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Abstract: The excessive use of synthetic chemicals for Megalurothrips usitatus (Bagrall) management
has resulted in the development of insecticide resistance as well as adverse effects to the natural
ecosystem. This has driven the need to develop alternative pest control strategies. This study
reports a synergistic interaction between the entomopathogenic fungus Akanthomyces attenuatus (Zare
& Gams) and the botanical insecticide matrine against M. usitatus. The results revealed that the
germination rate and colony growth of A. attenuatus were inhibited by higher matrine concentrations.
Percentage mortalities of M. usitatus following application of A. attenuatus and matrine showed a dose
mortality effect. After five days of treatment, all concentrations of matrine combined with different
concentrations of A. attenuatus, except one combination (matrine 0.25 mg/mL + 1 × 107 conidia/mL),
showed synergistic effect. The activities of acetylcholinesterase and antioxidant enzymes (superoxide
dismutase, catalase and peroxidase) in M. usitatus, in response to individual or combined application
of A. attenuatus and matrine at the end of the experimental period, were significantly lower than
controls. The findings confirm the synergistic action of A. attenuatus and matrine against M. usitatus
along with the biochemical phenomenon possibly regulating the synergistic effect.

Keywords: entomopathogenic fungi; biopesticides; matrine; Megalurothrips usitatus; synergistic effect

1. Introduction

Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae) is a primary pest of cowpea
in China. This insect pest damages the leaves, flowers and pods leading to reduced yield
as well as quality of cowpea [1–3]. At present, the control of M. usitatus mainly relies
on chemical measures. Due to the small size of thrips and their cryptic nature, short
development period, strong fecundity, parthenogenetic reproduction, pupation and the
strong migration ability of adults, the use of chemicals is also inefficient in the control
of thrips [3]. The excessive use of chemicals can also cause insecticide resistance and
harmful risks from pesticide residues [2,4]. In the pursuit of environmentally friendly
control strategies, entomopathogenic fungi have become an important means of biological
control of invertebrate pests because of their wide host spectrum, strong pathogenicity, and
environmental friendliness [3,5–7].

Akanthomyces attenuatus (Zare & Gams) (Hypocreales; Cordycipitaceae) (previously
Lecanicillium attenuatus), is known to have pathogenicity against different insect pests [3,7].
The efficiency of the fungus as a control agent is dependent upon numerous biological
events which are initiated by the adhesion of fungal spores to the insect cuticle, spore germi-
nation, and hyphal growth. In order, then, to breach the insect cuticle, fungal hyphae exert
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mechanical pressure and produce different enzymes and secondary compounds [5]. Akan-
thomyces attenuatus produces a secondary metabolite called bassianolide (a cyclooligomer
depsipeptide), which can affect acetylcholine (Ach) receptors of insect muscles, reducing
the production of acetylcholinesterase (AChE). Du et al. [7] showed 76.25 and 57.5% M.
usitatus mortality and LC50 values of 1.9 × 106 and 1.5 × 107 conidia/mL following the
application of two newly identified isolates of A. attenuatus: SCAUDCL-38 and SCAUDCL-
56, respectively.

Matrine is a natural plant pesticide obtained from Sophora flavescens and Sophora
alopecuroides roots [8]. Matrine has shown medicinal activities ranging from being antibac-
terial and anti-inflammatory, to liver protection and diuretic effects. Matrine has also been
used to control different insect pests of various crops [9]. Matrine is known to target insect
acetylcholine receptors, which in turn affects acetylcholinesterase production [10]. Matrine
has shown antifeedant activities against Formosan subterranean termites (Coptotermes
formosanus Shiraki) and two spotted spider mites (Tetranychus urticae Koch) [8,11]. Wu
et al. [12] showed that different matrine treatments caused a dose dependent increase
in Spodoptera litura mortality at different time intervals. Hwang et al. [13] described the
efficacy of a chemical formulation (KNI3126) based on a mixture of matrine and neem oil
against different sucking insect pests and phytophagous mites, thus confirming the toxic
as well as biological action of matrine against phytophagous arthropods with different
feeding habits. Matrine has the characteristics of specificity and naturalness [14]. It can only
act on specific organisms and decomposes rapidly in nature as carbon dioxide and water.
Due to these characteristics, matrine is considered as a green/environmentally friendly
insecticide [15]. Matrine has been commercialized under different trade names; however,
its insecticidal activity is lower than the popular insecticides introduced by international
pesticide companies during the last few years [10].

