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Ciências da Saúde, Universidade Federal da Paraı́ba, João Pessoa, Paraı́ba, Brazil, 5 Departamento de
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Abstract

Erectile dysfunction (ED) is defined as the inability to achieve and/or maintain penile erec-

tion sufficient for satisfactory sexual relations, and aging is one of the main risk factors

involved. The D-(+)-Galactose aging model is a consolidated methodology for studies of car-

diovascular aging; however, its potential for use with ED remain unexplored. The present

study proposed to characterize a new experimental model for ED, using the D-(+)-Galactose

aging model. For the experiments, the animals were randomly divided into three groups

receiving: vehicle (CTL), D-galactose 150 mg/kg (DGAL), and D-(+)-galactose 150 mg/Kg +

sildenafil 1.5 mg/Kg (DGAL+SD1.5) being administered daily for a period of eight weeks. All

of the experimental protocols were previously approved by the Ethics Committee on the

Use of Animals at the Federal University of Paraı́ba n˚ 9706070319. During the treatment,

we analyzed physical, molecular, and physiological aspects related to the aging process

and implicated in the development of ED. Our findings demonstrate for the first time that

D-(+)-Galactose-induced aging represents a suitable experimental model for ED assess-

ment. This was evidenced by an observed hyper-contractility in corpora cavernosa, signifi-

cant endothelial dysfunction, increased ROS levels, an increase in cavernous tissue

senescence, and the loss of essential penile erectile components.

Introduction

Erectile dysfunction (ED) is defined as the inability to achieve and/or maintain sufficient

erection for satisfactory sexual relations [1]. Its prevalence tends to increase throughout the

individual’s life, affecting mainly men over 40 years old [2]. With the global increase in life
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expectancy, it is estimated that by the year 2025, the worldwide prevalence of ED will reach

322 million men [3].

Aging is a multifactorial process characterized by molecular, cellular, and physiological

changes which increase the individual’s susceptibility to the development of disease; it is also

considered the main risk factor for ED [3, 4]. Of the changes observed in aging and implicated

in the pathophysiology of ED we find: 1) Endothelial dysfunction, 2) Increased contractility

and decreased vasodilation of the corpus cavernosum, 3) Oxidative stress, and 4) Increased

vascular senescence [5, 6]. Together, these processes lead to tissue remodeling and the develop-

ment of ED [6, 7].

New pharmacological tools that aim to combat and/or prevent diseases such as ED require

the use of experimental animal models [8]. The accelerated D-(+)-galactose-induced aging

model is widely accepted; it is based on metabolic theory, and presents many aspects similar to

the natural aging process [9]. In the body, D-(+)-galactose is oxidized by galactose oxidase to

form hydrogen peroxide (H2O2). In addition, this monosaccharide can react with amine

groups in various proteins, forming advanced glycation products, and promoting oxidative

stress [10]. Recent studies have demonstrated that chronic administration of D-(+)-galactose

also leads to immune system dysregulation, sex hormone deficiencies, increasing inflamma-

tory cytokine levels, cellular apoptosis, and diminished total antioxidant capacity [10, 11].

Taken together, these effects mimic aging and impel the subject toward development of age-

related diseases [12].

However, despite D-(+)-galactose-induced accelerated aging being used as a consolidated

methodology for studies of cardiovascular aging, its potential for use with ED is still unex-

plored. [13–15]. Thus, the present study aims to characterize a new model of ED in rats using

D-(+)-galactose induced accelerated aging.

Materials and methods

Standards and reagents

In the present study, the following substances were used: D-(+)-galactose, Phenylephrine

(Phe), Acetylcholine (ACh), sodium nitroprusside (SNP), dihydroethidium (DHE), 5-bromo-

4-chloro-3-indolyl β-D-galactopyranoside (x-gal), dimethyl sulfoxide (DMSO), OCT (Optimal

Cutting Temperature) Compound (Tissue Plus1), and glutaraldehyde. All were obtained from

Sigma-Aldrich (Brazil). Ketamine and xylazine were purchased from Syntec (Brazil). Sildenafil

was obtained from Roval Pharmacy (Brazil); heparin (Hepamax-s1) from Blau Farmacêutica

S.A. (Brazil); formaldehyde 10% from Medi Quı́mica Indústria Farmacêutica Ltda (Brazil);

and hematoxylin-eosin from Quı́mica Especializada Erich Ltda (Brazil). The carbogen mixture

(95% O2 and 5% CO2) was acquired from White Martins (Brazil).

