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Background: Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to
exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3,
are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is
not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginse-
noside Rg3 on Th1 cell responses.
Methods: Using well-characterized T cell in vitro differentiation systems, we examined the effects of
KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve
CD4þ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in
the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell dif-
ferentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay,
and quantitative real-time polymerase chain reaction.
Results: KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell
differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma
(IFNg) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral
administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer’s patch and lamina
propria cells in vivo.
Conclusion: Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell re-
sponses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related
diseases.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Korean Red Ginseng (KRG) is heat-processedWhite ginseng (the
root of Panax ginseng Meyer); it has better pharmacological activ-
ities and has enhanced preservation efficacy and safety [1,2].
Accumulating evidence clearly demonstrates the beneficial effects
of KRG extract (KRGE) on enhancing immune functions [3,4] as well
as ameliorating diverse diseases including diabetes [5,6], colitis
[7,8], cancer [7,9], atherosclerosis [10,11], neurodegenerative dis-
ease [12,13], and stress [14].

Various pharmacological components are examined in ginseng
extract such as acidic polysaccharides, ginsenosides, poly-
acetylenes, and polyphenolic compounds [15]. Among them, gin-
senosides have been thought to be important ingredients, which
provide ginseng’s pharmacological and biological activities
[12,16,17]. Multiple types of ginsenosides are present in ginseng
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extracts (e.g., Rbs, Rcs, Rd, Re, Rfs, Rgs); among them, ginsenoside
Rg3 (40.1%), Rg5 (18.6%), and Rh2, Rk1 (5.73%), and Rs4 are uniquely
found in Red ginseng [18,19]. In particular, Rg3 has been reported to
prevent or ameliorate diseases, such as chronic fatigue [20], dia-
betes [21], and tumor [22].

On the other hand, dendritic cells (DC) are professional antigen-
presenting cells (APCs) that connect innate and adaptive immune
responses [23,24]. Once DCs uptake antigens, DCs produce pro-
inflammatory cytokines, increase the co-stimulatory molecules,
and subsequently present antigens to T cells [23e25]. Of note,
ginseng extract or ginsenosides have been shown to modulate the
maturation and function of DCs. For instance, ginseng saponins or
ginseng metabolites enhanced DC maturation markers, such as
CD80, CD83, CD86, and MHCII [26,27]. In addition, ginseng acti-
vated DCs to produce IL-1 and TNFa, and ginseng-primed DCs
improved the CD4þ T cell proliferations and the interferon gamma
6, Republic of Korea.
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(IFNg) production [27,28]. However, several reports have shown
opposite effects of ginseng on DCs including the diminished pro-
duction of IL-12 and TNF-a and the inhibition of CD40 and CD86
expression [29,30].

The preventive and therapeutic effects of whole ginseng extract
or ginsenosides on various immune disorders have been reported
in several studies [6,8,13,31]; however, the effect of ginsenosides on
the development of each subset of T cells remains incompletely
understood. In this present study, we investigated the influence of
ginsenoside Rg3 on Th1 cell responses in vitro and in vivo. Our
findings demonstrate that Rg3 attenuates the differentiation of
IFNgþ CD4þ T cell in vitro and in vivo.

2. Materials and methods

2.1. Ethics statement

All vertebrate animal experiments were approved by the Insti-
tutional Animal Care and Use Committee of Seoul National Uni-
versity (protocols SNU-170120-1) and were conducted in
accordance with the guidelines of Seoul National University for the
care and use of laboratory animals. All surgeries were performed
under isoflurane anesthesia (Piramal Critical Care, Inc., PA, USA).