Insects have a well-developed defense mechanism against insecticides and natural
pathogens consisting of multiple enzyme systems [16]. Detoxifying enzymes, such as
acetylcholinesterase and antioxidant enzymes (SOD, CAT, POD), are mainly responsible
for insect defense to outer challenges caused by chemicals or pathogens [17,18]. Previous
studies have also reported significant changes in enzyme activities following insecticide
poisoning and fungal infection [19,20]. Only a little work has been performed to observe
the complex changes in enzyme profiles following joint application of insecticide and
pathogens against different insect pests [16,18]. However, a detailed investigation on the
effects of the synergistic action between A. attenuatus and matrine on M. usitatus enzyme
systems has not been reported.

This study aims to determine a possible synergism between matrine and A. attenuatus
for M. usitatus management since both of these agents have the same site of action within
their host [21,22]. In our study, the efficacy of different concentrations of matrine combined
with various conidial concentrations of A. attenuatus were tested against M. usitatus (Bag-
nall). The effects of matrine or A. attenuatus application alone or in combination on enzyme
activities of M. usitatus were also studied. The overall objective of this study was to provide
a scientific basis for the synergistic effect of pathogenic fungi (A. attenuatus) and botanical
pesticides (Matrine) for M. usitatus management.

2. Materials and Methods
2.1. Rearing of Akanthomyces attenuatus

Bean flower thrips adults collected from experimental fields at South China Agri-
cultural University, Guangzhou were reared on bean pods under laboratory conditions
(26 ± 5 ◦C; 70 ± 5% R.H and 12 h:8 h (light:dark) photoperiod) following the methods of
Espinosa et al. [23] and Du et al. [7].

2.2. Fungal Culture and Preparations of Conidial Suspension

The Akanthomyces attenuatus isolate SCAUDCL-53 used for this study was originally
isolated from soil samples and identified through molecular characterization of its ITS
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region by Yang et al. [3]. The isolate has been deposited in the Guangdong Microbial
Culture Center under repository number 60586. The fungal cultures and basal conidial
concentration (1 × 108 conidia/mL) were prepared as per the method described by Ali
et al. [22]. Briefly, the A. attenuatus isolate SCAUDCL-53 was cultured on potato dextrose
agar (PDA) plates for 10 days under laboratory conditions. Conidia were harvested by
scraping the surface of the mycelia with sterile cell scrapers into sterile de-ionized water
containing 0.05% Tween-80. The conidia were counted under a compound microscope
(Ningbo Shunning Instruments Co. Ltd., Ningbo, China) at ×40 magnification using a
hemocytometer (Qian Yihua Glass Instruments Co. Ltd. Guangzhou, China) to calibrate
a concentration of 1 × 108 conidia mL−1. Lower concentrations of conidial suspension
(1 × 107, 1 × 106, 1 × 105, and 1 × 106 conidia/mL), to be used in subsequent trials, were
prepared via the serial dilution method.

Spore viability was determined before preparation of suspension by spreading 0.2 mL
of a 1 × 104 conidia mL−1 suspension on PDA, and the number of germinated propagules
were estimated under a compound microscope (Ningbo Shunning Instruments Co. Ltd.,
Guangzhou, China) at 40× magnification after 24 h of incubation at room temperature.
Spores were considered viable when the germ tube lengths corresponded to the width. The
viability of conidia was assessed immediately before each experiment was started, and
percentage germination was estimated to >95% for all experiments [24].

