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Abstract: As food and beverages require more and more green and safe packaging products,
the emergence of polymer coated steel (PCS) has been promoted. PCS is a layered composite strip
made of metal and polymer. To probe the bonding mechanism of PCS micro-interface, the substrate
tin-free steel (TFS) was physically characterized by SEM and XPS, and cladding polyethylene
terephthalate (PET) was simulated by first-principles methods of quantum mechanics (QM). We used
COMPASS force field for molecular dynamics (MD) simulation. XPS pointed out that the element
composition of TFS surface coating is Cr(OH)3, Cr2O3 and CrO3. The calculation results of MD
and QM indicate that the chromium oxide and PET molecules compound in the form of acid-base
interaction. The binding energies of Cr2O3 (110), (200), and (211) with PET molecules are −13.07 eV,
−2.74 eV, and −2.37 eV, respectively. We established a Cr2O3 (200) model with different hydroxyl
concentrations. It is proposed that the oxygen atom in C=O in the PET molecule combines with –OH
on the surface of TFS to form a hydrogen bond. The binding energy of the PCS interface increases
with the increase of the surface hydroxyl concentration of the TFS. It provides theoretical guidance
and reference significance for the research on the bonding mechanism of PCS.

Keywords: polymer coated steel; micro-interface; bonding mechanism; molecular dynamics (MD);
quantum mechanics (QM)

1. Introduction

Polymer coated steel (PCS) a layered metal polymer composite strip mainly used in the food
packaging industry [1]. It has good mechanical properties, corrosion resistance, and longer preservation
of food taste, and is widely used in high-grade beverage and food packaging. For food-grade packaging
material, the technical requirements are increasing [2,3]. At present, Europe, the United States, Japan,
South Korea, and other countries have carried out much research on PCS materials, including the PCS
coating process [4,5], coating quality characterization [6,7], heat transfer during the coating process [8],
PCS heat treatment [9], PCS application [10], film surface modification [11] and so on. In this paper,
the micro-interface bonding mechanism of PCS is studied by the method of coating experiment
combined with simulation. An effective method to improve the quality of the film is proposed.

PCS materials were first developed and applied by Japan in the 1980s. Later, European countries
and the United States also carried out related research. PCS is a metal-polymer composite material
prepared by using chrome-plated steel strip as the base material and polymer film as the covering
material through a roll-pressing hot-melt film process. Commonly used polymer films are polyethylene
terephthalate (PET), polyethylene (PE), polypropylene (PP), etc., among which food-grade PET is the
most common material [12,13].

The adhesion and mutual bonding of polymer materials on metal surfaces is an important research
direction in the field of surface science [14–16].At present, there are four main types of metal and
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non-metal adhesion mechanisms generally recognized in the world: mechanical interlocking theory,
electronic theory, diffusion theory, and adsorption theory [17].

Regarding the micro-combination mechanism of the PCS interface, most scholars in the world
agree with the hydrogen bond combination theory proposed by Tanaka in 1987, which belongs to one
of the above adsorption theories [18]. During the lamination process, the O in the carbonyl group
in the polymer film combines with the H in the –OH on the TFS surface to form a hydrogen bond,
but the theoretical and experimental basis for the formation of hydrogen bonds is not mentioned.
Komai [19] pointed out that the hydrated chromium oxide on the surface of the TFS and the polymer
film in the micro-interface of the PCS are connected in the form of hydrogen bonds. The hydrated
chromium oxide acts as a proton acceptor to provide the –OH required to form hydrogen bonds.
The proton donor provides –O. Zumelzu [20] proposed that the metal/polymer interface recombination
mechanism can also be explained by another model, that is, the acid-base interaction mechanism,
in which the oxygen atoms in the hydroxyl or benzene ring in PET share their electrons with chromium.
In summary, there are two recombination mechanisms at the microscopic interface of PCS: hydrogen
bond recombination and acid-base interaction mechanism. Previous studies have made important
contributions to the study of the interface bonding mechanism of PCS. However, with the development
of science and technology, the use of advanced experimental equipment and calculation methods to
quantitatively describe the bonding process of the PCS micro-interface is a direction that still needs to
be studied in the PCS field.