2.2. KRGE and enhanced Rg3

KRGE and enhanced Rg3 were provided by Korea Ginseng Cor-
poration (Seoul, South Korea). Enhanced Rg3 is one of the KRGE
that has been enriched in Rg3 content. In KRGE and enhanced Rg3,
totally 1.94% and 5.425% of ginsenosides are contained, respec-
tively. In case of KRGE, ginsenosides Rg1 (0.071%), Re (0.093%), Rf
(0.121%), Rh1 (0.078%), Rg2(s) (0.192%), Rg2(r) (0.129%), Rb1
(0.462%), Rc (0.241%), Rb2 (0.183%), Rd (0.089%), Rg3(s) (0.214%),
and Rg3(r) (0.091%) are included. In addition, enhanced Rg3 con-
sists of nine ginsenosides: Rf (0.105%), Rh1 (0.294%), Rg2(s)
(0.294%), Rb1 (0.290%), Rc (0.097%), Rb2 (0.197%), Rd (0.137%),
Rg3(s) (3.373%), and Rg3(r) (0.638%). Enhanced Rg3 also has 4.77%
of arginyl-fructosyl-glucose and 4.125% of acidic polysaccharides.
The phytochemical study data was provided by The Korean Society
of Ginseng. The KRGE and enhanced Rg3 were dissolved in steril-
ized water.

2.3. Cell cytotoxicity

To determine the proper doses of KRGE or enhanced Rg3, the
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide
(MTT) reduction assay was performed. Briefly, increasing doses of
KRGE (0 mg/mL, 31.25 mg/mL, 62.5 mg/mL, 125 mg/mL, 250 mg/mL,
and 500 mg/mL) and enhanced Rg3 (0 mM, 25 mM, 50 mM, 100 mM,
and 200 mM) were treated with bone marrow-derived DCs for 24 h;
the cells were then incubatedwithMTT solution (final conc. 500 mg/
mL) (Life Technologies, Carlsbad, CA, USA) for 4 h at 37�C. After
incubation, MTT solution was removed and dimethyl sulfoxide was
added. The absorbance was measured at 540 nm by a microplate
reader (Bio-Rad, Hercules, CA, USA). Absorbances were normalized
to untreated control to calculate cell viability.

2.4. Mice and in vivo experimental design

Ten C57BL/6 femalemice aged 5wkwere purchased fromOrient
Bio (Seongnam-si, Gyeonggi, South Korea). These mice were
divided into two groups, a control group and an enhanced Rg3-
treated group. Mice were orally administered with distilled water
(control) or enhanced Rg3 (0.03 gram/kg) every other day. After 4
wk, gut-draining mesenteric lymph nodes (MLNs), Peyer’s patches
(PPs), and large intestines were isolated for analysis of T cell
subsets.

2.5. Generation of bone marrow-derived DCs

Bone marrow cells (3 � 106 cells) obtained fromwild type mice
were cultured in 3 mL of Roswell Park Memorial Institute medium
(RPMI)e1640 supplemented with 10% fetal bovine serum
(FBS), 55 mM 2-mercaptoethanol, 2 mM L-glutamine, penicillin/
streptomycin (all thesewere obtained fromGibco, Grand Island, NY,
USA), and recombinant mouse Granulocyte-macrophage colony-
stimulating factor (10 ng/mL; Peprotech, Seoul, South Korea). On
Day 1, floating cells were discarded and fresh mediumwere added.
Half of the medium was discarded and fresh medium was added
every two days. On Day 7, cells were used as DCs.

2.6. Naïve T cell differentiation in vitro

Naïve CD4þ T cells (CD44highCD62LlowCD25-) in spleen and
lymph nodes of naïve mouse were isolated using a fluorescence-
activated cell sorting (FACS) machine, FACSAria III (BD BioScience,
San Jose, CA, USA). CD11cþ bone marrow-derived DCs were pu-
rified with CD11c microbeads. For Th1 cell differentiation, 1 �104

CD11cþ DCs were co-cultured with 1 � 105 FACS-sorted CD4þ T
cells in the presence of anti-CD3ε (0.3 mg/mL) antibody (145-
2C11, BioXcell, West Lebanon, NH, USA), and lipopolysaccharide
(LPS) (80 ng/mL) (Sigma, Seoul, South Korea) for 96 h. For APC-
free Th1 cell differentiation, anti-CD3ε (1 mg/mL) and anti-CD28
(2 mg/mL) (37.51, BioXcell) were pre-coated in a 96-well plate
overnight at 4�C. After washing the plate with cold phosphate-
buffered saline (PBS) three times, 1 � 105 naïve CD4þ T cells
were stimulated with IL-2 (2 ng/mL) and IL-12 (10 ng/mL)
(Peprotech) for 96 h. KRGE (250 mg/mL) or various concentration
of enhanced Rg3 (25 mM, 50 mM, and 100 mM) were treated at the
beginning of naïve CD4þ T cells.

