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Abstract

N6-methyladenosine (m°A) is a prevalent internal RNA modification in higher eukaryotic cells. As the pivotal m°A
regulator, RNA methyltransferase-like 3 (METTL3) is responsible for methyl group transfer in the progression of m°A
modification. This epigenetic regulation contributes to the structure and functional regulation of RNA and further
promotes tumorigenesis and tumor progression. Accumulating evidence has illustrated the pivotal roles of METTL3
in a variety of human cancers. Here, we systemically summarize the interaction between METTL3 and RNAs, and
illustrate the multiple functions of METTL3 in human cancer. METLL3 is aberrantly expressed in a variety of tumors.
Elevation of METTL3 is usually associated with rapid progression and poor prognosis of tumors. On the other hand,
METTL3 may also function as a tumor suppressor in several cancers. Based on the tumor-promoting effect of METT

into antitumor therapy.

L3, the possibility of applying METTL3 inhibitors is further discussed, which is expected to provide novel insights
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Introduction
Epigenetics promotes the functional plasticity of genome
at multiple levels [1]. As the classical kinds of chemical
modifications, 5-methylcytidine (m°C), 5-
hydroxymethylcytidine (hm°C), N4-acetylcytidine (ac*C),
and N6-methyladenosine (m®A) mainly participate in
the epigenetic modification of RNAs [2]. Among the dif-
ferent kinds of modifications, m°A is the most common
and effective modification in both coding and noncoding
RNAs [3, 4]. The importance of m®A modification has
been recognized in physiological and pathological pro-
cesses [5-7]. Meanwhile, m®A modification also plays
critical roles in yeast and plants [8, 9].

The dynamic progress of m®A modification is driven
by the interactions between “writers”, “erasers”, and
“readers” [10, 11]. The m®A deposition is primarily
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performed by “writers”, while the modification site is
subsequently “read” by m®A recognition proteins or
“erased” by m°A demethylases [12]. In particular, human
N6-methyltransferase complex (MTC), which contains
Methyltransferase-like 3 (METTL3) [13], METTL14
[14], Wilms tumor 1-associated protein (WTAP) [15],
METTLI16 [16], KIAA1429 [17], zinc finger CCCH-type
containing 13 (ZC3H13) [18], RNA-binding motif pro-
tein 15 (RBM15) [19], and Cbl proto-oncogene like 1
(CBLL1) [20], is responsible for methyl group transfer.
As the core component of MTC [21], METTL3 domi-
nates the catalytic core and performs N6-methylase cata-
lytic activity [22]. Dysregulation of METTL3 significantly
affects the total m®A methylation level [23]. In addition,
noncatalytic components of the complex also contribute
to the RNA methylation progression. METTL14 assists
to construct the RNA binding scaffold to promote the
RNA binding ability of METTL3, thereby enhancing the
catalytic effect of METTL3 [24]. In addition, WTAP can
facilitate the nuclear speckle localization of METTL3
and METTL14 [24]. Apart from the essential

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40364-021-00278-9&domain=pdf
http://orcid.org/0000-0003-0725-716X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zhouxiangxiang90@163.com
mailto:xinw@sdu.edu.cn

Cai et al. Biomarker Research (2021) 9:27

components, recent studies have demonstrated that
METTL16, KIAA1429, ZC3H13, RBM15 and HAKAI
are involved in m®A modification in various ways [12].

It has been well recognized that RNA methylation
influences the metabolic processes and functional
regulation of RNA. As the critical component of
MTC, METTL3 primarily affects post-
transcriptional genetic modification (Fig. 1). Genetic
modification leads to changes in biological pro-
cesses, including cell growth, migration, differenti-
ation and inflammatory response [25]. Recently,
increasing studies have revealed the accumulation
of m°A modification in human cancers, indicating
the important role of METTL3 in tumorigenesis
and tumor progression [26]. In this review, we sys-
tematically summarize the functions of METTL3 in
different human malignancies and further discuss
the potential of METTL3 inhibitors.

Reciprocal effects between METTL3 and RNAs in
human cancers

Methyltransferase activity of METTL3 can be detected
both in the nucleus and cytoplasm [27], suggesting that
METTL3 could modulate the metabolism and function
of RNAs in various ways. On the other hand, expression
and functions of METTL3 can also be regulated by non-
coding RNAs.
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METTL3 regulates the maturation, transportation and
translation of messenger RNA (mRNA)