With the substantial improvement of computer performance, computer simulation technology
has become a powerful tool for us to study the micro-scale of materials. According to previous
research, the first principles of quantum mechanics (QM) and molecular dynamics (MD) have become
advantageous tools for studying the interaction mechanism between metals and non-metals [21–24].
MD can simulate the interaction law between atoms in a defined complex system on the atomic
scale [25–28]. QM can study the motion law of microscopic particles in the material world. Using first
principles to study the principle of interaction between atomic nuclei and electronic components
is an effective method. Seunghwa [29] used molecular dynamics (MD) simulation combined with
finite element analysis (FEA) to study the mechanical behavior of oxygen-functionalized single-layer
graphene/polyethylene (PE) nanocomposites. Ghasem Bahlakeh [30] used MD and QM methods
to calculate the interfacial interaction mechanism between FeO, Fe3O4, and Fe2O3 and epoxy resin.
By establishing and simulating the interaction law between the hydroxylated Fe3O4 surface and epoxy
resin, it is proposed that increasing the concentration of hydroxyl on the surface of iron oxide can
improve the interface bonding strength.

In this paper, from the experimental point of view, the chemical composition of the TFS surface
coating on the coated iron substrate was measured by XPS, and then the modeling and simulation were
carried out. The bonding process of PET and chromium oxide on the micro interface of PCS was studied
by using the first principles method of molecular dynamics and quantum mechanics. In order to
comprehensively evaluate the composite mechanism between chromium oxide and PET, three surface
models of chromium oxide with different crystal face indexes were established, the binding energy
between them and PET was calculated, and the binding modes of the three surfaces with PET were
analyzed [31]. At the same time, the surface model of chromium oxide with different hydroxyl
concentration was established to analyze the combination mode of hydroxyl and PET and the change
rule of binding energy with the increase of hydroxyl concentration. The simulation results in this
paper provide theoretical guidance for the study of the interface recombination mechanism of PCS.
From the perspective of molecular dynamics and quantum mechanics, the hydrogen bonding and
acid-base interaction between PET and TFS are described, which confirms and explains the hydrogen
bond recombination theory and acid-base interaction theory proposed by predecessors. It provides a
reference for the future research of PCS.
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2. Experiment and Methods

2.1. Sample Preparation

The PET film used in the preparation of PCS comes from the China Baowu Steel Group. The TFS
comes from Shanghai Yigang Cangchu Co., Ltd. Laminating equipment (Laminator equipment,
Shanghai Lianjing Co., Ltd., Shanghai, China) is used for the coating test of TFS and PET. The roll
pressing and hot fusion coating process of PCS is shown in Figure 1. The PET film and TFS are coated
under the double pressure of the heating roller and the silicone roller. During the laminating process,
the heating roller acts as a heat source to continuously provide heat to the TFS. The TFS transfers the
heat to the PET film and then to the silicone roller. The silicone roller maintains a constant temperature
under the action of the cooling roller. Therefore, under the dual effects of the heating of the TFS and
the cooling of the silicone roller, a temperature gradient occurs inside the PET along the thickness
direction, forming a partial melting [32]. The PET film was completely melted on the side near the TFS,
but not on the side near the silicone roller. After the PET film and TFS leave the heating roller and the
silicone roller, the PET film is quickly cooled with a cooling liquid to quickly solidify the melted part of
the PET to avoid recrystallization of the PET. The final preparation is the PCS material, as shown in
Figure 2 [33]. Experimental conditions used for the film coating were a heating roller temperature of
500 K, plus coating speed of 15 m/min; the pressure roller is coated 1000 N.
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2.2. XPS and SEM

The chemical elements and composition of the chromium plating layer on the surface of TFS
was carried out using X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB
250Xi, Waltham, MA, USA). The thickness of TFS is 0.18 mm, as shown in Figure 3. The test area of the
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sample is 10 mm × 10 mm. Firstly, the type and concentration of elements on the surface of the TFS are
measured, and then the spectrum is fitted with XPSPEAK software to infer the main components of
the coating on the surface of the TFS.Polymers 2020, 11, x FOR PEER REVIEW 4 of 19 
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Figure 3. Schematic diagram of the tin free steel (TFS) surface coating structure.

