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A B S T R A C T   

Object detection is a fundamental task in computer vision that aims to locate and classify objects 
in images or videos. The one-stage You Only Look Once (YOLO) models are popular approaches to 
object detection. Real-time monitoring of mask wearing is necessary, especially for preventing the 
spread of the COVID-19 virus. While YOLO detectors facing challenges include improving the 
robustness of object detectors against occlusion, scale variation, handling false detection and false 
negative, and maintaining the balance between higher precision detection and faster inference 
time. In this study, a novel object detection model called Improved You Only Look Once and None 
Left (IYOLO-NL) based on YOLOv5 was proposed for real-time mask wearing detection. To fulfill 
the requirement of real-time detection, the lightweight IYOLO-NL was developed by using novel 
CSPNet-Ghost and SSPP bottleneck architecture. To prevent any missed correct results, IYOLO-NL 
integrates the proposed PANet-SC with a multi-level prediction scheme. To achieve high precision 
and handle sample allocation properly, the proposed global dynamic-k label assignment strategy 
was utilized in an anchor-free manner. A large dataset of face masks (FMD) was created, con
sisting of 6130 images, for use in conducting experiments on IYOLO-NL and other models. The 
experiment results show that IYOLO-NL surpasses other state-of-the-art (SOTA) methods and 
achieves 98.8% accuracy while maintaining 130 FPS.   

1. Introduction 

Real-time and high-precision face mask detection is crucial for promoting epidemic prevention, as wearing masks is one of the most 
economical and effective methods for preventing COVID-19 infection. Object detection is a fundamental task in computer vision that 
aims to locate and classify objects in images or videos [1,2]. The recent progress in face mask detection research can be attributed to 
the development of deep learning techniques [3] and the availability of extensively annotated datasets [4]. Hand-crafted methods [5, 
6] and neural network methods [1,7] are two types of face mask detection methods based on the used features. 

Hand-crafted methods rely on manually designed features [8], such as Haar-like [9], LBP [10], and HOG [11]. Dewantara et al. 
[12] used these features to train classifiers for detecting faces with different poses and occlusions, while He et al. [13] used skin color 
and eye features for mask wearing detection. However, hand-crafted methods have limited learning capacity and struggle to adapt to 
complex scenarios such as long distances and lighting changes. 
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Multi-stage methods involve at least two deep learning networks [14,15], generally including： human detection, face region 
detection, ROI extraction, feature vector extraction, normalization, and classification. However, the design of multi-stage methods is 
relatively complex, requires significant computational resources and expensive processing equipment. 

Two-stage methods typically consist of face pre-detection and face category verification [16,17]. In the first stage, detectors provide 
feature descriptors for candidate faces. Face pre-detection is often achieved using multiple face detectors. The second stage consists of 
various classifiers aimed at determining mask-wearing status. Most two-stage methods combine a face detector with a classification 
model [18]. In many cases, the pre-detection model and classification model are trained separately [19], which can be 
time-consuming. 

Single-stage methods have the largest share among neural network methods, including Faster R–CNN [2], SSD [20], YOLO series 
detectors [1,7,21,22], and other methods. Many studies have utilized You Only Look Once (YOLO) models for mask-wearing detection. 
Loey et al. [23] utilized the YOLOv2 detector with ResNet-50 for medical mask detection. A visualization system for YOLOv3 was 
implemented [24], which can achieve real-time inference on devices with low computational power and memory. Jiang et al. [25] 
improved YOLOv3 by using GIoU loss and focal loss to balance stability and robustness. Yu et al. [26] enhanced the YOLOv4 model by 
introducing a modified CSPDarkNet53 and applied it to the mask detection task. Yang et al. [27] used YOLOv5 for face mask detection, 
which outperformed other YOLO detectors while facing some technical difficulties and challenges. 

While YOLOv5 is widely used in industry, it has limitations in detecting dense small faces with various types of masks and in 
handling facial occlusion issues in complex and volatile backgrounds [3,28]. Furthermore, it suffers high latency when used for 
real-time masked face inference. 