Animals

Forty male Wistar rats (Rattus novergicus), eight weeks old, from the Animal Production Unit

of the Institute for Research in Drugs and Medicines (IPeFarM) of the Federal University of

Paraı́ba (UFPB) were used. The animals were kept under appropriate environmental condi-

tions, temperature (22 ± 1˚C), a 12-hour light-dark cycle (6–18 hours), with free access to

water and food (Nuvilab CR-1, Quimtia1), while recording the physical and mental health of

the animals on a daily basis. After confirmation of anesthesia induced by the intraperitoneally

administration of xylazine and ketamine (10 and 75 mg/Kg, respectively), the animals were

euthanized by exsanguination.

All experimental protocols were carried out according to the guidelines established by the

Brazilian National Council for Animal Experiment Control (Conselho Nacional de Controle
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de Experimentação Animal—CONCEA), obeying law No. 11.794/2008, submitted and previ-

ously approved by the Ethics Committee on the Use of Animals (Comissão de Ética no Uso de

Animais—CEUA) of the UFPB, n˚ 9706070319.

Experimental design

The animals were randomly assigned into two three experimental groups: the control group

(CTL), which received physiological saline solution (NaCl 0.9%) intraperitoneally (IP), the D-

galactose group (DGAL), which received D-(+)-galactose at 150 mg/Kg via IP, and the sildena-

fil group (DGAL+SD1.5) which received both D-(+)-galactose at 150 mg/Kg via IP and silden-

afil 1.5 mg/Kg by oral gavage. All of the animals were subjected to eight weeks of treatment

with daily administration. The IP administrations were standardized at a volume less than or

equal to 2 mL/Kg [16].

The administered dose of D-(+)-galactose (150 mg/Kg) was chosen based on a review of the

literature, citing doses sufficient to induce aging in the animals [17, 18]. Sildenafil was admin-

istered at 1.5 mg/Kg, corresponding (approximately) to a dose of 100 mg administered to an

adult man with 70 Kg of body weight [19].

Monitoring body weight and blood glucose

Variations in animal body weight were assessed throughout the treatment. The animals were

weighed individually three times a week, always before administration of their respective treat-

ments. The values were expressed as average weekly weight in grams (g). Glycemic analysis

was performed at the end of treatment on the day of euthanasia. For this, one drop of blood

was collected from the end of the caudal vein and introduced to a strip attached to an Accu-

chek Guide glucometer (Roche1, Brazil). Glycemic values were expressed in mg/dL.

Erectile function measurements—ICP/MAP ratio

Erectile function was assessed using the ICP/MAP (intra-cavernous pressure/mean arterial)

pressure ratio methodology adapted according to that previously described by Kim and col-

leagues [20]. Briefly, at eight weeks of treatment, the animals were anesthetized with a mixture

of xylazine and ketamine (10 and 75 mg/Kg, respectively, via IP). A polyethylene (PE) catheter,

filled with heparinized saline (200 IU/mL) was then implanted into the right common carotid

artery to the measure the mean arterial pressure (MAP).

To record intra-cavernous pressure (ICP), a 30G gauge needle, connected to a PE tube (10

mm) filled with heparinized saline (200 IU/mL), was inserted in the crural region of the left

corpus cavernosum. Subsequently, the cavernous nerve was identified and a bipolar bronze

stimulator (Animal Nerve Stimulating Electrode, MLA0320, ADinstruments, United States of

America) was placed and electrically stimulated with 1 millisecond (ms) pulses, at 6 volts (V),

and 16 Hz lasting 60 seconds (s). Two cycles of electrical stimulation were performed, the

interval between each stimulation was at least 5 minutes. MAP and ICP variations were mea-

sured using pressure transducers (Disposable BP Transducer, MLT0699, ADinstruments) cou-

pled to the PowerLab1 data acquisition system (LabChart1 software, version 8.1;

ADInstruments, USA).

