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From their initial discovery (1-3), and to the present (4-6), viruses have been known
as agents that cause disease. The site of injury depends upon the effect ofviral genes
or their expressed products on the cells or tissues infected, or upon the action of
the immune response(s) that viruses induced (reviewed in references 7 and 8).
Theimmunologic system can be profoundly disordered through direct viral effects .

Although such activity was observed clinically, over 150 yr ago (9), it fell to von Pir-
quet (10), later, to formally define direct interference by virus with the host's im-
mune response. In that instance, measles virus infection caused a loss of the delayed
hypersensitivity response to tuberculin antigen. This finding, along with the clinical
observation that disorders like nephrosic nephrosis were relieved during acute mea-
sles virus infection (11, 12), led some to use this virus in the treatment of nephrosis
(13) before the development ofcorticosteroids. These observations, the profound effect
viruses have on cellular function coupled with their selective tropism, for particular
cell types, led us to hypothesize that viruses, or probably their selected sequences
or gene products, could be applied in therapeutic modalities and, hence, play a
beneficial role in the treatment of human, domestic animal, and agricultural dis-
eases (14, 15). Following this tack, we undertook experiments using a lymphotropic
virus known to be relatively noncytolytic but to induce selective immunosuppres-
sion (reviewed in references 16-18) for treating autoimmune type 1 diabetes in nonobese
insulin-dependent diabetes (NOD)' mice (14) . Such mice spontaneously develop
insulin-dependent diabetes mellitus (IDDM), frequently beginning by 6 mo of age
with an incidence approaching 90% or better by the 9th to 12th month (14, 19-21) .
The diabetes has an autoimmune pathogenesis and is characterized by lymphocytic
infiltration into the islet of Langerhans and fl cell destruction (21-24). The end re-
sult is hypoinsulinemia, hyperglycemia, ketoacidosis, and death.
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The agent chosen, lymphocytic choriomeningitis virus (LCMV), is a biosegmented
RNAvirus that is noncytolytic for the majority of cells it infects (16) . Its inoculation
into mice and rats leads to infection of lymphocytes primarily of the Th phenotype
(25-27). Earlier, we showed that LCMV could prevent the occurrence of IDDM
in NOD mice (14) . In this paper, we analyze and extend this observation by demon-
strating that : (a) the viral effect is on lymphocytes and not bone marrow cells; (b)
the lymphocyte subset from NOD mice that is involved bears the Th-1 .2 + CD4+
CD8° 1 phenotype; and (c) several otherCD4+-dependent immune responses are not
abrogated by LCMV infection, thus indicating that the effect on IDDM is selective
and not generalized immunosuppression. In the accompanying paper, the compo-
nent of the viral genome responsible for blocking IDDM is determined by use of
genetic reassortants .

Materials and Methods
Mice.

	

The NOD colony was established from breeder mice by brother-sister matings .
Such breeders were obtained from K . Lafferty, University ofColorado Medical School, Denver,
CO. The incidence of IDDM (defined as blood glucose of 300 mg/dl or over) was >90% in
9-mo-old mice with a mean accumulated blood glucose ± SEM of 463 t 38 mg/dl .

Virus .

	

The Armstrong strain of LCMV, clone 53b (ARM 53b), was used throughout
these experiments . The origin, handling, and plaquing ofthis virus have been reported (17,
26) . To establish persistent infection, newborn NOD mice <18 h of age were inoculated in-
tracerebrally with 103 plaque-forming units (PFU) of ARM53b .

Biochemical andMolecularAnalyses.

	

Blood sugars were determined in blood serum orplasma
using the glucose oxidase method, and pancreatic insulin was measured by RIA with rat in-
sulin as a standard and A-14'25Mabeled bovine insulin as a tracer (14, 15) . Insulin was ex-
tracted from the pancreas in acid ethanol, as described (28) .