The field of object detection research is constantly evolving, with researchers proposing novel architecture designs [3,29,30], loss 
functions [25], and data augmentation techniques [1,3,28]. Although various methods for reducing the size and computational cost of 
neural networks have emerged, including network pruning [31,32], low-bit quantization [33], and knowledge distillation [34,35], 
these methods are often limited by the constraints of the neural networks themselves. In contrast, building deep neural networks with 
fewer parameters and more efficient computations shows greater potential than relying on complex parameter adjustment [3]. 

The mentioned studies and frameworks suffer from the same drawbacks, achieving satisfactory results for large-simple objects, but 
not robust enough for scene-specific, small, and occluded objects. This creates challenges in detecting masked faces due to low res
olution and limited appearance information. To address the problems of conventional detectors in face mask detection, this paper 
proposes an IYOLO-NL detection model. 

The main contributions of the paper are summarized as follows.  

• This paper introduces an anchor-free approach to the YOLO model and constructs several lightweight real-time network structures. 
The computationally and time-intensive anchor-based manner is replaced by a more efficient approach where anchor points are 
rapidly selected and directly regressed to target objects. Additionally, novel light CSPNet-Ghost bottleneck and SSPP bottleneck are 
utilized in IYOLO-NL to extract features more effectively and reduce inference lag.  

• To address the problem of insufficient feature information for multi-scaled and scene-varied objects, we propose a self-attention 
PANet-SC neck. In combination with a multi-level prediction scheme, the developed neck continuously fuses feature maps, nar
rows the semantic gap, and strengthens multi-scale features to enhance prediction ability.  

• To address the problem of assigning ambiguous samples and improve the classification and localization accuracy of occluded 
objects, a novel global dynamic-k label assignment strategy has been proposed. The strategy is launched through decoupled heads 
to avoid complex anchor box operations, and displacement problems.  

• In this paper, we construct a large face mask dataset and evaluate the performance of the proposed IYOLO-NL through several 
experiments, including a comparative analysis with related models. 

The paper is structured as follows: Section 2 provides a detailed review of the related work. Section 3 presents a detailed description 
of the proposed IYOLO-NL model, including its anchor-free approach, inference acceleration, and label assignment method. In Section 
4, a series of experiments are conducted to compare and validate the performance of the proposed IYOLO-NL model with SOTA al
gorithms. Finally, Section 5 summarizes the content of the paper. 

2. Related work 

This section outlines the latest enhancements to the backbone, neck, and head components of the current YOLO series models. It 
then provides a detailed summary of the YOLOv5 model’s workflow and limitations. 

2.1. Anchor-free detectors 

Anchor-free detectors [3,28,29,36] have experienced significant development in the past two years, and several studies have 
demonstrated that detection models based on anchor-free strategies achieve comparable performance to anchor-based methods [28, 
37]. Anchor-based detectors utilize anchor boxes of varying shapes and sizes as training samples and determine their labels based on 
the IoU between the anchor boxes and ground-truth bounding boxes. In contrast, anchor-free methods regress directly to the 
ground-truth bounding boxes, utilizing anchor points in the input image as training samples. 

Moreover, the anchor-free mechanism significantly reduces the number of heuristic hyperparameters that must be tuned, avoiding 
the need for complex training techniques such as clustering and grid sensitivity [28,38]. This approach delivers superior performance 
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while reducing computational complexity. 

2.2. YOLO CSPNet backbone design 

Cross Stage Partial Networks (CSPNet) is an efficient CNN architecture [30] that is used as a backbone in object detection models. It 
works by dividing the feature maps from a previous layer into two parts. One part goes directly to the next stage, and the other part 
passes through convolutional layers before being merged back. This design reduces computation and memory costs while maintaining 
or even enhancing the representational capacity of the network. 

YOLOv4 [1,39] and YOLOv5 utilize CSPDarknet53 as the backbone network, while YOLOX [28] employs CSPNet and other 
advanced techniques to balance detection speed and accuracy. 