The morphology and microstructure of the TFS surface and blank steel was investigated by a
scanning electron microscope (SEM-EDS, ZEISS Gemini 500, Carl Zeiss, Germany). The uniformity of
the TFS surface coating was determined by comparing the SEM scan images of the TFS and blank steel.
Line scan analysis of the two samples was performed using an EDS analyzer attached to the SEM.
The thickness of the TFS and blank steel is approximately 0.18 mm and the size of the two samples is
10 mm × 10 mm.

2.3. MD and QM Simulation

2.3.1. PET and the TFS Model

The polymer films commonly used in PCS materials mainly include polyethylene terephthalate
(PET), polyethylene (PE), polypropylene (PP), etc., of which PET is the most common. In this paper,
PET was selected as the coated film for research [34]. According to the principle of PCS coating,
the PET film undergoes a transition from a highly elastic state to a viscous fluid state to a molten
state under the action of heating on the surface of the substrate. Among them, the activity of the PET
molecular segments within the material gradually increases with the increase in temperature, and the
PET molecules in the molten state are combined with the surface of the substrate through hydrogen
bonds [35]. According to the PET molecular formula, a PET molecular model was established using
material studio software, as shown in Figure 4.

The substrate TFS used for PCS is prepared by simultaneously electroplating metallic chromium
and chromium hydrated oxide on the surface of ordinary strip steel using the one-liquid method or
two-liquid method [36,37]. Figure 3 shows the coating structure of the TFS surface. The surface of
blank steel has a metal chromium layer with a thickness of less than 0.01um, and then there is a layer
of hydrate chromium oxide layers with a thickness of less than 0.01um on the metal chromium layer.
Therefore, the interface bonding mechanism of PCS is the combination of hydrogen chromium oxide
layers and PET [1,20].
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XPS results show that the main components of hydrogen chromium oxide layers are Cr2O3 and
a large number of bound water molecules. Therefore, a Cr2O3 surface model with a (110), (200),
and (211) crystal face index and Cr2O3 surface with different hydroxyl concentration were established,
respectively. The Cr2O3 model is taken from the database in Materials Studio 8.0. The lattice
constants [38,39] are a = b = 4.9589 Å, c = 13.59308 Å, α = β = 90◦, γ = 120◦, and the cleave surface
tool is used to cut out Cr2O3 (110); the three structural models of Cr2O3 (200) and Cr2O3 (211) are
respectively set at 13.156 Å, 21.355 Å, and 13.79 Å in thickness.

In order to more accurately simulate the interaction between the chromium oxide and PET
molecular chains, the three models generated were enlarged in parallel to the x and y directions, and the
three models used periodic boundaries in the three coordinate axis directions. In order to ensure that
the PET molecules only interact with the upper surface of chromium oxide, a 50 Å vacuum layer is
placed vertically above the three upper surfaces [40]. As shown in Figure 5, the final dimensions of
the Cr2O3 (110), Cr2O3 (200), and Cr2O3 (211) models are 58.42 × 53.60 × 63.36, 59.51 × 54.37 × 60.17,
and 56.37 × 53.60 × 62.82.
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2.3.2. MD and QM Simulation

Before calculating the model, it is necessary to optimize the structure of the PET molecular model
to obtain the equilibrium structure of the PET molecular model, and use the first-principle electronic
structure calculation of quantum mechanics to geometrically optimize the PET molecular structure.
The simulation calculation is performed using the DMOL3 module in the Materials Studio 8.0 software,
and the Perdew−Burke−Ernzerhof (PBE) functional in the generalized gradient approximation (GGA)
proposed by Perdew is used to describe the exchange-correlation interaction between electrons [41].
The convergence accuracy is 1.0 × 10−5 eV/atom, the maximum force convergence accuracy acting on a
single atom is 0.002 eV/ Å, the maximum pressure convergence accuracy is 0.1 GPa, and the maximum
displacement convergence accuracy is 0.005 Å. The self-consistent accuracy of self-consistent filed
(SCF) is set as the single atom energy converges to 1.0 × 10−6 eV, and the grid size of the k-point in the
Brillouin zone is 1 × 1× 1.

