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Abstract
We propose a generalized NK-model of late-mover advantage where late-mover firms leapfrog first-
mover firms as user needs evolve over time. First movers face severe trade-offs between the provision of 
functionalities in which their products already excel and the additional functionalities requested by users 
later on. Late movers, by contrast, start searching when more functionalities are already known and typically 
come up with superior product designs. We also show that late-mover advantage is more probable for more 
complex technologies. Managerial implications follow.
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Introduction

Few firms that invent new technologies have been able to reap the benefits from their inventions. 
Often, firms whose inventions “colonize” a new niche market are not the ones that “consolidate” 
their inventions by transforming a niche into a mass product (Markides and Geroski, 2005). This 
suggests that there are first-mover disadvantages that allow late entrants to take over the industry 
leadership from the early entrants, as the product continues to evolve over time.

Traditionally, late-mover advantage is analyzed either from the perspective of appropriability 
conditions or complementary assets. Following Teece (1986), second movers are more likely to be 
successful if they can easily imitate the original invention or if they have complementary assets 
that they can leverage (such as marketing, manufacturing, or after-sales). In such cases, first mov-
ers have incurred the highest costs of research and development, while late movers are able to reap 
most of the returns.
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An alternative (though not exclusive) explanation of late-mover advantage takes into account 
the evolution of the invention itself. Indeed, most products continue to evolve after their first intro-
duction in the market. As most new products start out as niche products serving specialized users, 
the progressive diffusion of a new product generally involves the introduction of additional func-
tionalities associated with user needs of a wider group of consumers (Christensen, 1997; Clark, 
1985). A first-mover firm may well establish technological leadership in the niche market in ques-
tion. However, this advantage can only carry over to the mass market when the firm is able to adapt 
its technology from a niche product serving specialized users to a dominant design attracting mass 
consumers (Lieberman, 2013). The question holds why in some contexts first movers have been 
successful in adapting their products to evolving user needs, while in other contexts they have not 
been able to do so, allowing late movers to take over industrial leadership.

We propose a model of late-mover advantage based on Altenberg’s (1994) generalized version 
of Kauffman’s (1993) “NK-model.” Though the original NK-model has often been used in man-
agement science after it was first introduced by Levinthal (1997), the generalized version of the 
NK-model is preferable to the original model, in that it allows us to model the discovery of new 
functionalities within a given design space. In this way, we can compare first-mover and late-
mover firms searching separately, and without imitation, in the exact same design space, but evalu-
ating their searches against uneven number of functionalities. More specifically, we assert that the 
first mover starts searching for product designs once the first functionality is known, while a late 
mover only starts searching once all functionalities are known. Hence, the only type of learning 
taking place between first and late mover concerns the discovery of additional functionalities: after 
the introduction of a product by a first mover, additional user needs are being discovered, with 
these needs becoming apparent to both the first mover and the late mover.

By considering how first movers are being challenged by new functionalities emerging later in 
time, our model is focusing on the uncertainty created by the evolving user needs during new prod-
uct development and on the technological constraints faced by first movers to deal with such needs. 
We choose not to model some of the other aspects that are known to affect first-mover advantage 
(e.g. imitation by late movers, learning curves and brand value). Hence, we do not claim to provide 
a comprehensive theory of late-mover advantage. Rather, our model is meant to develop a theoreti-
cal argument about how higher levels of product complexity provide more opportunities for suc-
cessful entry by late movers as new user needs emerge over time. The empirical context is one in 
which a first mover successfully serves specialized users with specific user needs, while late mov-
ers target a mass market that demand additional functionalities. We will develop the case of 
BlackBerry as an empirical example, a company that pioneered the smartphone for specialized 
users but failed to conquer the mass market.

Using the generalized NK-model, we derive two propositions. First, we formally demonstrate 
that first movers find it hard to improve their product design in the face of the subsequent discovery 
of new product functionalities. By contrast, new functionalities open up a window of opportunity 
for late movers, who start designing “from scratch” and generally reach better product designs than 
first movers do. Second, we are able to show that first-mover disadvantage is contingent upon a 
product’s complexity. Complex product technologies—in terms of interdependencies between 
their underlying component technologies—present more severe trade-offs between existing and 
newly discovered functionalities compared to more modular technologies. As a result, first movers 
will find it harder to improve, the more complex the product technology.

Late-mover advantage

Technological leadership is a key determinant of first-mover advantage in new industries 
(Lieberman and Montgomery, 1988, 1998). The first firms that enter a new market are able to 
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develop cost leadership by being the first to go down the learning curve. Though some of the 
economies due to learning-by-doing may spillover to later entrants, such knowledge spillovers are 
expected to be limited due to the tacit knowledge residing in skills and organizational routines 
(Nelson and Winter, 1982). First movers may also be able to protect their product technology—for 
example, through patenting some of its component technologies—raising even higher the barriers 
to entry for late movers. Patents are particularly effective in securing industry leadership in com-
plex product industries, as technological substitutes are more difficult to integrate in complex 
products than in more modular products (Marengo et al., 2012). Finally, first movers also may 
benefit from economies of scale in doing R&D. As the firm size of first movers tends to exceed the 
size of late movers at the time the latter enters the market, first movers can spread the sunken 
investments in R&D over a larger number of items than late movers (Klepper, 1996).

Technology-based explanations of the competitive advantage of first movers are built on the 
implicit assumption that the structure of demand does not change fundamentally in the course of 
time. Indeed, without any fundamental change in demand, buyers’ inertia only reinforces the 
advantages for first movers (Lieberman and Montgomery, 1988, 1998). However, during the early 
phase of product evolution in new markets, user needs are generally still in flux and coevolve with 
innovative activity (Clark, 1985; Von Hippel, 1988). Sociologists coined this process domestica-
tion, which refers to the way users incorporate a new technology into their practices (Lie and 
Sørensen, 1996; Silverstone and Hirsch, 1992). During domestication processes, products do not 
necessarily fully keep their intended functions as new ways of using are discovered over time, 
quite differently from designers’ intents.

