.0 16.9
A2 (moderately increased), n (%) 31.8 31.8 33.7 29.7
A3 (severely increased), n (%) 39.6 26.1 39.2 53.4

Body mass index (kg/m2) 28.8 (5.8) 28.3 (5.2) 28.7 (5.9) 29.5 (6.3) <0.001 2.0%
Diabetes, n (%) 44.8 36.8 43.9 53.6 <0.001 0.2
Systolic blood pressure (mmHg) 142 (20) 142 (20) 142 (21) 143 (20) 0.32 2.3%
History of cardiovascular disease, n (%) 53.9 47.3 54.6 59.6 <0.001 1.3
Anaemia, n (%) 38.3 21.1 35.8 57.8 <0.001 0.3
Serum bicarbonate (mmol/L) 25.0 (3.4) 25.8 (3.1) 24.9 (3.3) 24.1 (3.6) <0.001 6.9%
Serum albumin (g/L) 40.4 (4.5) 40.6 (4.4) 40.5 (4.2) 39.9 (4.9) 0.009 15.2%
High-sensitivity C-reactive protein (mg/L) 2.5 [1.1–5.9] 2.2 [1.1–5.0] 2.5 [1.1–5.4] 2.9 [1.2–7.1] <0.001 17.6%
History of acute kidney injury, n (%) 22.5 20.0 20.9 26.6 0.004 7.7
Diuretic prescription at baseline, n (%) 54.0 39.9 51.1 70.7 <0.001 0.3
PPI prescription at baseline, n (%) 31.4 27.9 33.9 32.4 0.02 0.3
RASi prescription at baseline, n (%) 76.9 72.3 80.2 78.0 <0.001 0.3
Statin prescription at baseline, n (%) 58.9 51.4 61.0 64.1 <0.001 0.%
Antiplatelet prescription at baseline, n (%) 42.1 37.6 43.1 45.6 0.003 0.3

eGFR, estimated glomerular filtration rate, based on the CKD-EPI equation; RASi, renin-angiotensin system inhibitor; PPI, proton pump inhibitor; T, tertile.
Data are quoted as the frequency (%), mean (standard deviation) or the median [interquartile range]. An ANOVA or a Kruskal–Wallis or Chi-squared test was used to compare groups.

FIGURE 2: Adjusted HRs for fatal and nonfatal atheromatous or
non-atheromatous cardiovascular events, according to the baseline
serum urea level. HR, hazard ratio; CI, confidence interval. Adjusted
for age at baseline, sex, smoking status, baseline estimated
glomerular filtration rate, urine albumin- or protein-to-creatinine
ratio, body mass index, diabetes, systolic blood pressure, history of
cardiovascular disease, anaemia, serum albumin, high-sensitivity
C-reactive protein and prescriptions of diuretics, statins and
antiplatelet agents at baseline.

(fatal or nonfatal) was observed in patients in T3 (HR [95%
CI]: 2.13 [1.40; 3.24]), and a trend towards a greater risk was
observed in patients in T2 (HR [95% CI], 1.28 [0.88; 1.88]);
Supplementary data, Table S5).

Major CV events
Over the first 3 years of follow-up, 275 patients first

experienced a major CV event. The crude incidence rate was

FIGURE 3:Hazard ratio for fatal and nonfatal atheromatous or
non-atheromatous cardiovascular events, according to the baseline
serum urea level (mmol/L). The continuous line represents
predictions with penalized splines in Cox models (95% confidence
intervals). Ticks on the x-axis represent the distribution of the
baseline serum urea level. Hazard ratios are adjusted for age at
baseline, sex, smoking status, baseline estimated glomerular filtration
rate, urine albumin- or protein-to-creatinine ratio, body mass index,
diabetes, systolic blood pressure, history of cardiovascular disease,
anaemia, serum albumin, high-sensitivity C-reactive protein and
prescriptions of diuretics, statins and antiplatelet agents at baseline.
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FIGURE 4: Adjusted HRs for major cardiovascular events, according
to the baseline serum urea level. HR, hazard ratio; CI, confidence
interval. Adjusted for age at baseline, sex, smoking status, baseline
estimated glomerular filtration rate, urine albumin- or
protein-to-creatinine ratio, body mass index, diabetes, systolic blood
pressure, history of cardiovascular disease, anaemia, serum albumin,
high-sensitivity C-reactive protein and prescriptions of diuretics,
statins and antiplatelet agents at baseline of diuretics, prescription of
statins and prescription of antiplatelet agents at baseline.