Vascular reactivity

After euthanasia, the animal’s penises were carefully isolated and immediately placed in a

Krebs-Ringer nutrient solution (NaCl 118.0; KCl 4.7; CaCl2 2.50; KH2PO4 1.20; MgSO4 1.17;

NaHCO3 25.00; and glucose 5.60 (mM)) for dissection and removal of the corpus cavernosum
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[21]. Corpora cavernosa were suspended vertically in isolated organ baths (Panlab Multi

Chamber Organ Baths, ADIntruments, Australia) by two stainless steel metallic rods and

immediately submerged in 10 mL of 37˚C Krebs-Ringer solution, with a carbogenic mixture

(95% O2, and 5% CO2), maintained at pH 7.4, and under a stabilizing tension of 0.5 g, for 60

minutes. Voltage changes were measured using isometric transducers (MLT020, ADInstru-

ments, Australia) and recorded in a PowerLab1 data acquisition system (ML870/P, LabChart

version 7.0, ADInstruments, Australia).

The contractility of the corpus cavernosum was assessed against an increasing and cumula-

tive addition of Phe (10 nM– 300 μM), via electrical field stimulation (EFS) using different

frequencies (1, 2, 4, 8, and 16 Hz) with 50 V electrical pulses of 1 ms duration. The treated

groups’ corpus cavernosum relaxing responses were evaluated by increasing and cumulative

addition of ACh (1 nM—10 μM), and SNP (100 pM—100 μM).

ROS measurements

Redox-sensitive fluorescent dye (DHE) was used to evaluate ROS (reactive oxygen species) for-

mation. The corpus cavernosum was isolated and embedded in OCT compound, and then

immediately frozen using liquid nitrogen for 5 minutes, before transferred and stored in a

freezer at -80˚C until the next step experimentation. Microtomy of the tissue in cryostat was

performed at -20˚C, in which cuts with 8 μM thickness were obtained. The tissue was fixed on

slides, washed with phosphate-saline buffer (PBS) (161.0 mM NaCl; 1.8 mM NaH2PO4.H2O,

and 15.8 mM Na2HPO4), and incubated with DHE (5 μM) for 30 minutes, at 37˚C, in a humid

chamber protected from light [22]. Subsequently, the sections were washed (twice) before

being mounted in Fluorescence Mounting Medium (DAKO©) with coverslips. Images were

obtained with a Fluorescence Eclipse Ti-U Nikon1microscope (Japan). Quantification (of lev-

els of staining) was performed using NIS-element1 software. The data were normalized using

the CTL group, and expressed as percentage fluorescence.

Morphometric analysis

To perform histological sections, tissue sections of the mid-transversal part of the penis were

fixed in buffered formaldehyde (10%) and incorporated into paraffin blocks with 5 μm thick-

ness. Hematoxylin-eosin staining was used for morphometric measurement. The images were

obtained using an Olympus BX-60 microscope and an Olympus camera coupled with the

Olympus CellSens Dimension digital image capture program (USA). The morphometric areas

were acquired using the “polygon area” function of the Olympus CellSens Dimension Program

according to the given methodology, as modified by Correa et al. [23].