Examples of functionalities that generally become articulated much later than the initial intro-
duction of a new product category include the following: (1) safety issues that only become 
apparent after extensive experimentation in usage, (2) ergonomic features that only become 
known only after early users have experienced physical complaints, and (3) interoperability issues 
regarding the joint use of the new product with existing devices. New functional requirements 
may also stem from government regulations that, by nature, considerably lag behind the creation 
of a new product category.

Due to uncertainties regarding user needs in the early stages of a new industry, firms cannot fully 
foresee ex ante how their products will be received by users. Once first movers have created niche 
applications for a new technology, demand becomes more articulated and the knowledge of user 
needs builds up. Only then, mass market applications can be envisaged, and resources to develop 
such mass products will be deemed legitimate. Oftentimes in this process, a dominant design 
emerges serving the needs of the mass market at a relatively low price (Abernathy and Utterback, 
1978). Hence, late movers that are quick to adopt the dominant design may benefit from product 
standardization without having to incur the costs of experimentation and technology switching, 
which first movers face (Dowell and Swaminathan, 2006; Lieberman, 2013; Suarez et al., 2015). 
Often, such successful late entrants are spinoffs of earlier entrants that build on the parent’s experi-
ence, while experimenting with new designs that otherwise would cannibalize the niche product of 
the parent firm (Klepper and Sleeper, 2005). In economic terms, late movers benefit from positive 
externalities generated by first movers as they “free ride” on the innovation efforts by pioneers—
that is, apart from knowledge spillovers regarding technological knowledge. Knowledge spillovers 
also occur because user needs get better understood, reducing market uncertainty.

Our model thus resonates with the plea by Suarez and Lanzolla (2007) to incorporate “envi-
ronmental dynamics” in first-mover advantage theory. They call for theoretical frameworks 
where environmental dynamics may render late entry more advantageous than early entry. They 
argue that “technology evolution may render a firm’s knowledge obsolete, destroy existing com-
petences” (Suarez and Lanzolla, 2007: 382–383). As an example, they mention “product cate-
gories with high ‘vintage effects’—that is, where product quality significantly improves over 
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time.” This environmental dynamics is indeed underlying our model, where the discovery of 
new functionalities as an environmental dynamic leads to new product designs with higher fit-
ness with user needs (i.e. “product quality”). These new designs are generally not developed as 
small variations of the pre-existing design, since the new functionality cannot be integrated 
easily in a design that was optimized for a different set of functionalities. Rather, taking into 
account a more complete list of functionalities, late movers can start designing “from scratch,” 
which leads them to come up with radically new design propositions. To be successful as a new 
entrant, a late mover does not necessarily need to match a first mover in terms of specific tech-
nological competencies that allowed the first mover to excel in some specific product function-
ality for specific users, but rather to come up with a product design that is optimized against all 
functionalities that have become known over time. As a result, first movers do not only suffer 
from an outdated design proposition, but they also have to devaluate the knowledge and com-
petences built up in the past.

From a managerial perspective, the challenge holds to learn about evolving user needs. First 
movers will initially sell their pioneering product to specialized users. A potential disadvantage 
for such firms lies in the difficulty to gauge the needs of a potential mass market and to reorient 
their R&D investments accordingly. A parallel reasoning exists in the work on incumbents versus 
disrupting newcomers, where the latter can still be considered a late mover (sometimes even dec-
ades after the product was initially launched). Christensen (1997, 2003) discusses several indus-
tries in which incumbents tended to innovate myopically focusing on existing users, rather than 
focusing on developing new products that appeal to a wider group of users.1 This strategy is 
reinforced by the sunk costs invested in specific technologies and branding, as well as by switch-
ing costs associated with developing and producing alternative products. As Christensen and 
Rosenbloom (1995) put it,

[i]t is difficult for established firms to marshal resources behind innovations that do not address the needs 
of known, present and powerful customers. In these instances […] the essence of the attacker’s advantage 
is in its differential ability to identify and make strategic commitments to attack and develop emerging 
market applications, or value networks. The issue, at its core, may be the relative abilities of successful 
incumbent firms vs. entrant firms to change strategies, not technologies. (pp. 255–256)

In this context, incumbents are first movers who become so successful in serving specialized 
users that they continue to focus on this user group, at the risk of losing out the emerging mass 
consumers who are characterized by different needs.

The ability of firms to reorient their R&D toward new users also depends on the characteristics 
of a product’s technology. Innovations focusing on new users will be especially hard to develop 
when many interdependencies exist between a product’s components, that is, when the product’s 
technology is complex (Ethiraj et al., 2012). Innovations appealing to new users may cause mal-
functions in existing features, possibly offsetting existing users. Consequently, firms may be more 
reluctant to orient product innovations toward new users, the more complex the technology at 
hand.

A recent, telling example is the rise and fall of BlackBerry, the company named after its 
BlackBerry smartphone.2 Until 2007, it was the market leader with competitors such as Palm and 
Nokia copying the BlackBerry’s layout (West and Mace, 2010). With falling prices, the smart-
phone became a standard consumer product attracting industry giants like Apple and Google into 
the market. With the advent of the Apple iPhone in 2007 and Android-based smartphones little 
after, BlackBerry suddenly lost its leading position with its market share shrinking to less than 2% 
in 2012 (www.gartner.com).
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Compared to other smartphones BlackBerry excelled in two functionalities: security and 
instant email delivery. These functionalities were particularly valued by its main users (large 
companies and the US government). However, with the advent of the iPhone, the use of mobile 
phones was redefined as smartphones with many more functionalities, email being just one of 
them. Furthermore, mass consumers cared less about security than the original lead users. 
BlackBerry, however, was slow to realize that it had to redefine its own product, as ordinary users 
valued security and instant email much less than their specialized users did. On the one hand, the 
company suffered from agreements between Microsoft, Apple, and Android on its core profes-
sional services as the spread of Microsoft Exchange on smartphones benefiting from a large 
installed base of users (Kenney and Pon, 2011). On the other hand, the network externalities that 
should have favored BlackBerry were effectively counterbalanced by the ability of new entrants 
to generate indirect network effects through complementary services, in particular, in the form of 
the digital contents available on the Internet including Apple’s iTunes and Google’s information 
services (West and Mace, 2010). This convergence between smartphones and the Internet content 
supported the evolution of smartphones’ functionalities toward a multifunctional IT device, to the 
detriment of BlackBerry.