METTL3 was involved in the regulation of mRNA,
including the maturation, transportation and transla-
tion of mRNA [25]. Nucleus-localized METTL3 pri-
marily promoted the maturation, splicing and
transportation of mRNA. The abundant deposition of
m®A in pre-mRNA was associated with the acceler-
ation of pre-mRNA maturation [27]. After pre-mRNA
production, methylation of spliced regions could affect
the splicing of the pre-mRNA, thereby producing di-
verse sequences of mature mRNA [28]. In addition,
increasing m°A on mature mRNA decreased the nu-
clear fraction of mRNA by promoting cytoplasmic
transportation [17]. In the METTL3-enriched cyto-
plasm, METTL3 significantly enhanced mRNA trans-
lation by stabilizing mRNA [29]. Mechanistically, m°A
modification frequently took place in the coding se-
quence (CDS), the 3'UTR and regions near the stop
codons of mature mRNA [24]. Recognition proteins
specifically recognized the m°®A-abundant regions to
stabilize mRNA and further enhance translation of
mRNA in an mC°A-dependent manner [24]. In
addition, the interplay between specific transcription
factor and METTL3 could also promote translation.
For instance, functional interaction between METTL3
and eukaryotic translation initiation factor 3 subunit
h (elF3h) was required for enhanced translation and
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Fig. 1 In the nucleus, METTL3 promotes mRNA splicing through recognizing the 3'UTR m°A sites on mRNA, thereby altering the mRNA structure.
Moreover, METTL3 also transports from nucleus to the cytoplasm and further enhances the translation and degradation of mRNA
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oncogenic transformation [30]. Apart from its promoting
effect, METTL3 could also increase mRNA decay [31], re-
vealing the dual effects of METTL3 on mature mRNA.

METTL3 promotes the maturation and activation of
noncoding RNAs

m®A modification can regulate the maturation, transport,
stability and degradation of noncoding RNAs, eventually
affecting the biological function of tumor cells [32].
METTL3 was proved to promote the maturation and acti-
vation of microRNA (miRNA). m°A modification on the
primary miRNA (pri-miRNA) directly facilitated the mat-
uration of pri-miRNA, consequently promoting tumor
progression [33]. For example, METTL3 modulated pri-
miR221/222 maturation in an m°A-dependent manner in
bladder cancer (BC). Mature miR221/222 then suppressed
the expression of phosphate and tension homology de-
leted on chromosome 10 (PTEN) to accelerate tumor
growth [34]. In addition, mature miR-1246 induced by
METTL3 could activate the mitogen-activated protein
kinase (MAPK) pathway by suppressing sprouty-related
EVHI domain protein 2 (SPRED2), which facilitated the
invasion and distant metastasis of colorectal cancer (CRC)
[35]. On the other hand, METTL3 could indirectly pro-
moted miRNA activation by regulating long noncoding
RNA (IncRNA). The activation of miR-1914-3p induced
by hypermethylated IncMALAT1 distinctly enhanced the
expression of YAP, leading to rapid progression and en-
hanced therapeutic resistance of non-small cell lung can-
cer (NSCLC) [36].

Noncoding RNAs regulate the expression and functions of
METTL3

Noncoding RNAs, including miRNA and IncRNA, are
involved in tumor progression by regulating METTL3.
miRNA, which was regarded as specific transcription
factors of METTL3, could decrease the expression
and function of METTL3, thereby reversing the
tumor-promoting effect of METTL3 [37-39]. IncRNA
also participates in the regulation of METTL3. For
example, the interaction between LINC00470 and
METTLS3 facilitated the degradation of PTEN mRNA
and further contributed to the development and pro-
gression of gastric cancer (GC) [40]. In addition,
IncRNA Rho GTPase activating protein 5 (ARHG
AP5)-AS1 recruited METTL3 to enhance the stability
of ARHGAP5 mRNA, eventually leading to the poor
prognosis and chemoresistance of GC [41].

METTL3 mediates tumorigenesis via RNA methylation
An increasing number of studies have illustrated
that METTL3 is involved in various aspects of
tumor progression, including stemness maintenance,
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tumor growth, invasion,

resistance.

migration,

and drug

Gastrointestinal tumors

GC

Aggressive GC is generally accompanied with higher ex-
pression of METTL3, suggesting the oncogenic role of
METTL3 in GC [42]. Elevation of METTL3 was proved
to promote tumor growth, metastasis and therapeutic re-
sistance in an m°A-dependent pattern [43]. METTL3
propelled tumor growth by inducing m°A deposition on
the mRNA of oncogenes and rate-limiting enzymes of glu-
cose metabolism. MYC and SEC62 were previously identi-
fied as oncogenes in GC. Abundant m°®A deposition was
not only detected on the component molecules of the
MYC-targeted genes, but also contributed to the overex-
pression of MYC [44, 45]. Another study demonstrated
that METTL3 promoted the stability of SEC62 mRNA in
an m°A-mediated manner and further inhibited tumor
cell apoptosis by suppressing the Bax-caspase3 pathway
[46]. Apart from oncogenes, aerobic glycolysis was also ac-
tivated in tumorigenesis [47]. Mechanistically, m®A modi-
fication enhanced the expression of hepatoma-derived
growth factor (HDGF), which could activate solute carrier
family 2 member 4 (GLUT4) and enolase 2 (ENO2) to po-
tentiate aerobic glycolysis in tumor cells [48]. Moreover,
the interaction between METTL3 and IncRNA
LINC00470 promoted tumor growth by impairing the sta-
bility of PTEN mRNA [40].