Forin situ hybridization studies, lymphocytes from peripheral blood or spleens were purified
by Ficoll-Hypaque gradient centrifugation, as described (26) . Briefly, 10-15 ml of a 1 :3 dilu-
tion of heparinized blood in PBS or a 10 8 single cell suspension from a spleen was placed
in PBS, pH 7.2, and layered onto an equal volume of a mixture consisting of 12 parts of 14%
(wt/vol) Ficoll (Pharmacia Fine Chemicals, Piscataway, NJ) and five parts of 32 .8% (wt/vol)
Hypaque (Winthrop Laboratories, New York, NY). The preparations were centrifuged at
600 g for 20 min at room temperature . Cells at the interface of the Ficoll-Hypaque and plasma
were removed and washed in RPMI 1640 containing 10% heat-inactivated FCS. Residual
contaminating erythrocytes were lysed with 0.83% ammonium chloride. The cells were washed
again in MEM, and the number of viable lymphocytes per milliliter was determined with
trypan blue .

Purified subsets oflymphocytes were obtained by using specific mAb, FITC fluorochrome
dye, and FAGS (26) . Briefly, 106 lymphocytes were incubated in 100 ul supernatant (neat)
from cells making mAb or 100 pl monoclonal ascites (1 :50 dilution) . mAbs used were 30.H12
antiTh-1 .2 supernatant, 53-6.72 anti-CD8' supernatant, and GK 1.5 anti-CD4 ascites . Lym-
phocytes were incubated on ice for 25 min, washed twice with RPMI 1640, and stained with
affinity-purified F(aV)2 fragment of mouse anti-rat IgG (H + L) FITC (5 p,g/10 6 lympho-
cytes) . After two washings with RPMI and one with PBS, lymphocytes were concentrated
to N4-6 x 10 6/ml PBS and sorted on the FAGS. After establishing an initial cellular profile,
the gate (window) was set to yield 99% or greater specific lymphocyte subset enrichment,
and cells were resorted .

For in situ hybridization, lymphocytes obtained from Ficoll-Hypaque gradient centrifuga-
tion, or subsets obtained by FRCS were concentrated to 10 7 cell/ml, and 5 ill were placed
on each poly-t,-lysine-coated glass slide. After air drying, the material was fixed in freshly
made 2% paraformaldehyde-lysine-periodate, washed, treated with 0.2 M HCI, 1% Triton
X-100, and 0 .2 % glycine in PBS, then dehydrated through graded ethanol washes. A hybrid-
ization mix containing the "S-LCMV riboprobe with formamide, dextran sulfate, sonicated
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salmon sperm DNA, heparin dithiothretitol, Denhardt's solution, and appropriate salts was
added as described (26, 29) . After incubation, the slides were washed in SSC of various con-
centrations, dehydrated through graded ethanol washes, dipped in emulsion, placed in a dar-
kened slide box, and left for a 3-d reaction at 4°C . Control consisted ofhybridization of unin-
fected cell (negative control) and of LCMVinfected cells (positive control) . These samples
of uninfected and infected cells were placed on the same slide as the experimental sample
and run through the procedure described above . In addition, an indifferent probe (3sS probe
for CMV [29]) was reacted against materials harvested from LCMVinfected or LCMV-
uninfected mice to ensure probe specificity.
The preparation and characterization of complementary DNA clones to both the large

and small genomic RNA segments have been described (30, 31) . Clones selected from the
5' open reading frame (ORF) and the 3' ORF of the small (S) RNA detect LCMV glycopro-
tein (GP) and nucleoprotein (NP), respectively (32) . Clones from the Tend of the large RNA
define the viral polymerase (large protein) (33) . These clones have been labeled with 35S by
nick translation and used as hybridization probes. Briefly, LCMV cDNA inserts were ex-
cised from plasmid vectors and purified by gel electrophoresis before labeling. The average
fragment length of the denatured probes was 200-400 bases, and the specific activity of 31S-

labeled DNA probe was 1-5 x 10 8 cpm/pg DNA.
Cell Transfers.