Histochemical analysis of SA-β-galactosidase

Analysis of Senescence Associated β-galactosidase (SA-β-galactosidase) was adapted as previ-

ously described by Chang and colleagues [14]. The animal penile segments were embedded in

OCT compound and immediately frozen in liquid nitrogen (3 min). After freezing, micro-

tomes (5 μm) of the tissue in cryostat were performed at -20˚C. Subsequently, the tissue was

washed with PBS and then fixed with a solution of formaldehyde (2%) and glutaraldehyde

(0.2%), for a period of 5 minutes. In sequence, the tissues were washed with PBS and incubated

with the x-gal staining solution; (150 mM NaCl, 2 mM NaCl2, 5 mM C6N6FeK4, 5 mM

C6N6FeK4, 5 mM C6N6FeK3), 1 mg/mL of x-gal buffer, and citrate-phosphate buffer (pH 6.0

40 mM), for a maximum period of 18 h, at 37˚C, in a humid chamber protected from light

[24]. Subsequently, the sections were washed with PBS solution to remove the excess x-gal
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staining solution and taken immediately to analysis under a microscope (Nikon Eclipse Ti-E,

Nikon, Japan).

Statistical analysis

The data were expressed as mean ± standard error of the mean (SEM). For statistical analysis

of the concentration-response curves, the maximum effect (Emax) values were used as calcu-

lated from non-linear regression of the responses obtained. The student’s t-test and two-way

analysis of variance (ANOVA), with the Bonferroni post-test were used. The data were consid-

ered significant when p< 0.05. All analyses performed were calculated using the Graph Pad

Prism1 version 7.0 statistical program.

Results

Evaluation of physical characteristics, body weights, and blood glucose

levels

The animals studied presented differences in their appearance at the end of each treatment

(Fig 1). The rats in the CTL group had smooth, healthy-looking, and shiny hair with uniform

colors, however, the animals in the DGAL group presented curly, coarse, and opaque hair,

with darker regions, and severe hair loss (Fig 1A and 1B). The animals both in the CTL and

DGAL groups presented similar graduated increases in their body weights without statistical

differences (n = 5; p> 0.05) (Fig 1C). At the end of the eight-week treatment, glycemic levels

in both the CTL and DGAL animal groups (121.2 ± 4.09 mg/dL and 118.8 ± 5.73 mg/dL,

respectively), were similar and without statistical differences (n = 5; p> 0.05).

Fig 1. Physical appearance at eight-weeks of treatment for (A) CTL, and (B) DGAL animals, (C) Average body

weight (g) in function of time (8 weeks total) CTL (●) and DGAL (&). The data are expressed as mean ± SEM

(n = 5). The data were analyzed using the two-way ANOVA statistical test, followed by the Bonferroni post-test.

Groups: CTL = vehicle; DGAL = D-(+)-galactose 150 mg/Kg.

https://doi.org/10.1371/journal.pone.0249487.g001
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D-(+)-galactose accelerated aging model induced ED in rats

The erectile function of both groups was assessed at eight weeks of treatment. The animals in

the DGAL group exhibited a significant decrease (0.470 ± 0.007; n = 5; p< 0.05) in ICP/MAP

when compared to the CTL group (0.733 ± 0.040; n = 5). The animals in the DGAL+SD1.5

group showed a significant increase (0.855 ± 0.01; n = 5) in ICP/MAP when compared to the

DGAL group (0.470 ± 0.007; n = 5; p< 0.05) (Fig 2).

D-(+)-galactose accelerated aging model induced hyper-contractility and

endothelial dysfunction in isolated corpus cavernosum in rats

The increasing and cumulative addition of Phe (10 nM—300 μM) for the DGAL group pro-

moted a significant increase in contractile response (Emax = 171.95 ± 19.24%; n = 5; p < 0.05)

as compared to the CTL group (Emax = 100.00 ± 9.44%; n = 5), without statistical differences

in potency, according to the pD2 values of the CTL groups (pD2 = 4.853 ± 0.08) and DGAL

(pD2 = 4.93 ± 0.09) (Fig 3A and 3B).

The EFS (1, 2, 4, 8, and 16 Hz) in the DGAL group promoted greater contractility at all fre-

quencies tested (1 Hz: 44.34 ± 12.56; 2 Hz: 74.58 ± 16.49; 4 Hz: 104.56 ± 22.63; 8 Hz: 163.13 ±
22.23; 16 Hz: 228.36 ± 17.79%, n = 5), as compared to the CTL group (1 Hz: 13.60 ± 6.15; 2Hz:

21.20 ± 9.37; 4 Hz: 39.30 ± 15.85; 8 Hz: 65.50 ± 20.56; 16 Hz: 93.42 ± 15.68%, n = 5; p< 0.05)

(Fig 3C and 3D).