Tumor metastasis and therapeutic resistance represent
the characteristics of aggressive GC [43]. Epithelial mes-
enchymal transition (EMT) and angiogenesis provide
proper conditions for cell mobility. Overexpression of
zinc finger MYM-type containing 1 (ZMYM1) was in-
duced by METTLS3, thereby promoting the EMT process
by suppressing the activation of E-cadherin [49]. Mean-
while, expression levels of EMT-related markers, espe-
cially growth factor independent 1 (GFI-1) and a-
smooth muscle actin (a-SMA), were dramatically in-
creased under the regulation of METTL3 [43]. The
angiogenesis process, especially the proliferation of hu-
man umbilical vein endothelial cell (HUVEC) and tube
formation, was correlated with overexpressed METTL3,
subsequently promoting the invasion and distant migra-
tion of cancer cells [48]. The contribution of METTL3
to chemoresistance was verified as well. Mechanistically,
METTL3 contributed to the stabilization of ARHGAP5
mRNA after being recruited by IncRNA ARHGAP5-AS1
and then induced chemoresistance [41].

On the other hand, METTL3 can suppress tumor pro-
gression under certain conditions. Xie et al. reported
that METTLS3 facilitated the m®A modification on basic
leucine zipper ATF-like transcription factor 2 (BATF2)
mRNA. Methylated BATF2 exerted tumor suppressive
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effects by stabilizing the p53 protein and inhibiting the
phosphorylation of extracellular regulated kinase (ERK)
[50]. In addition, METTL3-high GC cells preferred to
respond to rapamycin (mTOR) inhibitors through m°A-
DGCR8-dependent mechanism [51].

Hepatocellular cancer (HCC) and gallbladder cancer
Increased METTLS3 is not only involved in tumorigenesis
but is also related to rapid progression and poor progno-
sis of HCC [52, 53]. Mechanistically, METTL3 facilitated
tumor progression by modulating suppressor of cytokine
signaling 2 (SOCS2) [54], RAD52 motif 1 (RDM1) [55]
and Snail [56]. Depending on the m°®A modification,
SOCS2 mRNA was functionally silenced, thereby pro-
moting the proliferation, migration and stemness main-
tenance of HCC cells [54]. Hypermethylation of RDM1
induced by METTL3 suppressed the expression of
RDMI, leading to the activation of the Ras/Raf/ERK
pathway in tumor progression [55]. In addition, METT
L3 accelerated the accumulation of Snail, which was es-
sential for the persistence of oncogenic properties [56].
On the other hand, METTL3 also functioned on onco-
genic noncoding RNAs [57]. Elevation of METTL3 con-
tributed to enhance the expression of miR-6079 and
IncRNA LINCO00958, thereby potentiating aerobic gly-
colysis [57, 58]. Chemosensitivity of HCC cells modu-
lated by METTL3 was also reported recently.
Mechanically, METTL3 enhanced the stability of fork-
head box O3 (FOXO3) mRNA in a METTL3-m°A-
YTHDF1-dependent manner, subsequently promoting
sorafenib sensitivity and inhibiting angiogenesis and
autophagy-associated pathways [59].

Consistent with HCC, the tumor-promoting effect of
METTL3 has been recently revealed in gallbladder can-
cer. METTL3 functionally reduced the protein level of
PTEN via m®A-induced maturation of miR-92b-3p and
subsequently activated the phosphatidylinositol 3'-kinase
(PI3K)/protein kinase B (AKT) pathway [60].

CRC

Aberrant expression of METTL3 is considered to be a
frequent event in the development of CRC, in which
METTL3 mediates tumorigenesis by regulating target
genes and pathways in an m°A-dependent manner. Li
et al. reported that methylation of SRY-box 2 (SOX2)
mRNA effectively prevented SOX2 mRNA from degrad-
ation, thereby provoking self-renewal, proliferation and
migration of CRC cells [61]. In addition, upregulated
cyclin E1 [62], activated miR-1246-SPRED2-MAPK axis
[35] as well as inhibited SOCS2 [63] and yippee-like 5
(YPEL5) [31] were also induced by METTL3-catalyzed
m®A modification. Rate-limiting enzymes of aerobic gly-
colysis were regulated by METTL3 as well. Overexpres-
sion of hexokinase 2 (HK2) and GLUT1 was attributed