	

The procedure followed was modified from that reported by Wicker et al .
(22) . Briefly, donors of splenic lymphocytes or bone marrow cells were LCMVinfected or
-uninfected 7-9-mo-old female NOD mice. Recipients were 8-9-wk-old NOD female mice .
Deletion ofCD4, CD8, or Th-1.2 lymphocytes from the splenic population was achieved using
mAbs and a complement source, as detailed elsewhere (25, 26) . Each recipient received 5 x
10 7 splenic lymphocytes and 2 x 107 bone marrow cells (obtained from femurs) . Before adop-
tive cell transfer, recipients received 850 rad from a 60Co source . After transfer, mice were
observed three times a week for weight loss, polydypsia, and polyuria, and were killed 30-40
d later.

Measurement of Immune Repertoire for Selected Th-dependent Antigens .

	

Age- and sex-matched
6-wk-old untreated or LCMV persistently infected NOD mice were given either BSA, key-
hole limpet hemocyanin (KLH), human IgG (HuIg), or SRBC . Individual groups of 10 mice
given each antigen were bled 7 and 28 d after the first inoculation . 7 d later, they received
a second inoculation of antigen. Blood was collected 7 d later, and sera were obtained and
frozen at -20°C until assayed . Antibody determinations were done on serial dilution ofsera
using an ELISA (34) . Using high titered antibodies against BSA, KLH, and HuIg (35), we
determined the optimal dilution of antigen required to coat plates at 0.5-1 pg/ml .
BSA was introduced into mice subcutaneously. Two injections of 200 NAg ofBSA were given

4 wk apart . KLH was administered in a similar manner. HuIg, Cohn fraction II, was added
to a DEAE cellulose column equilibrated at 0.0175 M, pH 8.0, with potassium phosphate
buffer. The eluent at a concentration of 10 mg/ml was immunochemically pure, and mice
were injected subcutaneously with 0.2 ml of IFA containing 0.2 mg of HuIg on day 0 and
28 d later. NOD mice were immunized with two intraperitoneal inoculations of 5 x 10 6
SRBC in a volume of 0.5 ml of 0.01 M sodium phosphate, 0.15 M NaCl, pH 7.2, each given
28 d apart . Preliminary studies indicate that, of several doses utilized, this one led to an ap-
propriate response in uninfected animals . Mice were bled 7 d after the primary and 7 d after
the secondary inoculation . Hemagglutinins were titered on individual samples as described (35) .

Histology.

	

Tissues were fixed in formalin and stained with hemotoxylin and eosin. Sec-
tions of pancreas were made 1/3, 1/2, and 2/3 into the tissue to obtain a sampling of the islets
of Langerhans . In most instances, their histopathologic pattern was determined by counting
at least 15 islets per pancreas .

Results
Persistent LCMV Infection of NOD Mice Aborts their IDDM.

	

After inoculation with
LCMV at birth, NOD mice became persistently infected . All mice carried the virus ;
i .e ., 12 infected NOD mice randomly selected at 6 wk and 6 mo of age and tested



2080

	

VIRUSES AS THERAPEUTIC AGENTS

by plaque assay, contained a range of infectious virus from 104 to 6 x 105 , with a
mean t 1 SD of 1 .8 x 105 PFU/ml of sera . As shown in Fig. 1, such LCMV per-
sistently infected NOD mice maintained normal blood glucose and pancreatic in-
sulin titers over the next 11 mo. In contrast, and as expected, uninfected NOD litter
mates progressively developed IDDM (Fig . 1) . Hence, by 6 mo of age, 60% of such
mice had blood sugar levels >300 mg/dl, and by 9 mo and thereafter, >95% had
IDDM. While LCMVinfected NOD mice maintained normal levels of insulin in
their pancreases, as determined by RIA (Fig . 1) and immunofluorescent staining
of islets with antibody to insulin (data not shown), levels of pancreatic insulin in
untreated NOD mice fell dramatically by 6 mo of age and thereafter. Their low pan-
creatic insulin levels inversely paralleled rising quantities of glucose in their blood.
The untreated, IDDM-afflicted NOD mice showed evidence oflymphocytic infiltra-

tion in the islets of Langerhans (Fig . 2 1) (19-21), whereas their LCMVinfected
counterparts had little or no lymphocytic infiltration . Sectioning of islets at different
locations throughout the pancreas showed that >75 To ofislets from LCMVinfected
9-12-mo-old NOD mice were free from autoimmune destruction .
LCMV Infection of CD4+ Splenic Lymphocytes Is Associated with Inhibition of IDDM.