We optimized the structure of the model system containing PET molecules and oxide surfaces,
and obtain a balanced structure model with minimized energy. The model was subjected to 200ps MD
simulation, and the simulation was performed under the condition of 500K temperature of the NVT
system to obtain a balanced structure. Using the COMPASS force field in atomic simulation to simulate
the interaction between PET molecules and chromium oxide molecules [42,43], Ghasem Bahlakeh [44]
used the same method to study the interaction between epoxy resin and iron oxide molecular systems.
Ewald- and atom-based methods were used to calculate the electrostatic interaction force and van der
Waals force. The MD simulation used the Anderson monitor to monitor the temperature, and used the
velocity calculus method to solve the Newtonian equation of motion, with an integration step of 1 ps.
In the simulation process, all atoms in the oxide system are constrained, and the PET molecules do not
impose constraints on the MD simulation.

2.3.3. Interaction Energy Calculation

In order to quantitatively study the interaction mechanism between the micro-interfaces of the
coated iron and comprehensively evaluate the binding ability between the surface molecules of
chromium oxide and the PET molecular chains on a micro-scale, the binding energies between the PET
material and the three crystal plane structure models were calculated. Using the equilibrium structure
model obtained at the end of the MD simulation, the interface interaction energy between the PET
molecular system and the chromium oxide surface model with three different crystal surface structures
is calculated according to the following formula [42–44]:

E = Etotal −
(
Esur f ace + EPET

)
(1)

In the formula: E represents the binding energy between the PET molecular system and the
oxide model; Etotal represents the total energy of the equilibrium structure after the MD simulation
calculation; Esur f ace represents the energy of the oxide surface; and EPET represents the energy of the
PET molecule.

When calculating the total energy of the equilibrium structure after the MD simulation, we canceled
all fixed atoms in the model to obtain an accurate total energy of the flat energy structure, and also
canceled the constraints of all atoms during calculation.

3. Results and Discussion

3.1. Analysis of the Experimental Results

The microstructure of tin free steel (TFS) was evaluated by SEM analyses, as shown in Figure 6.
By comparing the microscopic images of the blank steel plate and the chrome plate under different
magnification conditions, it can be clearly seen that there are obvious grinding streaks on the surface of
the blank steel plate, while the grinding streaks on the surface of the chrome steel plate are relatively
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inconspicuous. This is because the presence of the chromium-plated layer on the surface of the
chrome-plated steel sheet weakens the microscopic morphology of the surface of the blank steel sheet.
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Figure 7 shows the SEM image of blank steel and TFS samples under 3000 times. We randomly
selected a test line in the image for EDS scanning. It was found that the Cr element on the surface of the
TFS is significantly higher than other elements such as Mn, Si, C, and Ni, while the content of the Cr
element on the blank steel surface is very close to other elements. This shows that the chromium layer
on the TFS surface completely covers the blank steel surface. It further illustrates that the bonding
between the PCS interface occurs between the plating layer and the PET.
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The chemical composition of chromium coating on the TFS surface was analyzed by XPS. It can
be seen from Figure 8 that there are signal peaks of Cr2p, O1s, Si2p, and C1s on the surface of the TFS.
Among them, the C element is the result of introducing contaminant elements in the sample analysis
process, and there is no C element on the surface of the coating. Part of the O element must come from
the oxide or hydroxide formed by Cr and O, but from the content of the surface elements in Table 1,
the content of oxygen is much greater than that of pure Cr oxide. It is likely that part of it comes from
bound water molecules. The Si element comes from additives in the Cr plating process.
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Table 1. The element content of the TFS surface.