FIGURE 5: Adjusted HRs for death before renal replacement therapy
according to the baseline serum urea level. HR, hazard ratio; CI,
confidence interval. Adjusted for age at baseline, sex, smoking status,
baseline estimated glomerular filtration rate, urine albumin- or
protein-to-creatinine ratio, body mass index, diabetes, systolic blood
pressure, history of cardiovascular disease, anaemia, serum albumin,
high-sensitivity C-reactive protein, history of acute kidney injury,
diuretic prescription, proton pump inhibitor prescription and
prescriptions of statins and antiplatelet agents at baseline.

4.1 [3.6; 4.6] per 100 PY. The incidence rate was 3.5 times
higher in patients in T3 than in patients in T1 (Supplementary
data, Table S2, Figure 4). The adjusted HR [95% CI] for major
CV events associated with the baseline serum urea level was
1.13 [0.77; 1.67] for patients in T2 and 1.94 [1.27; 2.98] for
patients in T3 (Figure 4, Supplementary data, Table S6).

Death before RRT
Over a median follow-up period of 4.8 [3.3; 5.1] years in

the CKD-REIN cohort, 407 patients died before RRT, leading
to an incidence rate of 4.0 [3.6; 4.3] per 100 person-years
(Supplementary data, Table S2, Figure 5). The adjusted HRs
[95% CI] for death before RRT were 1.31 [0.97; 1.76] and 1.73
[1.22; 2.45] for patients in T2 and T3, respectively (Figure 5,
Supplementary data, Table S7).

DISCUSSION
Our analysis of a large prospective cohort of CKD patients
not receiving maintenance dialysis attending nephrology out-
patient facilities showed that higher serum urea levels were
associated with a higher incidence of adverse CV outcomes

and a higher all-cause mortality rate. Our findings are in line
with the current body of epidemiological evidence on kidney
function biomarkers and the risk of CVD, and suggest that
urea should be taken into account when seeking to predict and
prevent CV disease in patients with CKD.

Several serum biomarkers [such as serum creatinine or
urea, or blood urea nitrogen (BUN), which reflects only the
nitrogen content of urea], are routinely used in clinical settings
to evaluate kidney function. Urea is the main metabolite
derived from dietary proteins and tissue protein turnover. The
compound is almost exclusively excreted by the kidneys in the
urine, after filtration in the glomerulus and a certain degree
of reabsorption from the filtrate. Although several nonrenal
factors affect the serum urea concentration [20], reduced
urinary elimination of urea (due to CKD) is the main factor
that increases serum urea levels. Volume depletion by diuretics
or a decrease in the effective circulating volume induced by
heart failure might contribute to the elevation of urea levels
in our CKD patients. However, the fact that bicarbonate levels
were significantly lower in T3 than in T1 (Table 1) tends to rule
out volume depletion by diuretics. In contrast, the difference
between the tertiles in the prevalence of heart failure suggests
that the elevated urea levels could be due (at least in part) to
a decrease in the effective circulating volume caused by heart
failure.

Under normal conditions, the serum urea level ranges from
2.2 to 7.2 mmol/L (or 13–43 mg/dL) [21]. Patients in the first
urea tertile in our study can be considered as having a normal
level, those in the second tertile have a slightly elevated level
and those in the third tertile have a moderately elevated level.
During the course of the CKD, serum urea levels can easily
reach or exceed 10 times the upper normal limit—especially
when kidney failure occurs [21]. Until recently, urea was
considered to be a biologically inert marker. However, studies
of animal models of CKD have shown that the accumulation
of urea is toxic [21].

CKD is a common disease and its prevalence will continue
to increase in the coming years [2]. CVD is one of the leading
contributors to morbidity and mortality in patients with CKD
[22]. The limited effectiveness of most conventional risk factor
modification strategies in patients with CKD may suggest
that various metabolic pathways underlie the development of
CVD in this population [23]. The results of animal studies
suggest that several direct and indirect pathophysiological
mechanisms underlie the relationship between urea levels and
CV adverse events in CKD [5]. Uraemic conditions lead to
the overexpression of proapoptotic genes in animal tissues
and in cultured human vascular smooth muscle cells [6].
Moreover, the urea levels found in the serum of CKD patients
directly increase levels of reactive oxygen species (ROS) and
oxidative stress in several types of cells [24–26]. Interestingly,
endothelial progenitor cell number and function decrease with
advancing CKD [27], which might be due to the acceleration
of senescence in endothelial progenitor cells by urea-induced
ROS [8]. In fact, these endothelial progenitor cells have a key
role in the repair and maintenance of the vascular system [28].
Furthermore, there is a growing body of evidence on indirect
toxic effects of urea via post-translational modifications of