2.7. Enzyme-linked immunosorbent assay

IL-1b, 6, 12p70, 12p40, and TNFa in the culture supernatants of
naïve T cell differentiation were quantified by enzyme-linked
immunosorbent assay, according to the manufacturer’s in-
structions (eBioscience, San Diego, CA, USA).

2.8. Real-time polymerase chain reaction

Total RNA from cells was isolated by TRIzol reagent (Ambion, CA,
USA), and cDNAwas synthesized with a cDNA Synthesis kit (Thermo
Fisher Scientific Inc., New York, NY, USA). Relative gene expression
levels were evaluated using SYBR Green (Bio-Rad) on ABI 7500 Fast
Real-Time Polymerase Chain Reaction Systems (Applied Biosystems,
Singapore). Target genes were normalized to the b-actin level in
each sample. Primer sets for genes were synthesized at Cosmoge-
netech (Seoul, South Korea): Ifn (sense, 50-GATGCATTCATGAG-
TATTGCCAAGT-30, antisense, 50-GTGGACCACTCGGATGAGCTC-30),
Eomes (sense, 50-TGAATGAACCTTCCAAGACTCAGA-30, antisense, 50-
GGCTTGAGGCAAAGTGTTGACA-30), T-bet (sense, 50-CAACAACCCCTT
TGCCAAAG-30, antisense, 50-TCCCCCAAGCAGTTGACAGT-30), Gata3
(sense, 50-AGAACCGGCCCCTTATGAA-30, antisense, 50-AGTTCGCG-
CAGGATGTCC-30), Rorc (sense, 50-CCGCTGAGAGGGCTTCAC-30, anti-
sense, 50-TGCAGGATAGGCCACATTACA-30), Gzmb (sense, 50-
GCCCACAACATCAAAGAACAG-30, antisense, 50-AACCAGCCACATAGC
ACACAT-30), b-actin (sense, 50-TGGAATCCTGTGGCATCCATGAAAC-30,
antisense, 50-TAAAACGCAGCTCAGTAACAGTCCG-30).
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2.9. Flow cytometry

Cells were incubated for 3e4 h with 100 ng/mL of PMA, 1 mM of
ionomycin (all from Sigma), Brefeldin A and Monensin (all from
eBioscience). After washing cells with cold PBS containing 1.5% FBS,
the cells were stained with APC-Cy7-conjugated anti-CD4 mAb
(eBioscience) for surface staining. Cells were then washed and
stained with PerCp-Cy5.5-conjugated anti-IFNg mAb, APC-
conjugated anti-IL-17 mAb (all from BioLegend, San Diego, CA,
USA), and Phycoerythrin (PE)-conjugated anti-T-bet mAb (eBio-
science) after incubation with fixation/permeabilization buffer
(eBioscience) for 30 min at 4�C (all from BioLegend). The cells were
analyzed by flow cytometer, FACSVerse flow cytometer (BD
Bioscience). Datawere analyzedwith FlowJo (TreeStar, Ashland, OR,
USA).
2.10. Preparation of lamina propria cells

Large intestines were cut into 1 cm slices, and epithelium was
removed by stirring in RPMI-1640 containing 1mM EDTA (Gibco)
for 30 min and 2% FBS at 37�C (twice). After washing the gut pieces
with pre-warmed PBS at least five times, they were cut into 1e2
mm and stirred into RPMI-1640 containing 2% FBS, 10 U/mL colla-
genase IV (Gibco), and 5 U/mL DNase I (Bio Basic Inc., Amherst NY,
USA) for 30 min at 37�C (twice). After incubation, the suspension
was filtered through a 100 mm-pore nylon mesh (Small Parts Inc.,
FL, USA). The lymphocytes were purified by a 44%/70% Percoll
(Pharmacia, Uppsala, Sweden) gradient.
2.11. Statistical analysis