Page 4 of 13

to the METTL3-m°®A-IGF2BP2/3-dependent mechanism
and further accelerated glycolysis to accelerate tumor
growth [64]. Apart from the tumor-promoting effect,
several studies had demonstrated the tumor suppressor
role of METTLS3 in cell migration, implying the role as a
double-edged sword of METTL3 in CRC [65]. Moreover,
METTL3 had dual effects on therapeutic resistance as
well. Hypermethylation distinctly enhanced the general
protein level of the p53 R273H mutant and leucine-rich
repeat containing G protein-coupled receptor 5 (LGR5),
thereby enhancing drug resistance [66, 67]. On the con-
trary, depletion of METTL3/14 strengthened the sensi-
tivity to anti-PD-1 treatment through activating the
interferon-y (IFN-y)/signal transducer and activator of
transcription 1 (STAT1)/interferon regulatory factor 1
(IRF1) pathway [68].

Pancreatic cancer (PC)

Accumulated studies have identified METTL3 as an in-
dependent prognostic factor for PC [69]. Elevated ex-
pression of METTL3 enhanced tumor growth and
metastasis by promoting maturation of miR-25-3 and ac-
tivation of the PI3K/AKT pathway [70]. Meanwhile,
hypermethylation contributed to chemo- and radio-
resistance dependent on the dysregulation of MAPK cas-
cades, ubiquitin modification and RNA process regula-
tion [71]. Functional enrichment analysis further
demonstrated that METTL3 could participate in the epi-
nephrine stimulus response and neutrophil-mediated
immune reaction, but the underlying mechanisms re-
main to be further studied [72].

Respiratory tumors

Nasopharyngeal cancer (NPC) and oral squamous cell
carcinoma (OSCC)

It is well known that higher METTL3 is associated with
advanced stage and distant metastasis, indicating the
tumor-promoting role of METTL3 in NPC [73, 74].
METTL3 was reported to promote tumor growth and
metastasis through functional regulation of NPC related
genes. Zinc finger protein 750 (ZNF750) and enhancer
of zeste homolog 2 (EZH2), which were identified as the
tumor suppressor in NPC, could inhibit the growth and
metastasis of NPC cells [75]. METTL3 contributed to
the m°A modification of ZNF750 and consequently re-
strained cell apoptosis by inhibiting ZNF750/fibroblast
growth factor 14 (FGF14) signaling [76]. METTL3 also
inhibited the translation of EZH2, thereby increasing the
expression of cyclin-dependent kinase inhibitor 1C
(CDKNI1C) to promote cell survival [74]. Moreover,
Snail could promote tumor invasion and metastasis
under the regulation of METTL3. Mechanistically, the
mobility of NPC cells could be enhanced upregulated
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Snail through the METTL3-m°®A-IGF2BP2-dependent
mechanism [77].

Consistent with NPC, overexpression of METTL3 is
associated with tumorigenesis of OSCC. Liu et al. re-
vealed that METTL3 could promote OSCC growth and
metastasis through the METTL3-m°A-IGF2BP1-BMI1
axis [78]. In addition, METTL3 strengthened the stabil-
ity of MYC in a METTL3-m°®A-YTHDF1-mediated man-
ner, thereby stimulating tumor progression [79]. Taken
together, METTL3 could play the pro-oncogenic role in
OSCC.

Lung cancer
METTL3 has been previously identified as a potential
target for the treatment of NSCLC. The aberrant expres-
sion of METTL3 contributes to the tumorigenesis of
NSCLC in multiple ways. METTL3-mediated m°A
modification potentiated translation of YAP mRNA in a
METTL3-m°A-YTHDF3-dependent ~ manner, subse-
quently promoting the generation of cancer stem cells
[36]. METTL3 installed m°A deposition on IncRNA
ABHD11-AS1 and then enhanced aerobic glycolysis to
propel tumor progression [80]. Additionally, the func-
tional activation of METTL3 could promote rapid tumor
growth and EMT, which dependent of the activation of
PI3K/AKT pathways and the overexpression of EZH2
[38, 80]. In particular, elimination of miR-143-3p and
vasohibin-1 (VASH1) induced by METTL3 resulted in
enhanced brain metastasis [81]. Moreover, METTL3
could positively mediate the autophagy related pathway
and further induce gefitinib resistance, indicating the po-
tential role of METTLS3 in the treatment of NSCLC [82].
In addition to NSCLC, dataset analysis revealed an upregu-
lated METTL3 in lung adenocarcinoma (LUAD), which was
correlated with poor prognosis of patients [83]. Although
METTLS3 is regarded as a potential biomarker of LUAD, the
specific mechanisms remain to be further explored.

Urological tumors

Renal cell carcinoma

The frequent alteration of METTL3 was reported in clear
cell renal cell carcinoma (ccRCC), implying that METTL3
had potential predictive values in ccRCC [84]. Moreover,
the close connection between METTL3 and critical bio-
logical processes was newly identified, including EMT,
oxygen homeostasis, leukocyte migration, and so on [85,
86]. Since the underlying mechanisms are insufficient so
far, it is necessary to conduct functional studies to explore
the underlying mechanisms of METTL3 in ccRCC.