Urea and cardiovascular disease 189



proteins; the resulting biochemical alterations might have an
impact on CV outcomes [5, 21]. Indeed, urea’s dissociation
products (e.g. cyanate) irreversibly carbamylate proteins [29]
and so change the latter’s physical properties and molecular
and cellular functions. CKD is associated with elevated protein
carbamylation [10]. Low-density lipoproteins are sensitive to
carbamylation; this damage can cause endothelial cell death
and smooth muscle cell proliferation in vitro [30] and other
molecular alterations leading to vascular damage in vivo [5].
In the 4D study, protein carbamylation was associated with
heart failure and death in diabetic patients with end-stage
renal disease [31]. Several comparative studies in patients with
CKD have suggested that BUN is a strong predictor of all-
cause mortality in patients with heart failure and in those with
acute coronary syndrome [32–34]. Although the mechanisms
underlying these associations have yet to be characterized,
these data suggest that carbamylation has an important role in
CV outcomes in patients with CKD.

Interestingly, in our study, the highest serum urea level
was associated with both CV events and death before RRT
in the CKD-REIN cohort and these associations persisted
after adjustment for the current eGFR—suggesting that more
attention should be paid to the prevention of CVD in patients
with high serum urea levels. We found that the risk of
atheromatous CVDwas not significant but that the association
between high serum urea levels and non-atheromatous CVD
was strong and significant. Our hypothesis is that urea might
have limited effects (directly, or indirectly via carbamylation)
on atheromatous CVD, relative to traditional risk factors.
Urea is the most potent uraemic toxin for inducing the
expression of the pro-apoptotic BCL2 family protein BAD
in human smooth muscle cells. However, the induction of
BAD by urea alone did not induce apoptosis but sensitized
cells to the pro-apoptotic effect of oxidized cholesterol—a
physiologically relevant inducer of this form of programmed
death [6]. Moreover, urea might have a significant impact on
nonatherosclerotic events, such as cardiac fibrosis. Indeed, it
has been shown that the inhibition of urea transporters reduces
cardiac fibrosis and improves heart function [9].

Given the dietary origin of a proportion of the urea in the
circulation, nutritional therapy could be used to counter an
elevation in urea levels. Indeed, Di Iorio et al. have shown that
serum urea levels were lower in patients on a Mediterranean
diet and on a very low protein diet supplemented with
ketoanalogues, relative to patients with an unrestricted diet
[35]. Interventional studies of various diets and their impacts
on cardiovascular outcomes (and especially non-atheromatous
events) in non-dialysed patients with CKD are warranted.

The present study had several strengths. Firstly, and to
the best of our knowledge, the present prospective study
is the first to have investigated the association between
urea levels and CVD in non-dialysed patients with CKD.
Secondly, we studied a large number of patients, which
increased the study’s statistical power and enabled extensive
adjustment for confounders (including the eGFR). Thirdly,
all the CV events were carefully adjudicated according to
standardized definitions [16]. Our study also had limitations.
Firstly, the observational design means that we cannot rule

out the possibility of residual confounding and we did not
explore time-varying risk associations between serumurea and
outcomes. However, our study could be considered to be a
hypothesis-generating study. Secondly, we did not assess the
protein intake at the time of the blood test, nor the time at
which this blood test was taken; these variables might have
affected the baseline serum urea levels. Thirdly, elevated urea
could be a marker for occult heart failure. Lastly, urea is one of
many uraemic toxins and so these other toxins (not assayed
here) might have influenced the study outcomes. However,
urea is a useful biomarker because it is measured in routine
clinical practice—in contrast to various other uraemic toxins,
which require specific assays.

CONCLUSION
The present prospective, epidemiological study is the first to
our knowledge to show that serum urea levels are associated
with CVD and mortality in non-dialysed patients with CKD,
independently of renal function. Indeed, our analysis of a large
cohort of patients with CKD demonstrated that individuals
with elevated serum urea levels had a higher risk of CV
outcomes and death.
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