All experiments were performed two to four times. Statistical
analysis was conductedwith mean� standard error of the mean by
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Fig. 1. Function of KRGE on the cytokines production from DCs upon LPS stimulation: The am
supernatants after stimulation with LPS in the presence or absence of KRGE. Bone marrow DC
the amount of cytokine was quantified by enzyme-linked immunosorbent assay. Experime
***p< 0.001 in comparisonwith medium unless otherwise indicated. DCs, dendritic cells; KRG
unpaired two-tailed Student t test with Prism Graphpad 5.0
(GraphPad Software Inc., La Jolla, CA, USA).

3. Results and discussion

3.1. KRGE inhibits the pro-inflammatory cytokines produced by DCs

Previous studies have demonstrated that ginseng modulates
immune responses and prevents immune disorders. The inhibitory
efficacy of Red ginseng extracts on inflammation has been sug-
gested to be better than that of White ginseng extracts [12,17,32].
However, the function of ginseng or its components to the differ-
entiation of helper T cell subsets has been incompletely under-
stood. As a first step to explore the immune modulatory functions
of KRGE on helper T cell responses, we determined the effects of
KRGE on the production of cytokines from DCs since they play an
essential role in determining the type of effector T cells by acting as
“signal 3” during the T cells differentiation [23e25]. In order to
determine the proper dose of KRGE in vitro experiment, we con-
ducted cell viability assay byMTT. TheMTT reduction assay showed
no reduction in cell viability under 250 mg/mL (Fig. S1A). On
the basis of this result, we used KRGE at the concentration of
250 mg/mL. To investigate the effect of KRGE on the production of
LPS-induced inflammatory cytokines, we stimulated bone marrow-
derived DCs by LPS in the presence or absence of KRGE and
measured the amounts of pro-inflammatory cytokines from DCs
including IL-1b, IL-6, IL-12, IL-23, and TNFa [24,33]. As shown in
Fig. 1, KRGE itself had little role in inducing the production of pro-
inflammatory cytokines from DCs. On the other hand, addition of
KRGE slightly but significantly inhibited the production of IL-6, IL-
10, IL-12p40, and TNFa induced by LPS (Fig. 1BeF). By contrast, the
production of LPS-induced IL-1b fromDCs was slightly increased by
KRGE (Fig. 1A). Since fermented White ginseng extracts (similar to
Red ginseng extracts) has been shown to inhibit the production of
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dextran sodium sulfate- or LPS-induced IL-6, TNF-a, and IL-12p40
from macrophages by downregulating NFkB [34], it is feasible to
surmise that the KRGE-mediated inhibition of IL-6, IL-12p40, and
TNF-a from DCs might be also associated with NFkB activity. KRGE
contains different type of saponins (ginsenosides) and non-
saponins including ginsan, polysaccharide, protopanaxadiol, and
protopanaxatriol [35]. The saponins and non-saponins of ginseng
reportedly have opposite effects in IL-1b production. The saponin
fractions of ginseng extract attenuated IL-1b maturation, whereas
non-saponin fractions or water extract of ginseng stimulated IL-1b
production [36,37]. In contrast to these results, the saponin fraction
of KRGE has shown to enhance the IL-1b expression induced by
oxazolone. However, the constituent ginsenosides, such as Rf, Rg3,
and Rh2, effectively reduced the expression of IL-1b [38]. These
results demonstrate that non-saponins and several types of sapo-
nins contained in KRGE could increase the production of IL-1b from
DCs. Of note, we observed that addition of KRGE significantly
downregulated the production of IL-12 from DCs induced by LPS
(Fig. 1D). IL-12 induces the phosphorylation of signal transducer
and activator of transcription 4 (STAT4), leading to the naïve CD4þ T
cells into the Th1 cell lineage program including induced T-bet
expression [39,40]. Since KRGE decreased production of IL-12 from
DCs, we hypothesized that KRGE might impact the Th1 cell
differentiation.