2.3. Matrine

Matrine (98% pure) was obtained from Guangdong New Scene Bioengineering Com-
pany Ltd., Yangjiang, P.R. China. A stock solution of matrine (5 mg/mL) was prepared
using sterile ddH2O as solvent. Lower concentrations of matrine (1.0, 0.5, 0.25, 0.125,
0.05 mg/mL), to be used in subsequent trials, were prepared via the serial dilution method.

2.4. Influence of Matrine on Biological Characteristics of Akanthomyces attenuatus

Five concentrations of matrine (1.0, 0.5, 0.25, 0.125, and 0.05 mg/L) were individually
added to sterilized SDA broth (50 mL) followed by inoculation of A. attenuatus conidial
suspension (1 × 104 conidia/mL; 2 mL). Culture medium containing sterile water without
matrine served as control. Cultures were incubated at 150 rpm and 23 ± 2 ◦C for 5 days.
Fungal culture samples (1 mL) were taken from each treatment every 24 h and observed
under a compound microscope (Ningbo Shunning Instruments Co. Ltd., Guangzhou,
China) to count the total number of germinated conidia following the method of Wu
et al. [12]. The whole experimental setup was performed three times using freshly prepared
fungal suspension.

Matrine (1.0, 0.5, 0.25, 0.125, and 0.05 mg/L) was individually layered upon solidified
PDA medium followed by overnight drying. PDA plates without matrine served as con-
trols. PDA plates were then inoculated with mycelial plugs (2 cm diameter) of A. attenuatus
followed by incubation at 26 ◦C, 80 ± 5% relative humidity and 16 L: 8 D photoperiod for
7 days. Colony growth data was obtained, as outlined by Wu et al. [12], at 24 h intervals.

2.5. Bioassay Studies
2.5.1. Bioassay 1: Efficacy of Akanthomyces attenuatus Isolate SCAUDCL-53 against
Megalurothrips usitatus

The efficacy of A. attenuatus against M. usitatus was studied by following the cen-
trifuge tube residual method of Du et al. [7] and Yang et al. [3]. Briefly, bean pods (1 cm
length) and centrifuge tubes (9 cm length) were individually immersed in different conidial
concentrations (1 × 104, 1 × 105, 1 × 106, 1 × 107 and 1 × 108 conidial/mL) for 2 h followed
by air drying. Bean pods and centrifuge tubes immersed in ddH2O served as control. One
hundred individuals of M. usitatus adult females were then transferred to centrifuge tubes,
and bean pods were treated with the same concentration. The tubes were sealed with a
cotton plug. The centrifuge tube was then incubated at 26 ◦C, 80 ± 5% relative humidity
and 16 L: 8 D photoperiod. The whole study was performed three times using freshly
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prepared fungal concentrations and fresh batches of insects. Mortality data was collected
every 24 h as outlined by Du et al. [7].

2.5.2. Bioassay 2: Efficacy of Matrine against Megalurothrips usitatus

The efficacy of five matrine concentrations (1.0, 0.5, 0.25, 0.125, and 0.05 mg/L)
against M. usitatus under laboratory conditions was investigated. Briefly, bean pods (1 cm
length) and centrifuge tubes (9 cm length) were individually immersed in different matrine
concentrations for 2 h followed by drying under sterilized conditions. Bean pods and
centrifuge tubes immersed in ddH2O served as control. One hundred individuals of
M. usitatus adult females were transferred to the centrifuge tubes, and bean pods were
treated with the same concentration. The tubes were then sealed with a cotton plug. The
centrifuge tube was then incubated at 26 ◦C, 80 ± 5% relative humidity and 16 L: 8 D
photoperiod. The whole study was performed three times using freshly prepared fungal
concentrations and fresh batches of insects. Mortality data was collected every 24 h for
5 days.