Name Peak BE Atomic %

Cr2p 577.07 0.76
C1s 284.82 83.52
O1s 532.09 13.72

Figure 9 shows the spectrum of Cr on the TFS surface. It can be seen that the chemical shift of
the Cr moves towards higher binding energy. This indicates that chromium compounds exist on the
surface of TFS. Both Cr2p1/2 and Cr2p2/3 have broad peaks, indicating that chromium may have
multiple valence states or molecular structures.
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We used XPSPEAK software to fit the peaks of Cr2p3/2 and Cr2p1/2, as shown in Figure 10.
Cr2p3/2 fits three sub-peaks, a, b, and c, and the corresponding binding energies are 577.4, 576.5,
and 578.5 eV, respectively. We found the binding energy data in national institute of standards and
technology (NIST), and the corresponding binding energy compounds are Cr(OH)3, Cr2O3, and CrO3.
Cr2p1/2 fit two sub-peaks, d and e, and the corresponding binding energies are 586.4 and 586.8 eV,
respectively. We found the binding energy data in NIST. The corresponding binding energy compounds
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are Cr2O3 and Cr(OH)3. Combined with the fitting results of Cr2p3/2 and Cr2p1/2, the chemicals of
the surface coating of TFS are mainly Cr(OH)3, Cr2O3, and CrO3, as shown in Table 2. The TFS is
prepared by electroplating the hydrated chromium oxide layer on the surface of blank steel by the
method of cathodic plating. The electrolyte used is a CrO3 solution, so the CrO3 in the coating should
be the residue of the electrolyte on the surface of the steel sheet. Cr(OH)3 and Cr2O3, are the products
generated during the electroplating process.
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Table 2. The curve fitted by XPSPEAK corresponds to the compound in NIST.

Name Number Binding Energies/eV Compounds

Cr2p3/2 b 577.4 Cr(OH)3
Cr2p3/2 a 576.5 Cr2O3
Cr2p3/2 c 578.5 CrO3
Cr2p1/2 e 586.4 Cr2O3
Cr2p1/2 d 586.8 Cr(OH)3

Since the coating process of PCS is a roll composite at high temperature, Cr(OH)3 and Cr2O3 can
react to produce Cr2O3 at a high temperature. Therefore, the uppermost compound on the TFS surface
during coating is Cr2O3 and bound water molecules.

3.2. Interface Bonding Mechanism

3.2.1. MD and QM Simulation Results

The MD simulation calculation was carried out using the modeling method described in
Section 2.3.2. Figure 11 indicates the initial input cells and the corresponding final configurations
obtained at the end of 200 ps MD simulations for PET molecules on the Cr2O3 (110) (a, a’) surface,
Cr2O3 (200) (b, b’) surface, and Cr2O3 (211) (c, c’) surface. Comparing Figures 11a and 11a’, it can be
found that after a certain period of MD simulation, the distance between the PET molecule and the
highest atomic layer on the Cr2O3 (110) surface is greatly reduced, and the PET molecules move to
the surface of Cr2O3 (110). This indicates that the PET molecules have compounded with the Cr2O3

(110) surface. Observing the final structure after MD simulation, it is found that the oxygen atom
in the PET molecule C=O bond is the closest to the highest atomic layer on the Cr2O3 (110) surface,
similar to the oxygen atom in the PET molecule C=O bond pulling the entire PET molecules to the
surface of chromium oxide, which is caused by the Lewis acid-base interaction between the electrons
in the O atoms and the surface of positively charged Cr ions. O atoms act as electron donors to provide
electrons to the surface of the chromium oxide and are positively charged. The Cr ions on the metal
surface accept electrons as electron acceptors to make O atoms move to the surface of the chromium
oxide, which explains the micro-interface recombination mechanism of coated iron, that is, the coated
iron is formed through the oxygen atom in the C=O bond of the PET molecule and Cr2O3 (110).
The compound was formed by the Lewis acid-base interaction between the Cr atoms on the surface.
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Figure 11. The initial and final configurations of the Cr2O3 (110) (a,a’,a”) surface, Cr2O3 (200) (b,b’,b”)
surface and Cr2O3 (211) (c,c’,c”) surface interacting with PET molecules (white is H atom, red is O
atom, gray is C atom).