The relaxation response induced by the increasing and cumulative addition of ACh (1 nM

—10 μM) was significantly lower in the DGAL group (Emax = 51.75 ± 5.09%; n = 5; p< 0.05)

when compared to the CTL group (Emax = 75.424 ± 1.74%; n = 5) (Fig 3E and 3F).

The relaxation response induced by the increasing and cumulative addition of SNP (100

pM– 100 μM) did not result in a significant difference in maximum effect (p> 0.05). However,

Fig 2. Original record (A) and statistical graph (B) of the ICP/MAP in response to electrical stimulation (16 Hz,

6V, 1 ms for 60 s) of the cavernous nerve in CTL and DGAL animals at eight weeks. Groups: CTL (vehicle); DGAL

(D-(+)-galactose 150 mg/Kg); and DGAL+SD1.5 (D-(+)-galactose 150 mg/Kg + Sildenafil 1.5 mg/Kg). The results are

expressed as mean ± SEM (n = 5). The data were analyzed using the Student’s t-test. � p< 0.05 vs CTL. ES: Electrical

stimulation.

https://doi.org/10.1371/journal.pone.0249487.g002
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Fig 3. Representative traces (A) and concentration-response curves (B) for Phe; representative traces (C) and

frequency-response curves (D) for the electrical field stimulation EFS; representative traces (E) and

concentration-response curves (F) for ACh; representative traces (G) and concentration-response curves (H) for

SNP; in the corpus cavernosum isolated from rats at eight weeks of treatment, for both the CTL (●) and DGAL

(&) groups. Groups: CTL (vehicle); DGAL (D-(+)-galactose 150 mg/Kg). The results are expressed as mean ± SEM.

The data were analyzed using the two-way ANOVA statistical test, followed by the Bonferroni post-test. � p< 0.05 vs

CTL.

https://doi.org/10.1371/journal.pone.0249487.g003
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there was a significant reduction in the potency (p < 0.05) for the DGAL group (Emax =

94.72 ± 11.04%; pD2 = 6.62 ± 0.19; n = 5) as compared to the CTL group (Emax = 113.24 ±
5.59%; pD2 = 7.72 ± 0.16; n = 4) (Fig 3G and 3H).

D-(+)-galactose accelerated aging model induced increased levels of

superoxide anions in the corpus cavernosum isolated from rats

Superoxide anions measurements were performed in the corpus cavernosum isolated from

Wistar rats. Redox-sensitive DHE fluorescent dye was used in both the CTL and DGAL

groups. The animals in the DGAL group presented a significant increase in fluorescent

intensity (233.58 ± 13.69%, n = 4) when compared to the CTL group (100.00 ± 13.16, n = 4;

p< 0.05) (Fig 4).

D-(+)-galactose accelerated aging model induced a decrease in the total

corpus cavernosum area isolated from rats

The histo-morphometry analysis of animals in the DGAL group revealed a significant decrease

in the corpus cavernosum by total area (4.35x106 ± 1.83x105 μm2, n = 3) when compared to

the CTL group (4.99x106 ± 2.93x105 μm2, n = 3; p< 0.05) (Fig 5).

Fig 4. Representative image (A) and quantitative analysis (B) of superoxide anion production as measured by

fluorescent intensity emitted by the DHE probe. Corpus cavernosum (8 μM) isolated from both CTL and DGAL rat

groups, treated for eight weeks (20x objective). Groups: CTL (vehicle); DGAL (D-(+)-galactose 150 mg/Kg). Scale bars,

100 μm. Data are expressed as mean values of the percentage of fluorescence relative to the control ± SEM (n = 4). The

data were analyzed using the Student’s t-test. � p< 0.05 vs CTL.

https://doi.org/10.1371/journal.pone.0249487.g004
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D-(+)-galactose accelerated aging model induced an increase in senescence-

associated β-galactosidase activity in the corpus cavernosum isolated from

rats

The SA-β-galactosidase activity of animals in the DGAL group revealed a significant increase

(205.189 ± 6.572%, n = 4) when compared to the CTL group (100.00 ± 13.85, n = 4; p< 0.05)

(Fig 6).