The example underlines two interrelated dynamics. First, technological evolution involves the 
addition of new functionalities to existing products, hereby transforming a specialized niche prod-
uct into a mass product. Second, the addition of new functionalities opens up windows of opportu-
nity for new entrants. Hence, technological evolution has a direct impact on industrial dynamics. 
Though examples of the transformation of niches into mass markets are well documented,3 its 
implications for industrial dynamics have not been subject of explicit theorizing hitherto, which we 
aim to provide.

The main contribution of the model that follows is to show, in a formal sense, that the subse-
quent addition of functionalities indeed opens up opportunities for new entrants. While first mov-
ers find it hard to provide new functionalities by adjusting their current designs, new firms start 
searching “from scratch” and without the burden of previous solutions selected against an incom-
plete list of functional specifications. From the formal model, we are also able to show that adapta-
tion by first movers is more difficult, when more component technologies are interdependent. 
Hence, ceteris paribus, we can expect that the more complex a technology, the more volatile the 
industrial dynamics.

The model

In order to probe the logic of the design of complex products and their effect on industry leader-
ship, we introduce a model of complex systems based on the NK-model developed by Kauffman 
(1993) and generalized by Altenberg (1994). The NK-model has its roots in biology, where it is 
used to study the interaction between genes and traits in biological organisms. After Levinthal 
(1997) introduced the NK-model in management science, this model has been widely used to theo-
rize about learning curves (Auerswald et  al., 2000), modularity (Ethiraj and Levinthal, 2004; 
Marengo et al., 2000; Simon, 2002), imitation (Ethiraj et al., 2008; Rivkin, 2000), decentralized 
decision-making (Rivkin and Siggelkow, 2003; Siggelkow and Levinthal, 2003), technological 
evolution (Frenken and Nuvolari, 2004; Marengo et al., 2012), search strategies (Baumann and 
Siggelkow, 2013; Knudsen and Levinthal, 2007), industry shakeouts (Lenox et  al., 2007), and 
entrepreneurship (Ganco, 2013).4

Here, our objective is to assess how evolving user needs have different effects on first and late 
movers. Our interest in new functionalities is the reason why we rely on the generalized NK-model 
by Altenberg (1994), which allows us to keep constant the number of components in a product, 
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with the number of functionalities increasing over time. We can then define first and late movers 
by the time they start searching the fitness landscape. First movers do so once the first functionality 
is known, while late movers only enter later once all functionalities are known. Hence, what dif-
ferentiates first and late movers is the number of functionalities taken into account when they start 
their search process.

The generalized NK-model

In the generalized NK-model by Altenberg (1994),5 a product is depicted by N  component tech-
nologies interacting together to produce F functions, according to a component-function map. This 
map is more or less complex depending on the level of K, which sets up to the polygeny of func-
tions, namely, the number of component technologies producing one function. Figure 1 shows an 
example of such a mapping with N = 4, F = 2, and K = 3. The generalized NK-model includes 
the original NK-model by Kauffman (1993) as a special case for which F N=  and, hence 
K N∈ …{ }1; ; .

Changes in components lead to changes in the performance (fitness) of functions according to 
the mapping between components and functions. For example, in Figure 1, a change in component 
1 will only lead to a change in the performance of Function 1, but a change in component 2 would 
lead to changes in the performances of both Function 1 and Function 2. The number of functions 
influenced by a single component is called a component’s pleiotropy. In the example, the first and 
third components have a pleiotropy of one, while the second and fourth components have a pleiot-
ropy of two. It follows from the mapping of components onto functions that the sum of pleiotropy 
values of components must equal the sum of polygeny values of functions.

We make the assumption, without loss of generality, that each component has two possible 
states, allowing for 2N  possible combinations of components. The space of possible combinations 
is called a technology’s “design space.” Each binary string in the design space corresponds to a 

product technology x , with x x x xj N
N= … …{ }∈{ }1 0 1, , , , ,  as the binary string representing a 

particular combination of component technologies, which is part of a design space of size 2N. The 
set of technologies and their corresponding fitness values constitutes a “fitness landscape” 
(Kauffman, 1993; Wright, 1932). Following Altenberg (1994), the fitness of a product technology 
x  is given by

ϕ ϕx
F

x x x
i

F

i j i j i jK( ) = …( )
=

( ) ( )∑1
1

1 2

, , , 	 (1)

where ϕi
K

: , ,0 1 0 1{ } → [ ] , based on uniform pseudo-random draws, x x xj i j i jK1 2( ) ( ) …{ }, , ,  
⊂ … …{ }x x xj N1, , , ,  as the set of K  component technologies affecting the function i . Thus, the 

Figure 1.  An example of component-function map with N = 4, F = 2, and K = 3.
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fitness of one function (ϕi ) depends on the state of the K  components affecting this function 
while the global fitness (ϕ ) is the average of the fitness of every function.

Search

We model the search efforts by firms as a local and greedy search algorithm. Local means 
that firms mutate only one component at the time. Greedy means that among all N  potential 
one-component mutations, the firm chooses the mutation which offers the highest fitness 
improvement.6 Search will stop once a local peak is found. Such product technologies cor-
respond to local optima in the fitness landscape, which are products that can no longer be 
improved by mutations in single components.

As we distinguish between first and late movers, firms differ in the time they enter the market, 
which in turn determines how they evaluate the fitness of mutations. The late mover looks at the 
system as a whole once all functions are known. Hence, it looks for the mutation that yields the 
highest fitness increase of the global fitness irrespective of the fitness level of individual func-
tions. This search procedure is equivalent to standard (greedy) hill-climbing in NK-model 
(Kauffman, 1993; Levinthal, 1997). The first mover, by contrast, discovers each function gradu-
ally as time goes by. First movers, in first instance, will evaluate mutations only against the fitness 
of the first function ( )ϕ1 . Once it has reached a design that is locally optimal with regard to the 
fitness of the first function, the second function becomes known, and the first mover will continue 
searching by evaluating mutations taking into account both functions, and so on. Thus, we assume 
here that the time in between the discovery of two functions is long enough to allow the firm to 
carry out all the mutations required to find a new local peak. This procedure is repeated until all 
functions are known. We can thus express time by the sequence of discoveries of new functions. 
That is, the first function is discovered at time t =1 , the second function at time t = 2, and so on. 
It follows that the counter ends at t F= . It also follows that ϕt  is the fitness of the function t  
discovered at time t.