3.2. KRGE suppresses DC-mediated Th1 cells differentiation

To determine the effect of KRGE on the Th1 cells differentiation,
we employed awell-established DC-T cell co-culture in vitro system
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Fig. 2. . KRGE inhibits the differentiation of Th1 cell in vitro system. To differentiate naïve CD
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in which the addition of soluble anti-CD3 and LPS triggers the
differentiation of IFNg-producing Th1 cells from the naïve CD4þ T
cells [41]. In this DC-T cell system, we observed that the addition of
KRGE moderately decreased the frequency of IFNg-producing Th1
cells (Fig. 2A), likely due to the reduced IL-12 production from DCs.
Accordingly, the production of IFNg from T cells was significantly
diminished (Fig. 2B).

To determine if KRGE has any direct effects on T cell during Th1
differentiation, we employed a DC-free Th1 cell differentiation
condition by stimulating naïve CD4þ T cells. Under this condition,
KRGE also exerted a slightly but significant reduction in the fre-
quency of IFNgþ CD4þ T cells and the amount of IFNg from T cells
(Fig. 2C and D), although the magnitude of suppressionwas weaker
than the DC-T cell co-culture system. These results together
strongly demonstrate that KRGE inhibits the Th1 cells differentia-
tion in vitro by decreasing the IL-12 production and also by directly
affecting T cells. Since Th1 cells are well-known as a crucial player
for the pathogenesis in autoimmune diseases such as colitis [42]
and EAE [43], the use of KRGE might be effective in ameliorating
Th1-mediated immune disorders.

3.3. Enhanced Rg3 negatively regulates DC-mediated Th1 cell
differentiation

Since Rg3 is a major gensenoside in KRGE [18,19], we next
questioned if enhanced Rg3 plays any role in the KRGE-induced
suppression of Th1 cell differentiation. First, we investigated the
cell toxicity of enhanced Rg3 on bone marrow DCs, and the MTT
reduction assay showed that the concentrations less than 100mM
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have no effect on cell viability (Fig. S1B). We next examined the role
of enhanced Rg3 in Th1 cell differentiation. Similar to KRGE,
enhanced Rg3 significantly suppressed LPS-induced production of
IL-12p70 and IL-6 from DCs (Fig. 3A and Fig. S2A). Moreover,
enhanced Rg3 also significantly suppressed the production of IL-
12p40 (Fig. 3A), which differed from the effect of KRGE shown in
Fig. 1. Unlike KRGE, enhanced Rg3 slightly increased the production
of IL-10 (Fig. 3A), which is known to prevent the pathological Th1
cell responses and decrease IL-1b (Fig. S2B) [44]. Consistent with
this observation, addition of enhanced Rg3 significantly reduced
DC-mediated Th1 cell differentiation and the production of IFNg
from T cells (Fig. 3B and C). We next examined the effects of
enhanced Rg3 on the differentiation of Th1 cell in a DC-free
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condition and observed that enhanced Rg3 also significantly sup-
pressed Th1 cell differentiation (Fig. 3D and E).

We next sought to investigate the mechanism of enhanced Rg3-
mediated inhibition of Th1 cell differentiation. As depicted in
Fig. 4A, the addition of enhanced Rg3 remarkably decreased the
frequencies of T-betþ and IFNgþ CD4þ T cells in a dose-dependent
manner. The suppression of IFNg expression by enhanced Rg3
was found to be more sensitive than that of T-bet. In parallel with
these protein data, the mRNA expression levels of Ifng, Tbx21, and
Eomes (encoding Eomesodermin [45]) were lower in enhanced
Rg3-treated T cells in a dose-dependent manner (Fig. 4B). Since
STAT4 is a crucial transcription factor for Th1 cell differentiation
[46,47], it would be interesting to examine if enhanced Rg3 inhibits
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the phosphorylation of STAT4 in T cells. These findings together
indicate that enhanced Rg3 inhibits Th1 cell differentiation via at
least two different modes of action by suppressing the production
of Th1-promoting IL-12 in DCs and also by inhibiting IL-12-
mediated activation of the Th1 cell program in T cells.
unless otherwise indicated. (C) The schematic diagram of the inhibition mechanism of Th1 c
microbes promote DCs to produce pro-inflammatory cytokines. Particularly, in response to
differentiate into effector Th1 cells which secrete IFNg. However, in the presence of Rg3, the
Rg3 in DCs. Enhanced Rg3 also decreased T-bet, Eomes, and IFNg through direct interaction w
pathogen-associated molecular patterns; SEM, standard error of the mean.
3.4. Enhanced Rg3 controls Th1 cell population in the gut