Discussion

In the present study, a novel ED model associated with mimetic aging induced by D-(+)-galac-

tose in Wistar rats was characterized. The daily administration of 150 mg/Kg D-(+)-galactose,

via IP (eight weeks), reduced erectile function in vivo, promoting hyper-contractility and

endothelial dysfunction in isolated corpus cavernosum, as well as promoting oxidative stress,

reducing the proportion of erectile components, and increasing senescence markers in penile

tissue.

Chronic administration of D-(+)-galactose for a period of six to ten weeks is well described

as a model to accelerate the natural aging process [25, 26]. Physiologically, the monosaccha-

ride, is converted to glucose by galactose-1-phosphate-uridyltransferase and galactokinase

[27]. Yet if in excess, deleterious metabolic disturbances are generated, with several effects

Fig 5. Photomicrographs (A) and histomorphometric analysis (B) of the total corpus cavernosum area (8μM)

isolated from rats, at eight weeks of treatment. Groups: CTL (vehicle); DGAL (D-(+)-galactose 150 mg/Kg). Scale

bars, 200 μm. The data are expressed as mean values of total corpus cavernosum area ± SEM (n = 3). The data were

analyzed using the Student’s t-test. � p< 0.05 vs CTL.

https://doi.org/10.1371/journal.pone.0249487.g005
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such as immune system cell dysfunction, sexual hormone deficiencies, increases in inflamma-

tory cytokines, increases in cellular apoptosis, and decreases in both total antioxidant capacity

and oxidative stress (via oxidative metabolism) [26, 28, 29]. Taken together, these effects,

mainly mediated by persistent oxidative stress, favor the development of disease by affecting

both structure and function in pertinent tissues and organs [26, 30].

Despite D-(+)-galactose being widely used for aging research, the potential for association

with ED remains unexplored. To test the hypothesis that the aging model induced by D-(+)-

galactose can trigger ED, we treated Wistar rats with a chronic daily administration of D-(+)-

galactose (150 mg/Kg) for eight weeks. Initially, we observed the rat’s physical appearance, and

at the end of the treatment period, the animals in the DGAL group presented physical charac-

teristics such as severe hair loss, and curly or opaque hair with darker regions. This was in con-

trast to animals in the CTL group which presented smooth hair with a healthy look, and a

bright and uniform color. Such aging characteristics were also observed in a study developed

by Zhao and colleagues [29] in rats treated with D-(+)-galactose for eight weeks.

The animals’ body weights were also monitored during the eight weeks of treatment. Dur-

ing this period it was observed that the animals of the experimental groups all similarly pre-

sented a gradual increase in their body weights, demonstrating that administration of D-(+)-

galactose did not interfere in the animals’ body weights. This was also observed in studies

developed by Cardoso and colleagues [31]. There was also no significant change in glycemic

Fig 6. Representative image (A) and quantitative analysis (B) of SA-β-galactosidase activity (%) relative to the

CTL group in the corpus cavernosum (5 μM) isolated from rats, at eight weeks of treatment (20x objective).

Groups: CTL (vehicle); DGAL (D-(+)-galactose 150 mg/Kg). Scale bars, 100 μm. The data are expressed in mean

percentage values (activity) in relation to the control ± SEM (n = 4). The data were analyzed using the Student’s t-test. �

p< 0.05 vs CTL.

https://doi.org/10.1371/journal.pone.0249487.g006
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levels among animals in the treated groups, demonstrating that D-(+)-galactose does not inter-

fere in glucose metabolism.