Since first movers discover functions sequentially, they have to decide how to deal with func-
tions that they already optimized in the past. There are two possible strategies. Once they start 
optimizing a newly discovered function, they may decide not to compromise the fitness achieved 
through previously discovered functions. We call this assumption the “functional inertia” assump-
tion. Alternatively, first movers may allow the fitness of previously discovered function to decrease 
as long as the mean fitness over all t functions considered at time t, increases. We refer to the latter 
strategy as the “functional flexibility” assumption.

Strategy 1: functional inertia.  The assumption of functional inertia in the search behavior of first 
movers implies that, each time t*  a new function is discovered, first movers will only mutate the 
components that influence the most recently discovered function (ϕt* ) and that do not influence 
functions discovered earlier (ϕt  for t t< * ). This assumption means that a first-mover firm—excel-
ling in providing particular functions in the past—would not be willing to give up this leading 
position with respect to these functions. Such instances of inertia by firms may reflect the case 
where a firm’s brand is strongly associated with excellent performances in providing particular 
functionalities, or equally, the case where a firm remains focused on its installed base of users 
(Christensen and Rosenbloom, 1995). The advantage of functional inertia is that the relevant 
design space for mutations becomes progressively smaller as more functions are being discovered. 
A smaller design space, in turn, makes search more efficient as the chance of finding a fitness 
increasing mutation decreases, where efficiency is defined as the number of mutations required to 
reach a certain fitness level. At the same time, this strategy also implies that the components influ-
encing early discovered functions will get fixed into a particular state (“locked-in”) early on, as 
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each component is only optimized with reference to the first function that it influences.7 Conse-
quently, the early fixation of components in particular states constrains a firm’s design space, pos-
sibly excluding some paths to more promising optima. Hence, the advantage of higher search 
efficiency comes at the cost of a lower expected fitness value of the final optimum that is found at 
time t F= .

Strategy 2: functional flexibility.  The previous strategy, which holds that the first movers will not 
accept any decrease in existing functions when confronted with a newly discovered function, can 
be criticized as being too restrictive. From a behavioral perspective, this assumption would mean 
that a first-mover firm—excelling in providing particular functions in the past—would under no 
circumstances be willing to give up its leading position with respect to these functions. Though 
such instances have been documented (Christensen, 1997, 2003), one can expect that many firms 
are willing to give up fitness in a particular functionality in situations where the overall quality 
of the product will increase. This “functional flexibility” strategy thus aims at optimizing all 
functions insofar functions are known to the firm. That is, at any time t, the first-mover firm will 
evaluate mutations with regard to the mean fitness of the t  functions known at this time. Hence, 
in contrast to firms following the functional inertia strategy, all components are candidates for 
mutation at all times. This means that, as a search strategy, the functional flexibility strategy will 
be less efficient, but given its wider search scope, it is expected to find product designs with 
higher fitness compared to the functional inertia strategy. Consequently, this strategy applies 
best to industries where R&D is relatively inexpensive in comparison with the benefits of raising 
product quality.

Simulation

We perform two sets of simulations: one set of simulations compares a first mover with a late 
mover assuming that the first mover follows the “functional inertia” strategy, and a second set of 
simulations compares a first mover with a late mover assuming that the first mover follows the 
“functional flexibility” strategy. For both the first-mover search strategies and the late-mover 
search strategy, we performed 5000 simulations for each combination of settings of the parameter 
values N, F, and K. Every simulation starts by creating the landscape given the combination of 
parameter values N, F, and K. These values are N nn= ∈{ }( )2 1 5, , , F ff= ∈ …{ }( )2 0 5, , , 
and K kk= ∈ …{ }( )2 0 5, , , provided that the values of N F K, ,  satisfy F K N× ⩾ , meaning that 
each component influences at least one function (otherwise, its inclusion in the representation of a 
product technology would be redundant). The simulation starts by randomly selecting a string from 
which the search will start.8 The simulation ends when there are no more possible fitness improve-
ments. At that time, the firm has reached a peak on the fitness landscape and any mutation would 
produce a fitness decrease.

Once the simulation is over, we save the fitness value ϕ  of the string that is found at the end of 
the simulation, and the number of mutations preceding that discovery. Fitness is our main variable 
of interest since it reflects the quality of the product that a firm is able to offer and, hence, directly 
influences its competitive advantage. The number of mutations is also of interest, since it reflects 
the amount of resources spent on search: the higher the number of mutations required, the less 
efficient is a search strategy. To compare the number of mutations for products of different size N, 
we show a normalized number of mutations, namely number of  mutations ( )N 2  given that 
N 2  is the average Hamming distance between two randomly chosen strings in the fitness land-
scape. Hence, the expected distance between the randomly chosen string at which search starts and 
any optimum in the landscape at which search will end also equals N 2.
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We also record the exact string x in each simulation, as to assess to what extent the product 
designs of first movers differ from those of late movers. We are interested in product similarity in 
the design space because the gains from licensing proprietary technologies held by the first mover 
to the late mover will be greater, the more similar the products of first and late movers are in terms 
of the choice of components, following the idea that patents apply to component technologies 
(Marengo et al., 2012). We refrain from modeling patenting explicitly but rather use product simi-
larity as a first proxy of first-mover advantage over late-mover advantage in product contexts 
where patenting is relevant. That is, the more similar are the product designs of the first mover and 
late mover, the more likely licensing fees would be claimed by the first mover.