2.5.3. Bioassay 3: Efficacy of Single or Joint Treatments of Akanthomyces attenuatus and
Matrine against Megalurothrips usitatus

Efficacy of single or joint treatments of A. attenuatus and matrine alone or in combina-
tion with each other was studied against M. usitatus adult females following the centrifuge
tube residual method described in bioassays 1 and 2.

2.6. Enzymatic Activity of Megalurothrips usitatus in Response to Single or Joint Treatments of
Akanthomyces attenuatus and Matrine
2.6.1. Insect Treatment and Sample Preparation

Megalurothrips usitatus adult females (60 females) treated with A. attenuatus (1 ×
105 conidia/mL), matrine (0.5 mg/mL) and their combination (A. attenuatus 1 × 105 coni-
dia/mL + matrine 0.5 mg/mL), following the centrifuge tube residual method described in
bioassays 1 and 2, were collected after 3 and 5 days of treatment. Collected insects were
homogenized in ice cold 0.05 M potassium phosphate buffer (PBS) for the enzyme assays
following the method of Ali et al. [22].

2.6.2. Total Protein Assay

Total protein concentration of insect samples was determined by the Bradford as-
say [25].

2.6.3. Enzyme Activity Assays

The activity of Acetylcholinesterase (AChE) of M. usitatus samples was determined
following the method of Ellman et al. [26]. The changes in absorbance of reaction mixture
(consisting of 50 µL sample solution, 100 µL 45 µM 5-5-dithiobis-(2-nitrobenzoic acid),
100 µL acetylthiocholine iodide and 90 µL sodium phosphate buffer) were recorded at
405 nm for 40 min. One unit of enzyme activity was described as change in absorbance per
min per mg protein (mOD/min/mg).

Superoxide dismutase (SOD) assay was carried out following the method of Beauchamp
and Fridovich [27]. One unit of enzyme activity was described as the amount of SOD
required for 50% inhibition of nitro blue tetrazolium reduction reaction per mg protein at
560 nm.

Catalase activity was assessed via spectrophotometric analysis of hydrogen peroxide
(H2O2) decomposition at 240 nm [28]. One unit of catalase activity was defined as the
amount of enzyme that decomposes 1 mmol H2O2/min at an initial H2O2 concentration of
30 mM at pH 7.0 and 25 ◦C.

Peroxidase (POD) assays were carried out following the method of Shannon et al. [29].
Briefly, 0.1 mL of 14 mM potassium phosphate buffer and 0.1 mL of sample were added to
the reaction mixture incubated at 20 ◦C for 10 min followed by mixing through inversion.
Changes in absorbance were measured at the wavelength of 420 nm.
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2.7. Data Analysis

Fungal germination and growth data were analyzed through one-way ANOVA, and
significant means were compared by Tukey’s HSD test (p < 0.05).

The synergistic interaction between A. attenuatus and matrine was calculated by
following the equation below from Wu et al. [12].

Corrected mortality (M) =
(Mortality in response to treatment − Mortality in response to control)

(1 − Mortality in response to control)

Expected mortality (Me) = MA + MB ∗ (1 − MA)

Chi square
(

χ2
)
=

(MAB − Me) ∗ 100 ∗ (MAB − Me)

(Me)

3. Results
3.1. Influence of Matrine on Biological Characteristics of Akanthomyces attenuatus

The germination rate (%) of A. attenuatus was significantly affected by different matrine
concentrations when compared to the control (Figure 1A). After 5 days of growth, the
lowest rate of germination (15.9%) was observed for 1.00 mg/L matrine concentration,
whereas the highest germination rate was recorded from the control (Figure 1A).
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significantly different from each other.

Different matrine concentrations significantly affected the radial growth of A. attenua-
tus when compared with the control (Figure 1B,C). The average colony diameter decreased
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with an increase in concentration of matrine. After seven days of growth, the highest radial
growth (25.4 mm) was recorded from the control, whereas the lowest colony diameter was
observed for 1.00 mg/L matrine which had a mean value of 7.8 mm (Figure 1B).