Figure 11b,b’,b” and Figure 11c,c’,c” are the initial structure models of PET and Cr2O3 (200), and the
Cr2O3 (211) plane and the final structure model after 200ps MD simulation. Combining Figure 11a,a’,a”,
by comparing the initial structure and final structure of the three groups of models, it can be found
that the PET molecules in the three groups of models have all moved to the surface of the chromium
oxide, and the same final result is obtained after a longer MD simulation. In the structural model,
the positioning of PET molecules near the surface of the chromium oxide proves that the PET molecules
are compounded with the surface of the chromium oxide. Comparing Figure 11b’,c’, it can be found
that the PET molecular shapes in the final structural models of the two crystal planes are relatively
similar, which is different from that in Figure 11a’, where the oxygen atoms in PET are the closest to
the highest atomic layer of chromium oxide.

Figure 11b’,c’ show that the H atom in the benzene ring is the closest to the highest atomic layer
of chromium oxide, while the O in C=O is next to the highest atomic layer of chromium oxide. This is
caused by the different structure of the chromium oxide surface, Cr2O3 (110). The highest layer atoms
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on the surface are all Cr atoms, while the highest layer atoms on the Cr2O3 (200) surface are both Cr
atoms and O atoms, coexisting. Although all the highest layer atoms on the Cr2O3 (211) surface are all
Cr atoms, the distance between the Cr atoms in each row is wide. The O atoms under the chromium
layer are not completely covered by chromium atoms. From Figure 11b’,c’, can be seen that the H atom
on the benzene ring in the PET molecule and the O on the surface of the chromium oxide are combined
by forming a hydrogen bond, and the O in the C=O bond also occurs simultaneously with the surface
Cr atom acid-base interaction.

3.2.2. Interaction Energy Calculation

According to the binding energy calculation formula in Section 2.3.3, the binding energy between
the three model PET molecules and the chromium oxide surface was calculated. Before calculation,
all atoms in the model were unconstrained. The calculation results are shown in Figure 12 and Table 3.Polymers 2020, 11, x FOR PEER REVIEW 12 of 19 
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Figure 12. The binding energy of the Cr2O3 surface with PET.

Table 3. The element content of the TFS surface.

Etotal (kJ/mol) Esurface (kJ/mol) EPET (kJ/mol) E (kJ/mol)

Cr2O3 (200) −620596.21 −620616.96 83.86 −63.10
Cr2O3 (211) −729577.13 −729594.39 72.00 −54.74
Cr2O3 (110) −663991.26 −663826.00 136.21 −301.47

It can be seen from Table 3 that the binding energies between the surface of the Cr2O3 (110),
(200), (211) and PET molecules are −301.47, −63.10, and −54.74 kJ/mol, respectively. Previous studies
have shown that when the binding energy is −14.28 kJ/mol < E < 0 kJ/mol, it is physical adsorption;
when the binding energy E < −14.28 kJ/mol, it is chemical adsorption. It can be seen that the composite
type between the chromium oxide surface and the PET molecule is chemical adsorption, which further
proves that the PET molecule and the chromium oxide surface are composited, and the binding energy
between the three crystal plane structures of chromium oxide and the PET molecule is Cr2O3 (110) >

Cr2O3 (200) > Cr2O3 (211).

3.2.3. Radial Element Concentration Distribution

In order to further quantitatively analyze the mechanism of the combination of PET molecules
and the surface of chromium oxide, the element radial concentration distributions of oxygen atoms
and hydrogen atoms in the initial and final structures of the three models were calculated. Figure 12
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shows the concentration distribution of oxygen atoms and hydrogen atoms in the initial and final
structures of different crystal plane models along the direction perpendicular to the surface.