2.3. YOLO neck design 

The Feature Pyramid Network (FPN) is a top-down architecture [40] that leverages previously learned features from a backbone 
network and integrates them with new features using lateral connections. This approach facilitates the detection of objects at varying 
scales and resolutions, which is especially advantageous for identifying small objects. YOLOv5 utilizes FPN to extract features from 
various levels of the backbone network and create multi-scale feature maps that enhance object detection. However, aligning anchor 
boxes with objects of different sizes on FPN feature maps presents significant challenges. The anchor box size is dataset-specific and 
varies as the data changes. The predicted box size on each feature map should depend on the feature map’s receptive field [37], i.e., the 
network structure itself. 

The Progressive Attention Network (PANet) [41] utilizes a bottom-up architecture that incorporates features from different levels 
of the backbone network by means of a lateral aggregation module (LAM) for each level. This design captures both fine-grained and 
coarse-grained features [3,39], enabling the network to detect both small and large objects. 

2.4. Label assignment strategy 

The FCOS network [37] considers any point inside the ground-truth bounding box as a positive sample, but it fails to handle 
ambiguous samples properly. Only assigning ambiguous sample points to the smallest ground-truth bounding box leads to poor 
detection performance for overlapping objects [28,42,43]. 

From ATSS [44] and PAA [45] to Auto Assign [46], researchers have made efforts to enhance the flexibility of label assignment. 
However, these methods only explore the optimal allocation strategy for individual objects and do not consider contextual information 
from a global perspective. Additionally, a significant number of ambiguous samples are discarded without being fully utilized. 

Therefore, a better allocation strategy should aim for global optimality. YOLOX [28] and OTA [43] view label assignment as an 
optimal transport problem and globally optimize the label assignment for object samples in the image. However, their simple approach 
of treating specific points as positive samples lead to an excessive number of low-confidence samples [42]. Consequently, the 
computational efficiency is not significantly different from anchor-based mechanisms, leading to slow real-time inference. 

2.5. YOLOv5 model detection workflow 

YOLOv5 is a one-stage detection model, like previous YOLO detectors [1,7,39], that can be divided into three parts: backbone, FPN 
neck, and YOLO head. The workflow of the YOLOv5 is summarized as follows: feature extraction, feature enhancement, and predicting 
the object situation. 

To be specific, YOLOv5’s backbone is CSPDarknet, which extracts three effective feature layers as the following steps.  

• The first layer of backbone is Focus. The Focus network captures values at every other pixel in an image, then the resulting four 
independent feature layers are stacked to expand the channel dimension. The concatenated feature layers consist of 12 channels, as 
opposed to the original three channels.  

• The following CSPDarknet consists of CSPLayer and SPP bottleneck. The CSPLayer comprises a backbone of 1 × 1 and 3 × 3 
convolutions, along with a residual edge connection. Residual blocks in the network leverage skip connections to avoid gradient 
vanishing in deep neural networks. YOLOv5 uses SiLU as its activation function, which is an improved version of the Sigmoid and 
ReLU functions. After each CSPLayer, a BN layer and a SiLU activation function are stacked.  

• The Spatial Pyramid Pooling (SPP) bottleneck structure [47] is then used for feature extraction via maximum pooling with different 
kernel sizes. In YOLOv4, SPP was used in FPN, while in YOLOv5, the SPP module is integrated into the backbone feature extraction 
network. The backbone ultimately extracts three effective feature layers, with shapes of (80, 80, 256), (40, 40, 512), and (20, 20, 
1024), respectively.  

• Then, the FPN network fuses features from different layers to enhance feature extraction. The neck output comprises three 
enhanced features: (20, 20, 1024), (40, 40, 512), and (80, 80, 256).  

• The feature layers consist of sets of feature points. The coupled head in YOLOv5 is responsible for detecting whether each feature 
point corresponds to an object. Classification and regression are performed through a single 1 × 1 convolution, much like in 
previous YOLO versions. 
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However, YOLOv5 exhibits a significant misalignment problem [3,28]. While its approach mitigates gradient disappearance in 
deep neural networks and is widely used in industry, its detection accuracy is low during inference and difficult to improve. Based on 
the above studies, this paper summarizes the possible reasons for the low detection accuracy of YOLOv5.  