Since IDDM can be adoptively transferred (22), peripheral blood or splenic lym-
phocytes obtained from 7-mo or older NOD mice were transferred along with bone
marrow cells into irradiated 8-9-wk-old NOD mice . As a result, the recipients de-
veloped IDDM within 4 wk (Table I) . However, similar transfers of lymphocytes
and bone marrow cells from the similarly aged LCMVinfected NOD donors into
matched, young recipients did not cause IDDM (Table I) . Further, the data in Table
I and Fig. 2 indicate that LCMV infection of lymphocytes, not bone marrow cells,
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FIGURE 1 .

	

Occurrence of IDDM in uninfected (") and LCMVinfected (O)NOD female mice .
Over 20 mice per group were studied for blood glucose at each time point . Four to five mice
were studied for levels ofpancreatic insulin at 6 wk 3-9 mo, and 10 mice per group at 11-12 mo.

Age
Blood Glucose

niglill)
Pancreatic Insulin

INglg)

11 ma UNINF0 480 t 28 1312
LCMV

0
158±12 77 t8

9 mo 454±37 <5IUNINF
LCMV 155±11 62117

6 mo UNINF 334±55 16±8
LCMV 138 .12 70±16

3mo UNINF 164±3 61±23
LCMV 154 " 4 92±21

6 wk UNINF 171 ± 5 47 ± 7
LCMV 156±5 74±16
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TABLE I
CD4' Lymphocytes Are Responsiblefor Transfer/Suppression

of IDDM to Young NOD Femak Recipients

5 x 107 splenic lymphocytes and 2 x 107 bone marrow cells from femurs were transferred intravenously
into 8-wk-old NOD mice. Before transfer, the recipients received 850 rad from a r'OCo source . Repeated
experiments gave similar results .
Four to five mice were in each group, The mean blood glucose t 1 SE of recipients before adoptive trans-
fer was 145 (range, 130-168) t 8 . GTT; glucose tolerance test . Mice were given 2 mg of glucose in-
traperitoneally per kg ofbody weight and bled 1 h later . Abnormal GTT consisted ofa 2 .5-fold or greater
enhancement in elevation of glucose (see reference 47) . The number represents mean glucose t 1 SE,
five mice per group . In parentheses are the number of mice with an abnormal GTT over the total mice
per group .
Micrograms of insulin per gram of pancreas, as determined by RIA (see Methods and Materials) .
Percent of islets of Langerhans showing normal histology . A minimum of 15 islets studied per mouse.

prevented the IDDM. Thus, recipients receiving lymphocytes from LCMVinfected
donors, but bone marrow cells from uninfected NODS, had normal blood glucose
and pancreatic insulin levels andno mononuclear infiltration into the islets ofLanger-
hans (Fig . 2 3) . In contrast, recipients obtaining lymphocytes from uninfected NOD
donors along with bone marrow cells from LCMVinfected NODdonors developed
IDDM (Fig . 2 2; Table I) .