BC

Higher METTL3 is parallel with poor prognosis of pa-
tients with BC, suggesting the prognostic value and tumor
promoting effect of METTL3 in BC [87]. It was
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demonstrated that METTL3 promoted rapid tumor
growth, aggressive invasion, and self-renewal maintenance
through different mechanisms. Abundant m®A deposition
on the 3UTR of CUB domain containing protein 1
(CDCP1) mRNA stimulated cell proliferation and trans-
formation through the METTL3-m®A-YTHDF1 axis both
in vitro and in vivo [88]. Similarly, the m®A modification
within the 3'UTR of adhesive molecule integrin alpha-6
(ITGA6) mRNA permitted ITGA6 expression in an
YTHDF1/3-dependent manner, thereby modulating the
aggressive phenotype of BC [89]. In addition, METTL3
positively regulated the expression of endogenous AF4/
FMR?2 family member 4 (AFF4). The rapid tumor growth
and aggressive invasion were ascribed to the AFF4/NEF-
KB/MYC pathway induced by METTL3, while self-
renewal maintenance of BC stem cells was performed by
the METTL3-AFF4-SOX2 axis [90, 91]. Tumor suppres-
sor genes, such as SET domain containing 7 (SETD7) and
Kruppel-like factor 4 (KLF4), are rapidly degraded under
the regulation of METTL3 [92]. Furthermore, maturation
of pri-miR221/222 associated with PTEN inhibition was
conducted by METTLS3, leading to poor prognosis in BC
patients [34].

Prostate cancer (PCa)

METTL3 acts as an oncogene in PCa by promoting the
pathogenesis and metastasis of tumor [93]. Mechanistic-
ally, METTL3 distinctly enhanced the expression of
MYC, leading to the development and progression of
PCa [94]. Besides, the METTL3-lymphoid enhancer-
binding factor 1 (LEF1) axis activated the Wnt pathway
in a METTL3-m°A-IGF2BP2-dependent  manner,
thereby promoting cell proliferation and migratory abil-
ity [95]. In addition, depletion of METTL3 disrupted the
proliferation and immortality of tumor cells by inhibiting
GLI1 in the sonic hedgehog (SHH) pathway [96]. Apart
from tumor growth, bone metastasis was positively cor-
related with higher level of METTL3. Activation of hu-
man antigen R (HuR) induced by METTL3 resulted in
the stability of integrin f1 (ITGB1) mRNA, thereby po-
tentiating bone metastasis of PCa [97].

Neurological tumors

Glioblastoma (GBM)

m®A modification is definitively involved in the tumori-
genesis of GBM, but the roles of METTL3 are contro-
versial. Methylation enrichment analysis revealed that
m°A deposition was usually concentrated in the tran-
scripts mediating cell growth, self-renewal and metabolic
regulation pathways [98]. Mechanistically, upregulated
METTL3 maintained the activation of glioblastoma stem
cell (GSC) through regulating the RNA editing enzyme
and the YTHDF2-mediated RNA decay [99]. In addition,
METTL3 also mediated tumorigenesis of GBM
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independent of the methylase catalysis. Direct inter-
action between METTL3 and histone-mediated modifi-
cation elevated the translation of oncogenes, including
SOX2, spalt-like transcription factor 2 (SALL2), oligo-
dendrocyte lineage transcription factor 2 (OLIG2) and
POU class 3 homeobox 2 (POU3F2) [99]. On the other
hand, METTL3 enhanced resistance to y-irradiation by
regulating m°A modification of SOX2, indicating the im-
portant role of METTL3 in therapeutic resistance [100].

A negative correlation between GSC and m°A modifi-
cation was recently illustrated. Depletion of METTL3/14
in turn enhanced the cell proliferation and self-renewal
ability, thereby strengthening the tumorigenic properties
of GSC [101]. METTL3 could also impair the prolifera-
tion and mobility of glioma cells, indicating the dual role
of METTL3 in GBM [102].

Gynecologic tumors

Breast cancer

Previous studies reported that METTL3 was able to pro-
mote breast cancer cell proliferation by regulating the
expression of BCL-2, hepatitis B X-interacting protein
(HBXIP) and p21 through m®A [37, 103, 104]. Thera-
peutic resistance of breast cancer was also dependent on
the m°®A-based epitranscriptomic mechanism. Adriamy-
cin resistance derived from METTL3 induced the mat-
uration of pri-miRNA-221-3p [105], while tamoxifen
resistance arose from METTL3-mediated overexpression
of adenylate kinase 4 (AK4) [106]. Conversely, poor
prognosis of the triple-negative breast cancer (TNBC)
was associated with lower expression of METTL3, sug-
gesting the tumor suppressing role of METTL3 [107].
Mechanistically, METTL3 inhibited the mobility of
TNBC cells and adhesion to the cell extracellular matrix
(ECM) by increasing m®A modification of collagen type
III alpha Mechanistically, METTL3 inhibited the mobil-
ity of TNBC cells and adhesion to the cell extracellular
matrix (ECM) by increasing m°A modification of colla-
gen type III alpha 1 chain (COL3A1) [107]. Taken to-
gether, the differential functions of METTL3 were
assessed in breast cancer, and various functions of
METTL3 warrant further verification.