• The performance improvement of YOLOv5 mainly results from optimization and fine-tuning, primarily relying on anchor-based 
mechanisms and manually matched rules. It is relatively independent of the development in the object detection research field. 
Anchor-based mechanisms in YOLOv5 generally require the specification of the origin coordinates and box size, necessitating 
anchor-based translation during prediction. The tuning process in YOLOv5 involves optimizing the anchor box, which is chal
lenging due to different datasets requiring distinct hyperparameter adjustments.  

• Training and inference times for YOLOv5 are lengthy, rendering real-time object detection on complex datasets unfeasible. 
Additionally, it exhibits suboptimal utilization of GPU computational resources, with high computational and time complexity.  

• YOLOv5 fails to handle blurry and multi-scale objects in sufficient detail. Its manual rule-setting strategy neglects precise matching 
for small objects, making it ineffective in diverse scenarios. The excessive use of normalization leads to indistinct learned features, 
making it challenging to classify targets of varying scales.  

• The coupled head in YOLOv5 performs classification and regression tasks simultaneously. However, during inference stage, 
misalignment between the regression and classification branches leads to low detection accuracy. 

3. Methodology 

To achieve fast and lightweight computation, the YOLO object detector was transformed into anchor-free manner. The backbone 
was reconstructed by deploying the proposed CSPNet-Ghost bottleneck, Serial Spatial Pyramid Pooling network. To enhance feature 
extraction and achieve high-precision detection for multi-scaled objects, the self-attention PANet-SC was developed with multi-level 
prediction scheme in the neck section. To handle ambiguous and complicated sample points and promote IYOLO-NL to state-of-the-art 
level, the global dynamic-k label assignment strategy is proposed. The decoupled head is utilized with optimized cost loss functions. 
The structure of IYOLO-NL model is illustrated in Fig. 1. 

Fig. 1. IYOLO-NL model structure. The IYOLO-NL model comprises a newly improved backbone, neck, and head.  
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3.1. Rapid lightweighting backbone of IYOLO-NL 

This subsection presents an extensive description to anchor-free methods, along with the novel CSPNet-Ghost bottleneck and SSPP 
structure, which are proposed to optimize GPU computing resources and accelerate YOLO inference speed. 

3.1.1. Anchor-free IYOLO-NL 
The YOLO object detection process was redefined in an anchor-free manner using the per-pixel prediction method [28,37,38]. We 

denote the feature map in the i-th layer of the backbone network as Fi ∈ ℝH×W×C. The ground-truth bounding boxes of the input image 
are defined as {Bi} Eq. (1), 

Bi =
(

x(i)
0 , y(i)

0 , x(i)
1 , y(i)

1 , c(i)
)
∈R4 × {1, 2,…,C} (1)  

where, (x(i)
0 , y(i)0 ) and (x(i)1 , y(i)

1 ) represent the coordinates of the upper-left and lower-right corners of the i-th bounding box. c(i) denotes 
the class attribute of the object in the bounding box, and C is the number of classes. 

The coordinate 
( ⌊s

2
⌋
+xs,

⌊s
2
⌋
+ys

)
can be used to map anchor point (x, y) from feature map Fi back to its corresponding position in 

the original image. Here, s is the total stride from the original image to the current feature map. The central area of the ground-truth 
bounding box with center coordinate (cx, cy) is defined as (cx − rs,cy − rs,cx + rs,cy + rs), where r is a hyperparameter set to 1.5 for the 
COCO dataset [3,22]. 

Anchor points within the central area were considered positive samples with label category c∗ equal to that of the ground-truth 
bounding box they correspond to, while the rest ones were treated as negative samples with c∗ = 0, indicating the background 
samples. As depicted in Fig. 2, each anchor point corresponds to a four-dimensional real vector v∗ = (l∗, t∗, r∗, b∗) representing its 
regression parameter [37] Eqs. (2) and (3). 

l∗ =
x − x(i)

0

s
, t∗ =

y − y(i)
0

s
(2)  

r∗ =
x(i)

1 − x
s

, b∗ =
y(i)

1 − y
s

(3)  

where x(i)0 , y(i)
0 , x(i)1 , y(i)1 denote the left, top, right and bottom locations of ground-truth bounding box, respectively. 