It can be seen from Figure 13 that the distance between the oxygen atoms and hydrogen atoms in
the initial structure of the three models relative to the highest layer of the chromium oxide surface
is approximately 30 Å, and the distance between the oxygen atoms and carbon atoms in the final
structure relative to the chromium oxide surface approximately 15 Å. It is further confirmed that the
PET molecules have been composited with the surface of chromium oxide, and can be composited
with the surface of chromium oxide with different crystal plane structures.
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Figure 13. Concentration profiles of oxygen (O) and hydrogen (H) atoms in PET on top of (a) Cr2O3 (110),
(b) Cr2O3 (200), and (c) Cr2O3 (211) surfaces before (O and H) and after (Of and Hf) MD simulations.

The frontier molecular orbital theory (FMO) was used to further reveal the bonding mechanism
between the PET film and the chromium oxide layer proposed by Zumelzu [20] through acid-base
interaction. Figure 14 shows the global minimum energy structure of PET molecules, the respective
distributions of the highest occupied molecular orbital (HOMO), and the lowest occupied molecular
orbital (LUMO). HOMO orbitals are related to the active sites that have the greatest ability to interact
with metal atoms and provide electrons to the empty electron orbitals on the surface of metal atoms.
The LUMO orbital of the PET film represents the active site that accepts electrons from the filled orbital
of atoms on the metal surface.

It can be seen that the HOMO orbitals of the PET molecules are mainly oxygen atoms. The LUMO
orbital is mainly a benzene ring and the carbon atom is connected to the benzene ring. The PET
molecules donate delocalized electrons near the oxygen atoms to the low-energy unoccupied orbitals of
the chromium atoms on the surface of the chromium oxide. PET molecules provide electrons, and the
surface of the chromium oxide absorbs electrons, and recombines through acid-base interactions.
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Figure 14. GGA/PW91-optimized structure and highest occupied molecular orbitals (HOMOs) and
lowest occupied molecular orbital (LUMOs) of PET molecules.

Figure 15 shows the charge of the oxygen atoms in the PET molecule. The charge of the oxygen
atom in the C=O bond is −0.450, which is the highest electronegativity in the entire PET molecule.
Therefore, the combination of the PET molecule and the chromium oxide molecule is mainly based on
the O atom in the C=O bond. The final stable structure model of the three crystal planes in Figure 9
further illustrates that the oxygen atoms in the PET molecule and the chromium atoms on the chromium
oxide surface are compounded through acid-base interactions.
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3.3. Chromium Oxide Surface with Different Hydroxyl Content

The XRD experiment results show that there are a large number of hydrogen and oxygen atoms
on the surface of TFS strip steel. Other literature about layers has pointed out through experiments and
analysis of the binding energy of chromium oxide that there are a large number of hydroxyl groups on
the surface of TFS steel plate (quoted from Wuxi steel plate). Since all the atoms on the top layer of
the Cr2O3 (110) are Cr atoms, the Cr2O3 (200) surface with a slightly larger binding energy is used as
the base material model for modeling. Using the method of adding hydrogen atoms to the surface
of oxygen atoms to build a hydroxylated surface model, we established 25%, 50%, 75%, and 100%
hydroxyl concentration Cr2O3 (200) surface models, respectively. We placed the PET molecules in
parallel at 50A above the Cr2O3 (200) surface with different hydroxyl concentrations to eliminate the
effect of the position of the PET above the chromium oxide surface on the settlement result, as shown
in Figure 16. The formation of hydrogen bonds adopts the definition method proposed by Ghasem.
Ghasem defined two necessary conditions for the formation of hydrogen bonds when studying the
interface bonding mechanism between different iron oxide types and epoxy resins: two hydrogen
donor atoms (D) and hydrogen atoms (A) sharing one hydrogen atom (H) form a hydrogen bond
when the following geometric conditions are met, where (1) the distance H··A should be less than 2.5A;
and (2) the angle D−H··A should be greater than 90◦ [44].
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Figure 16. Cr2O3 (200) surface with different hydroxyl concentration (white is H atom, red is O atom,
gray is C atom).