Having identified splenic lymphocytes as the primary source for transfer/suppres-
sion of IDDM, we next sought the phenotype of the effector lymphocyte subset .
Preliminary studies indicated that the cell was Th-1.2 + when transfer of such cells
from LCMVinfected mice into uninfected NOD recipients aborted the expected
occurrence of IDDM. To further type the lymphocyte subset involved, either CD4+
or CD8+ cells were deleted from the LCMV splenic lymphocyte population used
for adoptive transfer. According to concurrent FAGS analysis of these populations,
the deletion procedure always yielded at least 97% purity andwas usually 99% efficient .
As demonstrated in Table I and Fig. 2, 4 and 5, when CD4+ cells were deleted,
IDDM occurred ; in contrast, when CD4+ cells from LCMVinfected NOD mice
were transferred, the IDDM was suppressed . Further, when CD4' cells were deleted
from the LCMV spleen population, the remaining CD8' cells in combination with
bone marrow cells from uninfected mice were able to induce IDDM in youngNOD
recipients (Table I) .
None of the recipient mice receiving LCMVinfected cells showed evidence of

7-9-mo-old NOD female donors provide :
12-wk-old NOD female

4 wk after adoptive
(uninfected) recipients

transfer

Exp .
Splenic

lymphocytes
Bone

marrow cells
Glucose
value GTT

mg/dl'

Pancreatic
insulin
lt8/%

Normal
islets

1 Uninfected Uninfected 358 t 30 ND 0.81 <5S
LCMV infected LCMV infected 155 t 9 ND 54.0 >75
LCMV infected Uninfected 167 t 10 ND 42.0 >75
Uninfected LCMV infected 347 t 63 ND 0.6 < 5

2 LCMV CD4' CD8' Uninfected 165 t 10 230 t 30 (1/5) 58 >75
LCMV CD4"il CD8' Uninfected 292 t 83 460 t 14 (5/5) 18 <10
LCMV CD4' CD8"'l Uninfected 120 t 7 181 t 14 (0/5) 46 >75
Uninfected Uninfected 327 t 42 ND <1 <5



2082

	

VIRUSES AS THERAPEUTIC AGENTS

FIGURE 2.

	

Results of adoptive transfer experiments using splenic lymphocytes from untreated
and LCMVinfected 7-9-mo-old NODfemale donors into 8-wk-old NODfemale recipients. Pho-
tomicrographs show islets of Langerhans from (1) untreated 9-mo-old donor; (2) recipient of
CD4' and CD8' lymphocytes from an uninfected mouse and bone marrow cells from an LCMV
infected mouse; (3) recipient of CD4' and CD8' lymphocytes from an LCMVinfected mouse
and bone marrow cells from an uninfected mouse; (4) recipient of CD4' CD8nu lymphocytes
and bone marrow cells from an LCMVinfected mouse; (5) recipient of CD4' CD8°'l lympho-
cytes from an uninfected mouse and bone marrow cells from an LCMVinfected mouse; (6) re-
cipient of lymphocytes and bone marrow cells from an uninfected mouse. (x425) .



infectious LCMV in their blood at the time of death, indicating that replicating
virus (sensitivity of assay, <50 PFU) was not released from transferred cells .
CD4+ Lymphocytes Preferentially ExpressLCMV Nucleic Acid Sequences.

	

Next, we de-
termined the phenotype oflymphocytes in peripheral blood and spleens of infected
NOD mice that expressed LCMV nucleic acid sequences. Using in situ hybridiza-
tion with 35S LCMV cDNA probes, we found both LCMV GP and NP nucleic acid
sequences present in lymphocytes from LCMVinfected mice of all ages . We then
determined the lymphocyte subset(s) carrying viral sequences . The use of mAbs,
double cell sorting, andFRCS yielded population oflymphocytes with purity >99%
(Fig. 3) . When such purified populations were analyzed by in situ hybridization
with a cDNA probe from the 5' end of the small RNA, which encompassed most
of the LCMV GP, LCMV nucleic acid sequences were found to be primarily se-
questered in the Th-1 .2 + CD4+ CD8nil population (Fig. 3) . Results were similar in
splenic lymphocytes and their subsets, and with using cDNA probe to the virus NP
or L regions.
LCMV Infection of a Subset of CD4+ Lymphocytes Does not Interfere with Generation of