3.2. Bioassay Studies
3.2.1. Bioassay 1: Efficacy of Akanthomyces attenuatus against Megalurothrips usitatus

Megalurothrips usitatus adult females treated with five different conidial concentrations of
A. attenuatus had different rates of mortality at different time intervals (Figure 2). The highest
mortality at different time intervals post fungal treatment was observed for 1 × 108 coni-
dia/mL. After five days of treatment, the LC50 of A. attenuatus was 2.14 × 105 conidia/mL.
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indicate standard error of means based on three replicates. Bars having different letters at different days post treatment
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3.2.2. Bioassay 2: Efficacy of Matrine against Megalurothrips usitatus

Significantly different rates of M. usitatus mortality were observed for different matrine
concentrations when compared with the control. After 5 days of treatment, the mortalities
of M. usitatus treated with 0.5 and 1.0 mg/mL matrine were 24.7 and 27.5%, respectively
(Figure 3). After five days of treatment, the LC50 of matrine was 5.4 mg/mL.

3.2.3. Bioassay 3: Efficacy of Single or Joint Treatments of Akanthomyces attenuatus and
Matrine against Megalurothrips usitatus

The combined treatments of A. attenuatus and matrine caused significantly higher
M. usitatus mortality compared to the control and their respective individual treatments
(Table 1). After five days of treatment, all concentrations of matrine combined with differ-
ent concentrations of A. attenuatus, except one combination (matrine 0.25 mg/mL + 1 ×
107 conidia/mL), showed a synergistic effect. The mortality caused by different combina-
tions were higher than 60%, among which the combination of matrine at 0.5 mg/mL and
A. attenuatus at 1 × 107 conidia/mL had the highest morality (89.67%).
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Table 1. Mean percentage adjusted mortality of M. usitatus following single or joint treatments of A. attenuatus and matrine.

Treatments
Megalurothrips usitatus Mortality (%) at Different Time Intervals

1 d 2 d 3 d 4 d 5 d

Matrine (mg/mL)
0.50 2.5 ± 0.36 d 6.67 ± 0.67 g 10.23 ± 0.45 g 13.75 ± 1.24 i 24.70 ± 1.89 h

0.25 1.25 ± 0.14 e 5.12 ± 0.23 g 7.53 ± 0.35 h 12.51 ± 1.21 jk 22.51 ± 1.23 i

Akanthomyces
attenuatus

(conidia/mL)

1 × 107 12.54 ± 0.89 b 30.36 ± 1.49 b 39.67 ± 4.41 d 57.48 ± 1.61 h 70.03 ± 1.34 d

1 × 106 7.51 ± 1.67 d 22.48 ± 1.21 c 32.51 ± 3.21 d 42.47± 2.09 ij 62.48 ± 1.37 ef

1 × 105 2.47 ± 0.17 d 9.98 ± 0.23 fg 12.56 ± 1.67 f 25.07± 1.67 j 40.12 ± 2.89 g

Matrine (mg/mL)
+

Akanthomyces
attenuatus

(conidia/mL)

0.50 + 1 × 107 17.23 * ± 2.33 a
(9.59;17.19)

36.67 * ± 1.67 a
(25.49;21.00)

51.34 * ± 3.14 a
(35.56;3.80)

72.33 * ± 3.12 b
(53.63;5.54)

89.67 * ± 2.88 a
(75.09; 4.83)

0.25 + 1 × 107 12.67 ± 1.67 b
(8.16;0.02)

30 * ± 2.89 b
(16.00;12.24)

46.03 * ± 2.12 b
(26.39;14.56)

67.67 * ± 6.11 bc
(42.66;14.65)

85.00 ± 2.89 ab
(71.25;1.43)

0.50 + 1 × 106 8.33 ± 0.33 c
(6.55;0.33)

21.67 ± 3.33 c
(14.44;1.27)

39.67 * ± 2.12 c
(36.39;2.41)

69.67 *± 3.13 bc
(50.37;7.38)