Product similarity between the two strings is given by counting how many components in the 
two designs are in the same state (e.g. 1110 and 1010 have a similarity score of three). To com-
pare the similarity scores across simulations for products of different size N, we express similar-
ity as a percentage of the maximum possible similarity score, which is N  in the case that two 
strings are identical (following the example above, the similarity score between 1110 and 1010 
is 75%). The higher this percentage, the more similar the product design of first and late movers, 
the more likely first movers can benefit from proprietary technology. On the lower side, the simi-
larity will not decrease below N 2, which is the average similarity between two random prod-
ucts defined by two binary strings of equal length N. Hence, to make results comparable across 
simulations with different values for N, we scale the similarity value by dividing it by its mini-
mum value N 2.

As an example, consider again the case given in Figure 1 of a product technology with N = 4  
components, producing F = 2  functions, each of them is influenced by K = 3  of components. 
The global fitness of each design x is given by

ϕ ϕ ϕx x x x x x xI II( ) = ( ) + ( )( )1

2 1 2 4 2 3 4, , , , 	 (2)

In Appendix 1, we present a simulation of fitness values of all possible designs. Using these 
values, we can illustrate the search strategies of late movers, first movers following the functional 
inertia strategy, and first movers following the functional flexibility strategy. The three strategies 
can be described as follows:

•• A late mover starts searching at time t F= , that is, once all functions are known. The search 
is greedy-local and it continues as long as a mutation can improve the global fitness. Search 
stops when the firm reaches a local optimum.

•• A first mover following the functional inertia strategy starts searching at time t =1 when the 
first function becomes known. It optimizes ϕ1  by greedy-local search, looking for fitness 
increasing mutations in the subset of K  component technologies that influence ϕ1. In the 
example of Figure 1, this subset consists of components 1, 2, and 4. It stops searching when 
a local peak is reached with regard to ϕ1. Then, as time moves from t =1 to t = 2 , the first-
mover firm attempts to improve ϕ2  by mutating components that influence ϕ2  but that do 
not influence ϕ1. Following the example of Figure 1, only a mutation in component 3 is 
allowed, since mutations in any other components would always negatively influence ϕ1. 
Search ends when a peak is found, as being locally optimal with regard to ϕ1  and ϕ2, given 
its inertia to leave component affecting ϕ1  untouched. Hence, this peak is not necessarily 
locally optimal with respect to the global fitness ϕ.

•• A first mover following the functional flexibility strategy first optimizes ϕ1  by mutating com-
ponents 1, 2, or 4 by greedy-local search, since these are the only components influencing ϕ1. 



76	 Strategic Organization 15(1)

When a peak is reached for this function, the second function is discovered, and the firm now 
attempts to improve the mean fitness of ϕ1  and ϕ2 , which equals ϕ . Search now involves 
mutations in all four components, since mutations in all components are potentially increas-
ing the global fitness ϕ .

Results

We present the simulation results in Figure 2, comparing late movers with first movers following 
the functional inertia strategy, and in Figure 3, comparing the late movers with first movers follow-
ing the functional flexibility strategy. In Appendices 2 and 3, we report on the Wilcoxon signed-
rank test for the results reported in Figure 2 and 3, respectively. These tests indicate for which 
parameter settings the values of first and late movers are significantly different. For completeness, 
we also study in Appendix 4 all the intermediate sequences of functionality discovery for the subset 
of parameters N F= =16  and K = { }2 2 2 2 20 1 2 3 4, , , , . That is to say, apart from only looking at 
the two extreme cases of a first mover who discovers functionalities one by one 
( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , , , , , ,{ } ) and the late mover who discovers all 16 functions jointly ( 16{ } ), 
we also look at all intermediate cases of discovery as a robustness check (for instance 4 2 8 2, , ,{ } , 
15 1,{ }, and so on). As further explained in Appendix 4, the results that follow for the two extreme 

cases of functionality discovery remain robust for any alternative specification of discovery. For 
example, we looked at the results assuming that a first mover would discover not just one but sev-
eral new functions at each time step. Furthermore, we analyzed how results differ if the first mover 
starts off the design process knowing not just about one but about several functions already. In all 
these cases, the advantages and disadvantages of being a late mover still hold true as discussed 
below.

Case 1: functional inertia

Figure 2 shows the simulation results comparing first movers with late movers following a func-
tional inertia strategy for every combination of parameters N F K, , and . It reports the average fit-
ness values of the final local optimum discovered, the number of preceding mutations, as well as 
the similarity between the locally optimal strings found by the first mover compared to the late 
mover. White dots refer to first movers and gray dots to late movers.

From Figure 2, two general observations can be made that apply both to first movers and late 
movers. First, as long as F = =2 10 , the first and late-mover strategies lead to equivalent results. 
This follows from the definition of first and late movers: first movers start searching when the first 
function is known while late movers start searching when all functions are known. If the total 
number of functions is just one, the two strategies must be equivalent. However, since search starts 
from a random string, first and late movers may still end up in different local optima. Yet, averaged 
over 5000 runs, the fitness of these optima are necessarily equivalent. This means that for products 
with a low number of functions F and low complexity K, first and second movers are equally likely 
to win out; that is, firm performance is mostly a matter of luck. It also means that for products with 
higher values of F and K, which arguably holds for most products empirically, the differences in 
performance are significant.

A second observation holds that, for given values of F  and K, increasing N  leads to higher 
fitness. This can be understood from the fact that the more N  exceeds F  and K, the lower the 
pleiotropy of components (which is the number of functions influenced by each component), the 
fewer trade-offs exist, and more scope exists for firms to improve each function without creating 
malfunctions in the other components.
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Turning now to the comparison between first and late movers, the first result holds that late mov-
ers achieve higher fitness than first movers for most parameter settings, and this fitness difference—
given a set of values of F  and N —increases with the product’s complexity K. Hence, product 
complexity is indeed a major obstacle for first movers to adapt their design as more product func-
tionalities become known over time (Ethiraj et al., 2012).

Figure 2.  Average fitness, average normalized number of mutations, and product similarity (for the case 
of functional inertia). White dots () refer to first movers following a “functional inertia” strategy and gray 
dots (•) to late movers.