It can be seen from Figure 16 that the PET molecules in all models have moved to the surface.
The oxygen atom in C=0 in the PET molecule migrates to the surface of the chromium oxide with
the entire PET molecule, and recombines with the hydroxyl group on the surface of the chromium
oxide to form a hydrogen bond. The cyan dotted line in Figure 17 represents hydrogen bonding.
Corresponding to 25%, 25%, 25%, and 25%, the number of hydrogen bonds generated by the hydroxyl
concentration model are 2, 3, 3, and 4, respectively. With the increase of hydroxyl concentration on the
surface of chromium oxide, the number of hydrogen bonds gradually increases.Polymers 2020, 11, x FOR PEER REVIEW 16 of 19 
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We calculated the binding energy of the model using the formula in Section 2.3.3. The binding
energies corresponding to 25%, 25%, 25% and 25% hydroxyl concentration models are −223.4,
−227.6, −231.7, and −237 KJ/mol, respectively, as shown in Figure 18. With the increase of hydroxyl
concentration on the surface of the chromium oxide, the binding energy between the PET and Cr2O3

(200) gradually increases, as shown in Figure 17. This is precisely due to the increase in the number of
generated hydrogen bonds, which leads to the increase in binding energy.
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4. Conclusions

The micro morphology of the coating on the surface of TFS was measured by SEM.
The chrome-plated layer evenly covers the surface of the blank steel, and the presence of the
chrome-plated layer weakens the grinding streaks on the surface of the blank steel. The chemical
composition and full spectrum of the chromium plating layer on the surface of the TFS were obtained
through XPS experiments. Using XPSPEAK software to fit the spectra, it is concluded that the
composition of the chromium plating layer on the TFS surface is Cr(OH)3, Cr2O3, and CrO3.

The bonding mechanism of PCS micro-interface is explained by MD calculation combined with
the first principles method. The chromium oxide surface and PET molecular models at the micro-scale
were established respectively, and MD and QM simulations under certain parameter conditions were
carried out.

The composite models of the Cr2O3 (110), Cr2O3 (200), and Cr2O3 (211) surfaces and PET molecules
were established respectively. It is pointed out that PET molecules and chromium oxide molecules are
compounded in the form of acid-base interactions. The carbonyl oxygen (electron pair donor = base)
shares its electrons with chromium (electron pair acceptor = acid). We verified and proved the acid-base
interaction theory proposed by Zumlzu [20]. The binding energy between Cr2O3 (110), Cr2O3 (200),
Cr2O3 (211), and the PET molecules is −301.47 KJ/mol, −63.10 KJ/mol, and −54.74 KJ/mol. The binding
energy between Cr2O3 (110) and the PET molecules is the largest.

A surface model of Cr2O3 (200) with different hydroxyl concentrations was established.
Through MD and QM calculations, radial element concentration analysis, and frontier orbital theory,
it is proved that the PET and hydroxylated chromium oxide surface are compounded in the form
of hydrogen bonds. The oxygen atom in the C=O bond in the PET molecule combines with the
hydroxyl group on the surface of Cr2O3 to form a hydrogen bond, which verifies the hydrogen
bond recombination theory proposed by Tanaka [18]. It is calculated that the binding energies of the
composite model with 25%, 50%, 75%, and 100% hydroxyl concentration are −223.4, −227.6, −231.7,
and −237 KJ/mol, respectively. The increase in the concentration of hydroxyl on the surface of the
chromium oxide helps to improve the interfacial binding energy. The key to improve the binding
energy of the PCS interface is to increase the concentration of hydroxyl groups on the surface of TFS.
Increasing the hydroxyl content in the hydrated chromium oxide layer on the surface of TFS is an
effective way to improve the bonding strength of PCS.
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