86.67 *± 5.14 ab
(56.01;16.77)

0.25 + 1 × 106 8.33 ± 1.67 c
(6.55;0.48)

11.67 ± 1.12 e
(12.89;0.11)

26.67 ± 1.67 e
(21.98;1.01)

58.33 *± 2.89 d
(49.68;11.50)

81.33 *± 3.12 b
(70.93;25.96)

0.50 + 1 × 105 5 ± 1.33 cd
(4.93;0.00)

16.67 ± 3.33 d
(15.94;0.03)

32.33 *± 1.12 d
(21.25;5.77)

66.67 *± 2.89 c
(35.27;27.94)

78.33 *± 2.12 c
(54.82;10.08)

0.25 + 1 × 105 3.33 ± 1.67 d
(3.71;0.04)

11.67 * ± 2.89 e
(6.55;4.01)

25.00 * ± 5.00 c
(15.97;5.11)

56.67 *± 4.33 d
(34.37;14.46)

66.67 *± 3.14 e
(53.5;8.24)

Means (±SE) followed by different letters are significantly different (Tukeys’s p < 0.05). Data in bracket shows the expected mortality and
χ2-value, respectively. * represents the synergistic interaction.

3.3. Enzymatic Response of Megalurothrips usitatus to Individual or Combined Treatments of
Akanthomyces attenuatus and Matrine

Acetylcholinesterase activity of M. usitatus was significantly reduced among different
treatments and after 3 and 5 days of treatment. The results indicated that AChE activity
observed at the end of the experimental period were significantly lower than 3 days post
treatment (Figure 4).
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Figure 4. Acetylcholinesterase (AChE) activity of M. usitatus in response to individual or joint
treatments of A. attenuatus and matrine. Bars having different letters show significant differences
between treatments at different time intervals.

Antioxidant enzyme (superoxide dismutase, catalase and peroxidase) activities of
M. usitatus were significantly reduced among different treatments after 3 and 5 days of
treatment. Activities of antioxidant enzymes superoxide dismutase, catalase and peroxi-
dase in response to different treatments after 3 days were higher than 5 days post treatment
(Figure 5A–C).

J. Fungi 2021, 7, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 4. Acetylcholinesterase (AChE) activity of M. usitatus in response to individual or joint 
treatments of A. attenuatus and matrine. Bars having different letters show significant differences 
between treatments at different time intervals. 

Antioxidant enzyme (superoxide dismutase, catalase and peroxidase) activities of M. 
usitatus were significantly reduced among different treatments after 3 and 5 days of treat-
ment. Activities of antioxidant enzymes superoxide dismutase, catalase and peroxidase 
in response to different treatments after 3 days were higher than 5 days post treatment 
(Figure 5A–C). 

 
Figure 5. Changes in antioxidant enzyme activities of M. usitatus following single or joint treatments of A. attenuatus and 
matrine after 3 and 5 days of treatment. (A) Superoxide dismutase (SOD) activity; (B) Catalase (CAT) activity; (C) Peroxi-
dase (POD) activity. Bars having different letters show significant differences between treatments at different time inter-
vals. 

Figure 5. Changes in antioxidant enzyme activities of M. usitatus following single or joint treatments of A. attenuatus and
matrine after 3 and 5 days of treatment. (A) Superoxide dismutase (SOD) activity; (B) Catalase (CAT) activity; (C) Peroxidase
(POD) activity. Bars having different letters show significant differences between treatments at different time intervals.
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4. Discussion

A detailed knowledge concerning the influence of chemical insecticides on growth
virulence and enzymatic activities is a pre-requisite in developing integrated control mea-
sures based on insect pathogenic fungi and chemical pesticides [12]. Previous studies on
A. attenuatus have only studied its pathogenicity against M. usitatus [3,7]. Very few labora-
tory studies are available to date which can explain the possible synergistic, antagonistic
or additive effects of joint formulations of A. attenuatus and chemical pesticides against
M. usitatus. This study explains a possible synergistic interaction between A. attenuatus and
matrine against M. usitatus as well as effects of this synergism on activities of detoxifying
enzymes within M. usitatus.