78	 Strategic Organization 15(1)

Looking at the total number of mutations preceding the discovery of the final local optimum, 
as an indicator of search inefficiency, we also observe a small but significant advantage of late 
movers over first movers for most parameter settings. Late movers put less search efforts than 
first movers, since late movers only engage in search during the final period once all functions 
are known, while first movers continuously extend their search efforts each time a new function 
is discovered.

Figure 3.  Average fitness, average normalized number of mutations, and product similarity (for the case 
of functional flexibility). White dots () refer to first movers following a “functional flexibility” strategy and 
gray dots (•) to late movers.
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Finally, we can observe that the similarity in the final product design found by first and late 
movers goes down with increasing values for K. This is in line with earlier findings that the num-
ber of local optima increases with K, given the values for F  and N. That is, the “ruggedness” of 
a fitness landscape increases with the complexity of the system in question (Kauffman, 1993). In 
competitive terms, this result indicates that the advantage that first movers may enjoy by appropri-
ating component designs before late movers enter the market becomes smaller for more complex 
products.

Case 2: functional flexibility

We repeated the simulation analysis for first movers following the functional flexibility strategy 
instead of the functional inertia strategy. Now, unlike before, first movers consider all components 
as candidates for mutation at any time. Figure 3 shows again the results for the average fitness 
values of the local optimum discovered, the normalized number of preceding mutations, and the 
similarity between the strings found by first and late movers. White dots refer to first movers and 
gray dots to late movers.

Changing the assumption about how first movers search, leads to different results than those 
obtained before. First, looking at the fitness achieved by first and late movers, the clear advantage 
of late movers as reported in Figure 2, now turns into a small, and mostly significant, advantage for 
first movers in Figure 3. This result can be understood by looking at the functional flexibility strat-
egy of first movers in closer detail. Recall that in the case of functional flexibility, both first movers 
and late movers are allowed to mutate all components at all times. The only difference between the 
two search strategies is the actual trajectory they follow through the design space. Late movers 
only start searching after all F  functions are known and immediately move toward a local opti-
mum following their greedy search algorithm. By contrast, first movers look for a new local opti-
mum each time a new function is discovered. Hence, the final local optimum is not found by 
starting from a randomly chosen string, as for late movers, but from a string that was locally opti-
mal with respect to fewer functions, which was in turn discovered from a string that was locally 
optimal with respect to even fewer functions and so on.9

The fitness advantage of first movers, however, comes at a cost of search inefficiency. Looking 
at the number of mutations preceding the discovery of the final local optimum, we clearly see that 
first movers spend much more effort than late movers. This difference goes up when K  increases, 
with given values for F  and N. It also happens when F  increases, with given values of N   
and K. For large systems, the difference can be fivefold, with late movers generally requiring only 
two or three mutations, while first movers often require 10 mutations or more. It is exactly the 
functional flexibility that renders the first-mover strategy so costly compared to first movers whose 
search behavior follows the functional inertia. Hence, to the extent that mutations are costly, the 
small fitness advantage that first movers enjoy over late movers is likely to be offset by the higher 
cost of R&D.

Turning to the results on the similarity in product designs found by first and late movers, we 
observe again that the similarity score goes down with increasing product complexity K. Hence, even 
if first movers are functionally flexible, late movers still may well end up in different local optima in 
designing complex products. Again, we can conclude that, the higher the complexity of a product, 
first movers profit less from appropriating component designs before late movers enter the market.

Discussion

We have shown that the late movers may enjoy advantages over the first movers in product tech-
nologies where new functionalities are discovered over time. This is particularly the case for 
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complex products where technological interdependencies create difficulties for first movers to 
adapt their product design in order to include more functionalities. The more complex a product 
technology is in terms of interdependencies between its component technologies, the greater the 
challenge for first movers to integrate new functionalities given the technology choices made early 
on, and the less likely they will be able to sustain their first-mover advantage. Complex products 
also lead late movers to explore more dissimilar designs than first movers, thus largely circumvent-
ing proprietary component technologies that first movers may hold.

In conclusion, our proposition holds that the more new functions become known as user needs 
evolve, the more likely a late mover will take over the industry leadership of the first mover. Our 
model provides one explanation why first movers are often unable to seize the opportunities of 
adding new functionalities and hereby expanding their user segments. It also provides a clear and 
testable hypothesis for the mixed empirical results on first-mover advantage (Lieberman, 2013) by 
using product complexity as a moderating variable: the higher a product’s complexity, the less 
likely first-mover advantages can be sustained in the face of evolving user needs, ceteris paribus. 
This role of technological interdependencies in industry dynamics is in line with an evolutionary 
model of industry shakeouts, which showed that in industries with more complex production pro-
cesses, the rates of entry and exit remain high over longer time periods, with decreasing survival 
rates for incumbents (Lenox et al., 2007).

Our model complements the work by Adner and Levinthal (2001) on demand heterogeneity and 
technological speciation. In our model, user needs evolve because new product features are being 
discovered over time. Heterogeneity, then, only exists in a longitudinal sense in that the fitness 
function includes progressively more functionalities. Adner and Levinthal (2001), by contrast, rea-
son from demand heterogeneity in a cross-sectional sense, that is, from the coexistence of different 
user groups with only partially overlapping preference sets. The explananda in the two theories are 
also different. The model by Adner and Levinthal (2001) focuses on the evolutionary dynamics 
underlying the emergence of a whole new product category when an existing technology finds a 
new application domain (see also, Adner, 2002; Levinthal, 1998). By contrast, we have looked at 
technological evolution within a single product category and with special interest in explaining 
late-mover advantages.

The managerial implications of our model of late-mover advantage are multiple. One manage-
rial implication holds that early entrants in complex product markets run the risk of relying too 
much on their proprietary component technologies as a source of competitive advantage. Obviously, 
such a competitive advantage only exists to the extent that potential entrants require such compo-
nents to develop competing products. However, with evolving user needs, windows of opportunity 
for new entrants continue to exist, by coming up with alternative product designs taking into 
account the new functionalities demanded by users. This conclusion from our theoretical model is 
in line with the related work on disruptive innovation comparing incumbents with newcomers, 
where newcomers were able to create a mass market while incumbents remained too focused on 
serving the needs of their existing customers (Christensen, 1997, 2003).