Common microbiota in the intestinal lumen provides high
density of PAMPs [48,49], and intestinal CD4þ T cell population is
an important mediator of immune homeostasis and
ell development by enhanced Rg3. Pathogen-associated molecular patterns (PAMPs) on
IL-12, naïve CD4þ T cells up-regulate the transcription factors, T-bet and Eomes, and

development of Th1 CD4þ T cells is suppressed following decreased IL-12 production by
ith differentiated Th1 CD4þ T cells. DC, dendritic cells; LPS, lipopolysaccharide; PAMPs,
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inflammation [50,51]. Since most of ginseng-related supplements
are orally administered, we determined if enhanced Rg3 impacts
Th1 cell responses in the gut of normal mice. To this end, we
administered enhanced Rg3 or water as a vehicle into groups of
naïve C57BL/6 mice and measured the frequency of IFNgþ CD4þ T
cells in the gut-associated lymphoid tissues (GALTs) including
MLNs, PPs, and lamina propria (LP). As depicted in Fig. 5, we
observed the significantly reduced frequency of IFNgþ CD4þ T
cells in the PPs and LP in enhanced Rg3-treated mice when
compared to that of vehicle-treated mice. The frequency of IFNgþ

CD4þ T cells in the MLNs remained unchanged by enhanced Rg3
treatment. On the other hand, the frequency of Foxp3þ CD4þ T
cells appeared to be unaffected by enhanced Rg3 treatment in all
the GALTs tested, indicating that there is a little role of enhanced
Rg3 on regulatory CD4þ T cell population in the gut. Taken
together, these results suggest that oral administration of
enhanced Rg3 resulted in diminished Th1 cell population in the
gut in vivo, which is consistent with our observation in vitro
(Figs. 3 and 4).

It is well documented that T-betþ IFNgþ CD4þ T cells are
increased in patients with Crohn’s disease (CD) [52,53]. Neutrali-
zation of IFNg as well as deficiency of T-bet significantly amelio-
rates the induction of experimental colitis in animal models [42].
Moreover, anti-p40 neutralizing antibodies (e.g., ustekinumab and
briakinumab) showed a moderate clinical benefit in patients with
CD [54e56]. Clinical trial of ustekinumab in Phase 3 moderated the
severity of CD who had failed anti-TNF antibody treatment. In
addition, anti-p40 antibodies also showed clinical benefits in pa-
tients with active CD of Phase 2. These clinical efficacies demon-
strate that the blockade of p40 could be a potential therapeutic
strategy. Since enhanced Rg3 inhibits the differentiation of Th1
cells as well as the production of IL12p40, our findings suggest that
enhanced Rg3 might be effective in ameliorating intestinal in-
flammatory diseases in humans including CD.
4. Conclusions

In summary, our findings demonstrate that enhanced Rg3 has a
profound inhibitory effect on Th1 cell differentiation. This regula-
tory effect seems to be mediated not only by the inhibition of IL-12
production from DCs but also by directly affecting Th1 cell program
in T cells, such as the downregulation of T-bet and eomesodermin.
In particular, oral administration of enhanced Rg3 significantly
reduced the frequency of Th1 cells in the gut, suggesting that
enhanced Rg3might be effective for the treatment of Th1-mediated
inflammatory diseases in the gut.
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