Our findings on the influence of different matrine concentrations on the biological char-
acteristics of A. attenuatus revealed a significant reduction in germination and radial growth
when compared to controls. These results are consistent with Wu et al. [12] who observed
similar effects of matrine influencing biological characteristics on Beauveria brongniartii
Sacc. (Hypocreales; Cordycipitaceae). Our results are also consistent with Xu et al. [30]
who showed that germination and radial growth of Isaria fumosorosea Wize (Hypocreales;
Cordycipitaceae) was inhibited by 20-Hydroxyecdysone.

Our results revealed the susceptibility of M. usitatus adult females to A. attenuatus.
The LC50 of A. attenuatus observed in this study (2.1 × 105 conidia/mL) was lower from the
LC50 A. attenuatus isolates SCAUDCL-38 (1.9 × 106 conidia/mL) observed by Du et al. [7].
The toxicity of different matrine concentrations was also tested against M. usitatus adult
females. Based on mortality data, LC50 of matrine against M. usitatus was 5.4 mg/mL
which is different to the LC50 of matrine against Bemisia tabaci Gennadius (Hemiptera;
Aleyrodidae) as reported by Ali et al. [22].

Matrine has shown synergistic interaction with insect pathogenic fungi against dif-
ferent insect pests [12,22,31]. Our results revealed a strong synergistic effect between
A. attenuatus and matrine against M. usitatus. The levels of synergism observed here are
similar with that recorded by Ali et al. [22] who observed enhanced mortalities of whitefly
treated with different combinations of matrine and A. muscarium. The possible synergistic
action between both control agents was due to them both working on the same target site;
matrine and A. attenuatus both attack insect acetylcholine receptors [32–35].

These findings also revealed the possible physiological and biochemical effects of
combined A. attenuatus and matrine treatments on M. usitatus. The results of enzyme
quantification assays revealed significant fluctuation following A. attenuatus and matrine
treatments alone or in combination with each other. Acetylcholinesterase (AChE) is an im-
portant enzyme of an insect’s central nervous system, being involved in the termination of
nerve impulses at peripheral or central synapses through hydrolysis of acetylcholine [23,36].
In this study, AchE activities of M. usitatus in response to different treatments were sig-
nificantly lower than the control. The decrease in AchE activity is related to the common
site of action within the insect host. Matrine, an alkaloid extracted from S. flavescens, is
known to target insect acetylcholine receptors which in turn affects AchE production [36].
Ali et al. [22] observed a similar reduction in AchE activities of B. tabaci in response to
matrine application. The reduction in AchE activities of M. usitatus can be related to the pro-
duction of the secondary metabolite named bassianolide by fungi belonging to the genus
Akanthomyces and Beauveria which is known to inhibit AchE activities in insects [17,25,26].

Antioxidant enzymes (superoxide dismutase, catalase and peroxidase) are cellular
system enzymes which eliminate reactive oxygen species (ROS) involved in the reduction
of bio-membrane damage [37]. Superoxide dismutase, catalase and peroxidase activities,
in response to different treatments after 3 days, were higher than 5 days post treatment.
The inhibition of these enzymes across the experimental period meant reduced elimination
of ROS and denaturation of different biomolecules from the insect body leading to insect
death [31,38].
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5. Conclusions

Megalurothrips usitatus adult females were susceptible to individual or combined
treatments of A. attenuatus and matrine. Our results report a strong synergistic interaction
between A. attenuatus and matrine against M. usitatus under laboratory conditions. The
enzyme response of M. usitatus to individual or combined treatments of A. attenuatus and
matrine further explained the biochemical nature of the synergistic effect. Our results
will serve as basic information for designing A. attenuatus and matrine-based M. usitatus
management programs in the future, although further studies on the sublethal effects of
these control agents against M. usitatus are required.
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