A second managerial implication holds that firms need to continuously monitor evolving user 
needs and experiment with the integration of new functionalities into their existing product design. 
In some cases, such new functionalities can be discovered by companies themselves through imag-
ination, experimentation, and consumer surveys. In other cases, new functionalities are discovered 
by users themselves through innovative user practices. In such contexts, an effective user–producer 
interaction is crucial to guide the innovation process of a firm (Von Hippel, 1988) as well as the 
strategy process vis-à-vis the market segments a firm aims to target (Christensen, 1997). Thus, 
even though users are generally not the source of new technological solutions, their evolving prac-
tices signal new needs that are posing serious challenges to incumbents firms.
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The more specific managerial lesson, then, holds that firms should avoid restricting R&D 
resources to the optimization of only a few functionalities demanded by their existing customers, 
in technologies whose potential uses are not yet well understood. Put differently, as emphasized by 
Winter et al. (2007), when there is a notion of some global direction of product evolution (here, 
when new functionalities will be added), local optimization should not undermine this preferred 
direction of evolution. Furthermore, to the extent that customers are few and large, the monopsony 
power exerted by them does not only bring down prices but also forces a firm to innovate in a 
focused direction optimizing the functions demanded by specialized users (Christensen and Bower, 
1996). Thus, while specialized users are often critical for the introduction of a new product tech-
nology in the first place, a firm would benefit from quickly diversifying its user base as to gain a 
better and richer understanding of the possible uses of the product technology in question.

These managerial implications, however, are of lesser importance to first movers that still hold a 
critical resource that renders successful entry of late movers less likely. For example, first movers may 
have built up complementary assets or proprietary standards with network externalities for users, 
which may be difficult to build up by late movers. And, although late movers enter with an alternative 
product design, their new product will typically not be fully different from a first mover’s product 
design, as our model suggested as well. Hence, some of the critical components in a late-mover design 
may be patented by first movers, rendering successful entry more difficult or costly (Gans et al., 2002).

A final remark on the limitations of our model, our objective was to show that we can formalize 
the notion that late-mover advantage can stem from evolving user needs. Doing so, we were also 
able to derive that product complexity renders late-mover advantages in contexts of evolving user 
needs even bigger. We explicitly abstracted away from some of the other likely mechanisms and 
conditions that affect firms’ competitive advantage, as to be able to show theoretically that evolv-
ing user needs alone can already be responsible for late-mover advantages.

Limitations, however, remain. First, there are some minor limitations of a technical nature. For 
example, we assumed that the time in between the discovery of two functions was long enough to 
allow the firm to carry out all the mutations required to find a new local peak. In this way, we could 
conveniently define time in the model solely in terms of the number of functions already discov-
ered. Future modeling may choose to drop this assumption. We also assumed that while the number 
of functions increases over time, the number of product components remains fixed. Following 
Altenberg (1994), this assumption can in principle be dropped within a generalized NK-model.

More substantially, the model can be extended by taking into account more mechanisms that are 
at play in industrial dynamics. Indeed, since this model is an early experiment to model evolving user 
needs in the first-mover advantage framework, ample room is left for future extensions. For instance, 
introducing heterogeneity in the demand for functions will provide an alternative framework where 
more strategic decisions are available for the firms. Such decisions include offering products focused 
on specific bundles of functions or delaying the release of functions for technical priorities. Second, 
one can introduce a profit function that feeds back into the level of innovative activity. This would 
lead one to a different assessment of the relative success of first and late movers. While we now solely 
focused on the number of mutations as the cost of innovation and the final fitness of the product 
design as the success of innovation, the explicit introduction of a profit function would also take into 
account that first movers can reap temporary monopoly profits, which in turn can be invested in 
innovative activity, while late movers are arguably more constrained financially.

A final limitation has been that we estimated the cost of search to be equal to the number of 
mutations carried out by a firm in design space, independently of whether another firm already 
carried out the same mutations before. Late movers do not profit from imitating parts of the designs 
that first movers already explored before them, that is, we assumed that knowledge spillovers are 
fully absent. We also did not explicitly model the possibility for first movers to patent parts of their 
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designs or develop product standards with network externalities, which would severely raise the 
costs of late movers to enter. As a future extension of our model, one could study how late movers 
may try to imitate product design from first movers (Rivkin, 2000) and how a first mover’s patent-
ing strategy or product standards may influence the opportunities and benefits for imitation for late 
movers (Marengo et al., 2012).
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Notes

1.	 The evidence presented by Christensen (1997, 2003) is not undisputed. See, in particular, King and Tucci 
(2002) and King and Baatartogtokh (2015).

2.	 Initially named RIM (Research In Motion), the company has officially adopted the name of BlackBerry 
on 9 July 2013.

3.	 A classic example concerns the bike technology that initially occupied a niche as a racing vehicle for 
young men and could become a mass product only when safety became a primary functionality (Pinch 
and Bijker, 1984). For other examples, see Geels (2002).

4.	 For a review, see Ganco and Hoetker (2009).
5.	 Alternberg’s (1994) generalized model is a generalization of the original NK-model with respect to the 

number of components and functions that describe a system. Other limitations of the original NK-model 
still carry over to the generalized NK-model, though, including the assumption that the structure of 
interdependencies is given and known, and unchangeable by innovative efforts of firms (Bonaccorsi, 
2011). Furthermore, although our model can incorporate the discovery of additional functionalities of an 
existing product over time, it cannot model the emergence of complete new uses of existing artifacts and 
a corresponding new list of functionalities, which may only partially overlap with the functionalities of 
previous use contexts. As argued by Felin et al. (2014), such more fundamental innovations in biological 
and technological evolution alike—sometimes referred to as “speciation,” “preadaptation,” or “exapta-
tion”—cannot be represented and understood with fitness landscape models such as NK-models.

6.	 In order to test the robustness of our results, we have compared the results of a greedy search with the 
results of a random search, where firms mutate one component randomly and accept it when fitness 
increases, instead of looking exhaustively for the one mutation that increases the fitness the most as in 
greedy search. The greedy search produces slightly faster and higher fitness improvement than random 
search, but (dis)advantage for first and late movers are the same for both search algorithms.