Ovarian cancer and endometrial cancer

METTL3 has been reported to promote tumor progres-
sion of ovarian cancer. METTL3 induced m°®A modifica-
tion in the transcripts of target genes in endometrioid
epithelial ovarian cancer, including elF3c, AXL, colony
stimulating factor 1 (CSF-1), frizzled class receptor 10
(FZD10) and so on [108]. Upregulated AXL induced by
methylation specifically promoted EMT to accelerate
tumor progression [109]. METTL3 also participated in
the regulation of oncogenic pathways in ovarian cancer.
METTL3 downregulated the BCL-2-related apoptotic
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pathway to resist the apoptosis of ovarian cancer cells
[110]. In addition, METTL3 mediated the activation of
the AKT pathway via facilitating the maturation of miR-
126-5p and further enhanced inhibition of PTEN, which
was targeted by miR-126-5p [111].

Compared with ovarian cancer, METTL3 plays as a
tumor suppressor in the pathogenesis of endometrial
cancer. Mechanistically, reduced METTL3 could lead to
activation of the AKT pathway, which promoted rapid
proliferation of endometrial cancer cells [112].

Cervical cancer (CC)

METTLS3 is identified as an independent prognostic fac-
tor in CC due to its distinct correlation with tumor pro-
gression and poor survival of patients [113, 114].
Increased METTL3 could bring to the rapid growth of
CC through different mechanisms. Overexpression of
METTLS3 stabilized RAB2B mRNA to enhance cell pro-
liferation in an IGF2BP3-dependent manner [115]. In
addition, METTL3 was involved in m®A-regulated gly-
colysis, which was one of the critical hallmarks of tumor
growth. METTL3 enhanced the stability of pyruvate de-
hydrogenase kinase 4 (PDK4) and HK2 mRNAs in a
METTL3-m°A-YTHDF1-dependent manner, ultimately
promoting tumor growth and chemoresistance [116].

Hematological malignancies

Acute myeloid leukemia (AML)

AML is an aggressive hematological malignancy (HM)
characterized by various genetic abnormalities and epi-
genetic dysregulation [117, 118]. Compared with normal
progenitor cells, METTL3 was more abundant in AML
cells, coupled with declined cell differentiation and
apoptosis both in vitro and in vivo [119, 120]. Mechanis-
tically, increased expression of METTL3 promoted the
translation of MYC, BCL-2 and PTEN mRNAs, while
depressing the differentiation-promoting effect of AKT
[119].

Other types of hematological malignancies

Recent studies demonstrate that METTL3 participates in
the development and progression of B-cell-derived
hematological malignancies. Aberrant expression of
METTL3 in acute B lymphoblastic leukemia (B-ALL)
was profiled recently. Low expression of METTL3 was
found in the ETV6/RUNX1 (E/R)-positive cohort and
associated with high recurrence rate [121]. Compared
with B-ALL, upregulated METTL3 was identified in B
cell lymphoma. In contrast to ALL, m°A modification
was enriched in the regulation pathways of cell division
and RNA metabolism but also referred to favorable sur-
vival of mantle cell lymphoma (MCL) [122]. In addition,
elevation of METTL3 in diffuse large B-cell lymphoma
(DLBCL) promoted the expression of pigment
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Table 1 Multiple functions of METTL3 in human cancer

Cancer type Expression Role Targets Biological functions and underlying mechanisms Refs
GC Up Oncogene MYC Promotes tumor progression by enhancing MYC expression [44, 45]
SEC62 Promotes anti-apoptosis by depressing the apoptosis pathway  [46]
HDGF Actives aerobic glycolysis by GLUT4 and ENO2 to promote [48]
tumor growth
LncRNA LINC00470 Potentiates tumor growth by functional inhibition of PTEN [40]
ZMYM1 Promotes EMT by inhibiting E-cadherin expression [49]
GIF-1 and a-SMA Enhances cell mobility and instant metastasis [43]
ARHGAPS Enhances chemoradioresistance by stabilizing ARHGAP5 mRNA  [41]
Suppressor BATF2 Suppresses tumor progress by inhibiting the ERK pathway [50]
DGCR8 Enhances chemosensitivity to mTOR inhibitor [51]
HCC Up Oncogene  SOCS2 Enhances cell proliferation, migration and stemness [54]
maintenance
RDM1 Activates the Ras/Raf/ERK pathway to promote tumor progress  [55]
Snail Preserves oncogenic properties by up-regulating Snail [56]

miR-6079 and LINC00958  Enhances aerobic glycolysis by activating the mTOR pathway  [57, 58]