After the treatment period, the most used method for in vivo evaluation of erectile function

in rats, the ICP/MAP ratio was assessed [32]. Electrical stimulation of the cavernous nerve pro-

motes nitrergic discharge inducing relaxation of the corpus cavernosum with consequent ele-

vation of ICP [33]. The ICP/MAP ratio in the DGAL group was reduced significantly as

compared to the CTL group, demonstrating, for the first time in the literature, that the D-(+)-

galactose induced aging model was effective in promoting ED. Similar results which demon-

strated ED were observed in a study demonstrating that elderly rats (physiological aging) pre-

sented an ICP/MAP ratio decrease [34]. Treatment with sildenafil, in animals in the DGAL

+SD1.5 group, promoted a significant increase in the ICP/MAP ratio as compared to animals

in the DGAL group, demonstrating that the treatment prevented ED. This result can be

explained by the increase in cGMP via PDE-5 inhibition in the corpus cavernosum, as well as

decreases in oxidative stress, and restoration of pro-oxidant/antioxidant equilibrium, which

reduces endothelial damage and increases nitric oxide (NO) bioavailability [10, 35, 36]. These

mechanisms favor relaxation of trabecular smooth muscle, and result in penile erection.

Given this in vivo observation of changes in erectile function, the next step would be to

assess whether changes in the contractile and relaxing reactivity of corpus cavernosum isolated

from the rats is involved in this process. These results are important, since erectile function is a

hemodynamic process, and any imbalance is closely related to ED [37].

Therefore knowing that noradrenergic discharge and stimulation of α-adrenergic recep-

tors favors increases in corpus cavernosum smooth muscle tone, and consequently impairs

the state of erection [38], the response of the corpus cavernosum in contractile reactivity was

evaluated using cumulative Phe and EFS curves. After the treatment period, in response to

Phe and EFS, rats of the DGAL group presented increased hyper-contractility of the corpus

cavernosum as compared to the CTL group. This effect may have been related to over-regu-

lation of the contractile pathways in the corpus cavernosum; autonomic neuropathy (caused

by exacerbation of sympathetic activity), and/or greater noradrenergic receptor sensitivity

[39].

NO is another important factor and plays a key role in corpus cavernosum tonus regulation.

Changes in NO synthesis or bioavailability can favor corpus cavernosum contraction, and con-

sequently the development of ED [40]. We therefore evaluated whether NO release was

affected by the treatments due to the action of ACh in the endothelial cells. ACh, an endothe-

lial muscarinic agonist, was evaluated for its role in endothelium-dependent relaxation

impairment. We observed that endothelium-dependent relaxation mediated by ACh was sig-

nificantly impaired in the DGAL corpus cavernosum strips as compared to the CTL strips.

Age-related changes result in altered endothelial cell function, and cause reductions in cel-

lular nitric oxide levels with subsequent impairment in penile smooth muscle relaxation. ACh,

to induce its vasorelaxant effect releases NO to target muscarinic (M3) receptors in endothelial

cells. In our experimental conditions, animals of the DGAL group presented a significantly

impaired relaxation response to ACh, as compared to the CTL group. This effect reveals an

endothelial dysfunction that may be associated with decreased NO bioavailability, yielding

impaired corpus cavernosum relaxation [10, 36, 39]. Lafuente-Sanchis and colleagues [41]

have demonstrated that reductions in endothelium-dependent vasodilation, in response to

ACh in elderly animals, is likely related to endothelial dysfunction in the cavernous trabeculae.

In addition to assessing endothelium-dependent relaxation, we also investigated

impairment in pathways directly involved in relaxation of corpus cavernosum smooth muscle

tissue. For this, the SNP was used, whose induced relaxation did not present statistical differ-

ences between the groups in the maximum response, did promote a reduction in the potency
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of the relaxation response of the DGAL group, compared to the CTL group, suggesting that

the functionality of the smooth muscle cells of the corpus cavernosum may thus be altered.