Immune Responses to Several Tdependent Antigens. The last series ofexperiments evalu-
ated the ability of NOD mice, persistently infected with LCMV, to generate pri-
mary and secondary immune responses to SRBC (Fig . 4), BSA (Fig . 5), KLH (Fig .
6), and HuIg (Fig. 7) . As seen in Figs . 4-7, except for their failure to generate a
good secondary immune response to HuIg, 3-mo-old female NOD mice persistently
infected with LCMV made efficient primary and secondary immune responses to
all the antigens administered . Primary responses to HuIg (Fig . 7), and primary and
secondary immune responses to BSA (Fig. 5), were equivalent in untreated and
LCMVinfected NOD mice. Although LCMVinfected NOD mice generated good

FIGURE 3 . Profile of Th-1 .2"', Th-1 .2+,
LCMV NUCLEIC ACID SEQUENCES
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LCMVinfected 3-mo-old NOD
mice (") make primary and secondary im-
mune responses to SRBC . Bar represents 1
SD above or below the meanvalue for 10 mice
per group. (O) Age- and sex-matched unin-
fected mice.

primary andsecondary immune responses to SRBC (Fig . 4), andsecondary response
to KLH (Fig . 5), these responses were, in general, less than those observed in unin-
fected NOD mice .

Discussion
Ourstudies clearly indicate that LCMV prevents the IDDM ofNOD mice . These

adult mice infected with LCMV in infancy maintain normal blood glucose levels
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FIGURE 5. LCMVinfected 3-mo-old NOD
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responses to BSA that are equivalent to responses
made in age- and sex-matched untreated mice
(O). Bar represents 1 SD above and below the
mean value for 10 mice per group.
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and biochemical integrity of their islets of Langerhans . Thus, the autoimmune de-
struction of islets typical for this strain is retarded or aborted, and their pancreatic
insulin levels remain normal through 1 yr of age. In contrast, NOD mice not in-
fected with LCMV, upon reaching their ninth month, uniformly have severe IDDM
with hyperglycemia, lymphocytic infiltration into the islets that destroys them, and
low pancreatic insulin levels .
The virus may abrogate IDDM through its action on a subset Th-1.2 + CD4+ lym-

phocytes . Lymphocytes from LCMVinfected NOD mice that bear the Th-1.2+
CD4+ CD8ni1 phenotype fail to transfer IDDM, whereas similar cells from NOD
mice not infected with LCMV do so . Bone marrow cells from uninfected NOD mice,
when adoptively transferred with lymphocytes from LCMVinfected mice, do not
transfer the disease, andbone marrow cells from the infected mice do not suppress
IDDM when transferred with lymphocytes from the uninfected mice. These results

Primary Immune Response to Hulg in NOD Mice

Secondary Immune Response to Hulg in NOD Mice
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FIGURE 6. LCMVinfected3-mo-old
NODmice (") madeprimary and sec-
ondary responses to KLH that were
lower but not significantly different
from those made by age- and sex-
matched untreated mice (O). Bar
represents 1 SD above and below the
mean value for 10 mice per group.

FIGURE 7.

	

LCMVinfected 3-mo-old
NOD mice (") make primary im-
mune responses to Hulg that is equiva-
lent to the response made by age- and
sex-matched untreated mice (O). How-
ever, those LCMVinfected mice fail to
generate a good secondary response to
Hulg (p >0 .001) when compared with
uninfected mice . Bar represents 1 SD
above and below the mean value for 10
mice per group.
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are consistent with the report of Shizuru et al . (36), whose use of mAbs against the
CD4determinant prevented lymphocytic infiltration, eliminated destruction ofinsulin-
producing a cells, and blocked IDDM in NOD mice (36) . Similarly, several investi-
gators have shown a selective role for CD4+ lymphocytes in the ability to transfer
IDDM in NOD mice (37-39), while others noted a combined or accelerated role
with CD4+ and CD8+ lymphocytes (22, 40, 41) . Recently, Reich et al. (42) suggested
that CD4+ lymphocytes bearing V/35 TCR were implicated in causing IDDM. Our
preliminary experiments (A . Tishon and M. B. A. Oldstone, unpublished results),
comparing numbers of V05 bearing CD4+ and CD8+ lymphocytes in spleens and
peripheral blood from four unmanipulated NODS with four LCMV persistently
infected NODs, have yet to demonstrate differences between both groups .
The involvement of CD4+ cells in offsetting this genetic susceptibility to disease