Suppressor FOXO3 Promotes sorafenib sensitivity, inhibits angiogenesis and [59]
autophagy
Gallbladder cancer Up Oncogene miR-92b-3p Inhibits PTEN to promote tumor progression [60]
CRC Up Oncogene  SOX2 Promotes self-renewal, cell growth and metastasis [61]
Cyclin E1 Enhances tumor growth [62]
miR-1246 Promotes tumor progression by activating the MAPK pathway  [35]
SOCS2 and YPELS Promotes tumor progression [31, 63]
HK2 and GLUT1 Accelerates aerobic glycolysis to promote tumor growth [64]
P53 and LGR5 Induces chemotherapeutic resistance [66, 67]
STAT1 and IRF1 Enhances resistance to anti-PD-1 treatment by inhibiting the [68]
IFN pathway
PC Up Oncogene miR-25-3p Promotes tumor growth and metastasis by activating the PI3K/ [70]
AKT pathway
MAPK Induces chemo- and radio-resistance [71]
NPC Up Oncogene  ZNF750 Suppresses cell apoptosis by inhibiting the ZNF750-FGF14 [75]
pathway
EZH2 Enhances metastasis by up-regulating CDKN1C [74]
Snail Enhances metastasis by increasing the translation of Snail [77]
mMRNA
0scC Up Oncogene BMI1 Promotes cell proliferation and metastasis [78]
MYC Promotes tumor progression by increasing the expression of [79]
MYC
NSCLC Up Oncogene YAP Stimulates stem cell generation and promotes tumor [36]
progression
INcCRNA ABHD11-AS1 Enhances aerobic glycolysis to promote tumor progression [80]
PI3K Accelerates tumor growth by activating the AKT pathway [38]
EZH2 Enhances tumor metastasis by inhibiting the expression of [80]
EZH2
miR-143-3p and VASH1 Enhances brain metastasis by eliminating miR-143-3p and [81]
VASH1
autophagy Induces chemotherapeutic resistance [82]
BC Up Oncogene CDCP1 Stimulates cell proliferation and transformation by enhancing  [88]

CDCP1 expression
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Table 1 Multiple functions of METTL3 in human cancer (Continued)

Cancer type Expression Role Targets Biological functions and underlying mechanisms Refs
ITGA6 Enhances aggressive features of tumor cell by enhancing [89]
ITGA6 expression
AFF4 Accelerates tumor growth and invasion by activating MYC [90]
Maintains self-renewal capability of stem cells by activating [91]
SOX2
SETD7 and KLF4 Promotes tumor progression by inhibiting the expression of [92]
SETD7 and KLF4
pri-miR221/222 Induces poor prognosis of BC by functional inhibition of PTEN  [34]
PCa Up Oncogene MYC Promotes tumor progression [94]
LEF1 Promotes cell proliferation and metastasis by activating the [95]
Wnt pathway
GLN Enhances cell growth and survival by activating the SHH [96]
pathway
HuR Promotes bone metastasis by enhancing the expression of [97]
ITGB1
GBM Up Oncogene SOX2, SALL2, OLIG2 and  Elevates the translation of oncogenes to activate stem-like cell  [99]
POU3F2
SOX2 Enhances y-irradiation resistance by elevating SOX2 expression  [100]
Breast cancer Up Oncogene BCL-2, HBXIP and p21 Promotes cell proliferation by enhancing the expression of [37,103,
oncogenes 104]
Pri-miRNA-221-3p Induces adriamycin resistance by facilitating miRNA maturation  [105]
AK4 Induces tamoxifen resistance [106]
TNBC Up Suppressor COL3A1 Inhibits cell mobility and ECM adhesion [107]
Ovarian cancer Up Oncogene elF3c, CSF-1 and FZD10 Promotes tumor progression and poor prognosis [108]
AXL Promotes tumor progression by increasing the translation of [109]
AXL
BCL-2 Suppresses cell apoptosis by inhibiting BCL-2 related pathway  [110]
miR-126-5p Enhances cell growth, migration and invasion by inhibiting [111]
PTEN
Endometrial Up Suppressor AKT regulators Inhibits proliferation and tumorigenicity by inhibiting the AKT ~ [112]
cancer pathway
CcC Up Oncogene RAB2B Enhances cell proliferation by increasing RAB2B expression [115]
PDK4 and HK2 Enhances aerobic glycolysis to promote tumor growth and [116]
chemoresistance
AML Up Oncogene MYC and BCL-2 Promotes cell growth and anti-apoptosis [119]
PTEN Suppresses cell differentiation by inhibiting the AKT pathway
DLBCL Up Oncogene PEDF Promotes cell proliferation by activating the Wnt pathway [123]
HNSCC Up Oncogene  IncRNA LNCAROD Promotes cell proliferation and metastasis [124]
TC Up Oncogene HNF1A Enhances migration by activating the Wnt pathway [125]

epithelium-derived factor (PEDF) transcripts, thereby ac-
tivating the Wnt pathway to accelerate cell proliferation
[123]. Since particular mechanism of METTL3 is not yet
sufficient at present, further studies on METTL3 in HM
still needed.