7.	 The chances of a component to get fixed early on depend on its pleiotropy: the higher the pleiotropy of a 
component, the more likely it will influence functions early discovered, the quicker it will get fixed into 
a particular state.

8.	 Hence, we let first movers and late movers start their search processes from different, randomly chosen 
strings. This follows from the idea that late movers face another set of functions than first movers and, 
hence, start their search “from scratch.”

9.	 The more general conclusion that multi-stage search processes may lead to higher fitness than single-
stage search processes was also reached in other NK-model exercises. Siggelkow and Levinthal (2003) 
showed that a search process that alternates decentralized and centralized search generally leads to 
higher fitness in the face of environmental shocks. And, Baumann and Siggelkow (2013) showed that 
“chunky” search focusing on different parts of a complex system in sequential stages, often outperforms 
the single-stage search strategy.
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Appendix 1

Table 1.  Example of fitness values for the product depicted in Figure 1.

ϕ1 ϕ2 ϕ

0000 0.320 0.970 0.645
0001 0.260 0.720 0.490
0010 0.320 0.140 0.230
0011 0.260 0.040 0.150
0100 0.410 0.530 0.470
0101 0.470 0.860 0.665
0110 0.410 0.240 0.325
0111 0.470 0.980 0.725
1000 0.770 0.970 0.870
1001 0.820 0.720 0.770
1010 0.770 0.140 0.455
1011 0.820 0.040 0.430
1100 0.890 0.530 0.710
1101 0.420 0.860 0.640
1110 0.890 0.240 0.565
1111 0.420 0.980 0.700
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Table 2.

Late mover procedure

t = 2

  Agent chooses a random string to start search: 0011 with ϕ = 0 150. .
 � Greedy search leads to a mutation to 0111 with ϕ = 0 725. , which is locally optimal with regard to ϕ .

Final product design: 0111 (ϕϕ = 0.725)
Number of mutations required: 1

First mover procedure (“functional inertia”)

t =1

  Agent chooses a random string to start search: 0010 with ϕ1 0 320= . .
  Greedy search leads to a mutation to 1010 with ϕ1 0 770= . .
  Greedy search leads to a mutation to 1110 with ϕ1 0 890= . , which is locally optimal with regard to ϕ1.

t = 2

 � Agent discovers the second function. For current technology 1110, ϕ2 0 240= . . Only mutation in 
component 3 is allowed, since other components influence ϕ1 .

 � Greedy search with regard to ϕ2  leads to a mutation to 1100 with ϕ2 0 530= . , which is locally optimal 
with regard to ϕ2 .

Final product design: 1100 ( )ϕϕ = 0.710
Number of mutations required: 3
Product similarity with late mover: 25%

First mover procedure (“functional flexibility”)

t =1

  Agent chooses a random string to start search: 0010 with ϕ1 0 320= . .
  Greedy search leads to a mutation to 1010 with ϕ1 0 770= . .
  Greedy search leads to a mutation to 1110 with ϕ1 0 890= . , which is locally optimal with regard to ϕ1 .

t = 2

  Agent discovers the second function. Mutations are allowed in all components.
  Greedy search with regard to ϕ  leads to a mutation to 1100 with ϕ = 0 710. .
 � Greedy search with regard to ϕ  leads to a mutation to 1000 with ϕ = 0 870. , which is locally optimal 

with regard to ϕ .

Final product design: 1000 (ϕϕ = )0.870
Number of mutations required: 4
Product similarity with late mover: 0%
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Appendix 2

Figure 4.  The p-values of the Wilcoxon signed-rank test on the paired difference of fitness and 
mutations, between first and late movers exploring the same landscape. The null hypothesis holds that the 
distribution of the differences is symmetric about 0 (i.e. no differences between first and late movers), the 
alternative is that they differ.
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Appendix 3

Appendix 4

For completeness, we also study all the intermediate sequences of functionality discovery for the 
subset of parameters N F= = 24  and K = { }2 2 2 2 20 1 2 3 4, , , , . This includes the first and late mov-
ers as originally defined, whose sequences can be represented mathematically as 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , , , , , ,{ }  and 16{ }, respectively. Hence, these can be interpreted as the 

extremes of the sequence set. In total, for 16 functionalities, there are 228 sequences (including 
first and late mover), which are each simulated 5000 times. To compare their results, we character-
ize each sequence by the Simpson Index

Simpson Index =
× −( )

× −( )
∑ t t tf f

F F

1

1
	 (3)

Where ft  is the number of functions discovered at a given time step t . Hence, the Index takes the 
value 0 for the first mover, 1 for the late mover, and for instance 0.65 for 4 2 8 2, , ,{ }  or 0.875 for  

Figure 5.  The p-values of the Wilcoxon signed-rank test on the paired difference of fitness and 
mutations, between first and late movers exploring the same landscape. The null hypothesis holds that the 
distribution of the differences is symmetric about 0 (i.e. no differences between first and late movers), the 
alternative is that they differ.
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{15,1}. It gives us the probability that two functions are discovered at the same time step, without 
replacement.

The results are presented in Figure 6 for the case of functional inertia of the first mover and 
Figure 7 for functional flexibility of the first mover. We observe in Figure 6 a nearly linear relation-
ship between the Simpson Index and our three variables of interest. Hence, the late-mover advan-
tage can be generalized as an advantage of any agents that improves a product while taking into 
account sets of functionalities larger than its competitors. And, in Figure 7, we also observe a clear 
correlation between the Simpson Index and our three variables of interest.

Figure 6.  Average fitness, average normalized number of mutations, and product similarity. Each 
sequence of function discovery is represented by its Simpson Index, from first mover (Index = 0) to late 
mover (Index = 1). All follow a “functional inertia strategy.”
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Figure 7.  Average fitness, average normalized number of mutations, and product similarity. Each 
sequence of function discovery is represented by its Simpson Index, from first mover (Index = 0) to late 
mover (Index = 1). All follow a “functional flexibility strategy.”