of LCMVinfected NOD mice is not associated with generalized immunosuppres-
sion . Despite carrying LCMV and escaping from IDDM, these mice are neverthe-
less able to make immune responses to a wide variety of antigens all dependent on
CD4 function . Thus, the virus is causing, in some yet to be explained manner, a
selective and lasting immunosuppression against autoimmune diabetes without total
suppression of immune responsiveness. The selective suppression of CD4+ cells ob-
served during virus infection is consistent with data showing that the cellular tro-
pism of virus is restricted primarily to a small subset of CD4+ lymphocytes. Thus,
LCMV resides in Th-1 .2 + CD4+ CD8nil peripheral blood and splenic lymphocytes
during the span of the animals' lives, but in only N1-2% of such CD4+ cells. While
the sensitivity ofthe in situ hybridization assay with LCMV like studies with other
viruses, detects -50 LCMV gene copies per cell (26), the lack of a global suppres-
sion in Th-dependent immune responses argues against an overwhelming number
of CD4+ cells being involved . Thus, it is of interest to explore the similarities and
differences between LCMV and HIV, as regards infection of a subset of CD4+ lym-
phocytes and the associated selective (LCMV) or generalized (HIV) resultant im-
munosuppression. The fact that infectious LCMV is not recovered from the blood
of recipient mice receiving CD4+ LCMVinfected cells during adoptive transfer in-
dicates that virus is likely not being released and transferred to uninfected lympho-
cytes in vivo. A similar conclusion was noted earlier (43) upon transfer of LCMV
infected lymphocytes from a parental donor into its uninfected F1 offspring . Over
a 3-mo study, only lymphocytes (donor phenotype), never blood, nor recipient's lym-
phocytes, contained LCMV materials (43) .
LCMV is selective in aborting the autoimmune disease IDDM and does not sup-

press autoimmune diseases in general. For example, persistent LCMV infection of
NewZealand mice enhances autoimmune responses and resultant disease in (NZB x
NZW)Fj and in NZB mice, as well as initiating disease in NZWs (44, 45). There-
fore, study of LCMV infection offers two interesting areas for future exploration .
First, it serves as a probe to assess and dissect regulation of the autoimmune re-
sponse and the autoimmune basis for a number of autoimmune diseases . Second,
because of selective immunosuppression, the virus, or better, one ofits genes or prod-
ucts, can be useful as a therapeutic product. Hence, LCMV in the NOD mouse
provides amodel for experimental manipulation of a virus as a potential therapeutic
agent in the treatment ofdisease . This latter issue is further addressed in the accom-
panying paper (46). There, we show that the whole viral genome is not needed to



abort IDDM of NOD mice . Rather, the suppressive effect of the virus resides in
genes encoded on the smaller of the two LCMV RNA segments .

Summary
A situation in which virus can be used as a therapeutic agent to prevent a lethal

autoimmune disease is explored . Nonobese insulin-dependent diabetes (NOD) mice
spontaneously develop insulin-dependent diabetes mellitus (IDDM), characterized
by lymphocytic infiltration into the islets ofLangerhans and 0 cell destruction, resulting
in hypoinsulinemia, hyperglycemia, ketoacidosis, and death . Infection of NOD mice
with lymphocytic choriomeningitis virus (LCMV) aborts the autoimmune manifesta-
tions and resultant IDDM. The viruses' effect is on a subset of CD4+ lymphocytes .
Ablating this autoimmune diabetes does not significantly alter immune responses
to a variety of non-LCMV antigens that require CD4+ lymphocyte participation .
The prevention of IDDM associated with viral therapy is maintained throughout
the life spans of NOD mice .
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