Head and neck squamous cell carcinoma and thyroid
carcinoma

Emerging studies have demonstrated the pivotal role of
METTL3 in head and neck squamous cell carcinoma

(HNSCC) and thyroid carcinoma (TC). Dataset analysis
revealed higher expression level of METTL3 in HNSCC,
which was associated with poor OS and advanced tumor
grade [124]. Similarly, METTL3 was highly expressed
and closely associated with poor prognosis of TC [125].
Mechanistically, METTL3 regulated the expression of
the HNF1 homeobox A (HNF1A) in a METTL3-m°A-
IGF2BP2-dependent manner, eventually enhancing the
migratory ability of tumor cells and activating the Wnt
pathway [125].
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Targeting METTL3 in antitumor therapy

Based on the diverse functions of METTL3, target-
ing METTL3 may bring a novel perspective for in-
dividualized therapy of cancer. Meanwhile, the
development of METTL3 inhibitors is feasible de-
pending on structural and functional features. The
functional domain of METTL3 can be considered as
the target of inhibitors [126]. In particular, the co-
factor S-adenosyl-L-methionine (SAM) in METTL3
was responsible for methyl group transfer, in which
the competitive binding of small molecular com-
plexes could effectively reduce the activity of meth-
yltransferase [127]. From another perspective,
METTL3 was commonly related to drug resistance
in tumors. Chemoresistance induced by METTL3
were detected in several kinds of cancers [41, 66,
82, 105], indicating that functional inhibition of
METTL3 might restore the chemosensitivity of
tumor cells [127]. In addition, depletion of METT
L3/14 could strengthen the therapeutic effect of
anti-PD-1 therapy through activating the IFN path-
way [68]. Therefore, targeting METTL3 may be
regarded as a promising approach of tumor targeted
therapy.
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Discussion
Multiple functions of METTL3-mediated m®A modifica-
tion have been determined in the pathogenesis and pro-
gression of tumors (Table 1), which is realized through
regulating the expression and function of target genes
(Fig. 2). Given the tumor-promoting effects of METTLS3,
targeting METTL3 brings a bright future for tumor tar-
geted therapy. Nevertheless, more investigations are still
required to explore the novel functions of METTL3.
Previous studies suggest that METTL3 usually regu-
lates target genes in an m°®A-dependent manner. In
addition, biological functions of METTL3 can be inde-
pendent of the methylase catalytic activity. For instance,
the direct combination of METTL3 and ribosomes pro-
moted the interaction between METTL3 and translation
initiation, thereby enhancing the translation of mRNA
and promoting tumor progression of lung cancer [128].
In addition, METTL3 also exhibited co-transcriptional
interactions via regulating histone modification [129], in-
dicating that METTL3 could interact with other types of
epigenetic modification. On the other hand, mechanistic
studies on METTL3 remain insufficient. For example,
enrichment analysis uncovered the importance of METT
L3 in glucose and lipid metabolism [130], but the
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specific mechanisms of METTL3 in tumor lipid metab-
olism were in infancy. Furthermore, mechanistic studies
of METTL3 in some types of cancer, such as ccRCC,
HNSCC and TC, were incomplete. Taken together,
underlying mechanisms of METTL3 warrant further
investigation.

In addition to exploring the novel functions of METT
L3, fundamental researches also aim to achieve clinical
transformation. Based on the tumor-promoting effect of
METTLS3, targeting METTLS3 is expected to be an effect-
ive strategy for anti-tumor therapy. Functional inhibition
of METTL3 was found to restore chemosensitivity of
tumor cells in vitro, implying that inhibition of METTL3
might have potential value in vivo. In other words, appli-
cation of METTL3 inhibitor is possible to produce anti-
tumor effect and provide a solution for patients with re-
fractory features. Investigations of METTL3-targeted
therapies are an irresistible trend.

Conclusions

The importance of METTL3 in tumor progression has
been broadly identified in human cancer. METTL3
mainly promotes cell proliferation, invasion, migration,
metabolic reprogramming, and drug resistance in cancer.
Further investigations on the underling mechanisms and
targeted inhibitors of METTL3 are of great significance
for deeper understanding of the relationship between
m°A modification and human cancer.
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