Recent studies suggest that endothelial dysfunction in age-induced ED is likely related to

oxidative stress [42]. Similarly, the D-(+)-galactose accelerated aging model revealed an

increase in ROS levels which lead to oxidative damage [26]. Further, increased oxidative stress

has also been linked to lower NO concentrations. In age-related ED, ROS has been postulated

as a principal cause of impaired cavernous function. We thus evaluated whether ROS would

also increase in corpus cavernosum isolated from rats using histological sections from both the

CTL and DGAL groups, measuring fluorescent intensity as emitted by a DHE probe. In these

experiments, the animals in the DGAL group presented a significant difference in fluorescent

intensity as compared to the CTL group. This suggested an increase in superoxide anions lev-

els, contributing to cavernous tissue remodeling, a key event in the pathophysiology of ED.

Corroborating our findings, Gur and his group [43] have demonstrated an increase in ROS

levels in the smooth muscle and the endothelium of the corpus cavernosum in elderly rats as

compared to young animals.

In addition to functional abnormalities, age-related ED is associated with structural changes

resulting in the loss of essential penile erectile components [44]. Morphologically, a significant

reduction in the muscle cell layer was observed in the DGAL group, as compared to the CTL

group, suggesting a loss in erectile components essential for the penile erection. This reduction

functionally alters the smooth muscle of the corpus cavernosum, and revealed a significant

reduction in SNP potency in the DGAL group as compared to the CTL group. Yet it is likely

that such morphological changes do not sufficiently modulate functionality so as to alter the

SNP response maximum. These data are in agreement with several previous studies, which

reveal that both in aged men and aged animals, a decline in erectile capability is associated

with a diminishing number of smooth muscle tissue cells [45–48]. Similar data were also

observed in an ED model induced by diabetes [49]. Reduction of erectile function with aging

has been extensively reported and related to multiple functional, morphometric, molecular,

and cellular changes that lead to significant loss of erectile capability.

Accumulation of senescent cells is a biological marker of aging, and is associated with

increased lysosomal SA-β-galactosidase activity. We found that in cavernous tissues, the

DGAL group presented an increase in SA-β-galactosidase activity when compared to the CTL

group, suggesting an accumulation of senescent cells. Similar results have been demonstrated

in the cardiac tissue of animals receiving the same treatment with D-(+)-galactose [14].

D-gal is a known normal substance in the body, however, at high levels, accumulating free

D-gal is converted into secondary metabolites such as galactitol, hydrogen peroxide, and

Schiff’s base, which in turn, induce inflammation, cellular apoptosis, and degenerative

changes, this resulting in aging and age-related disorders. Further, this model was character-

ized by increased inflammatory cytokines, and up-regulated P16, P53, and P21 gene expres-

sion [13, 26, 50]. One of the main limitations of the present study is that the model poorly

relates real physiological and biochemical changes. In addition, in the present study, inflam-

matory mediators, P53-P21, PI3K/Akt, and AMPK/ULK1 pathways were not measured.

Nevertheless, due to its ability to mimic the senescent characteristics of natural aging, D-

galactose-induced aging is potentially an ideal model for anti-aging therapeutic intervention

studies.

In summary, our results demonstrate for the first time that the D-(+)-galactose aging model

was able to promote ED in Wistar rats, through hyper-contractility and endothelial dysfunc-

tion in the rat corpus cavernosum. These effects may be related to oxidative stress, decreased

erectile components, and accumulation of senescence cells in the corpora cavernosa of these

animals.

PLOS ONE D-[+]-Galactose-induced model of erectile dysfunction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249487 April 15, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0249487


Conclusion

The present study reports on a novel ED rat model, successfully induced by D-(+)-galactose

(daily, during 8 weeks), and validated based on functional, cellular, molecular, and morpho-

metric analysis. The D-(+)-galactose-induced aging model was able to mimic ED in Wistar

rats. The present study found in isolated rat corpus cavernosum that ED is associated with

hyper-contractility and endothelial dysfunction. The effects appear to be associated with the β-

galactosidase activity through an increase in oxidative stress, loss of erectile components, and

increased cell senescence.
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