Fig. 2. Schematic diagram of anchor-free regression pattern. The red dashed box represents the ground-truth bounding box (GTBB), the orange solid 
arrow represents the left and top distances from the anchor point to the bounding box, while the blue solid arrow represents the right and bot
tom distances. 
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3.1.2. CSPNet-Ghost bottleneck design 
To achieve satisfactory accuracy, YOLOv5 demands significant floating-point computing and storage resources for traditional 

convolutional neural network (CNN) operations (Fig. 3 (a)). Specifically, generating a feature map from a 640 × 640 image requires 
4.75 billion floating-point operations for YOLOv5. Although the feature maps connected by red dotted lines in Fig. 3 (c) have high 
similarity, the corresponding redundant feature vectors reveal essential semantic information hidden in the image, which is essential 
for high-precision object detection. 

To reduce the computational cost of generating similar feature maps (i.e., ghost feature maps), the backbone was optimized by 
utilizing the proposed CSPNet-Ghost bottleneck network. The CSPNet-Ghost bottleneck comprises two ghost modules. The ghost 
module [48] employs smaller convolution kernels (e.g., 3 × 3) to generate feature maps for its operations (Fig. 3 (b)). Specifically, a set 
of m feature maps Y ∈ Rh×w×m is obtained from the original image using basic convolution operations Eq. (4): 

Y=X ∗ f (4)  

f ∈ Rc×k×k×m is the convolution kernel, m ≤ n. The output feature map’s spatial dimensions (height and width) are made consistent 
with those generated by convolutional operations by keeping the parameters identical. Then, a series of linear operations is applied to 
Y to generate ghost feature maps, resulting in the final n feature maps Eq. (5). 

yij = Φi,j(yi) ∀i = 1,…,m ∀j = 1,…, r (5)  

here y is the i-th feature map in Y, has s ghost feature maps {yij}
r
j=1. The linear operation Φi,j maps y to ghost feature map yij. Φi,r is the 

identity mapping with respect to Y. The set of ghost feature maps generated by the ghost module is denoted as [y11,y12,…,ymr]. 
To expedite the training and inference speed of YOLO backbone, the CSPNet-Ghost bottleneck was developed. Ghost and SENet 

attention modules [49], illustrated in Fig. 3 (d), were utilized in backbone part for efficient feature extraction. Consistent feature map 
dimensions between input and output were maintained by using depthwise separable and 1 × 1 convolution in CSPNet-Ghost bot
tleneck’s residual edge. 

3.1.3. Serial Spatial Pyramid Pooling network 
Training deeper neural networks is an arduous task. To tackle this challenge, a novel Serial Spatial Pyramid Pooling network (SSPP) 

was proposed, drawing inspiration from residual learning [50]. As shown in Fig. 4 (a) and (b), max pooling operations of different sizes 
are concatenated vertically. The residual edge transfers the feature maps from the upper CSPNet-Ghost bottleneck outputs without 
modification. Finally, all the feature maps are aggregated together. 

3.2. Multi-level self-attention neck of IYOLO-NL 

This subsection presents a systematic introduction to the attention mechanism, the proposed PANet-SC neck structure, and the 
multi-level prediction scheme. 

3.2.1. Attention mechanisms 
Attention mechanisms play a critical role in modern object detection models [39,49,51,52]. These mechanisms enable the model to 

focus on specific parts of an input image, which is useful for detecting small or partially occluded objects. The core of the attention 
mechanism is to allow convolutional neural networks to adaptively attend to significant objects. 

Various forms of attention mechanisms are used in object detection. As illustrated in Fig. 5 (a), Squeeze-and-Excitation Networks 
(SENet) [49] enhance important features and improve accuracy by utilizing the correlation between channel features and won the 
2017 ILSVR competition. The Convolutional Block Attention Module (CBAM) [51] integrates both channel and spatial attention 
mechanisms to promote the performance of convolutional neural networks (Fig. 5 (b)). Channel attention focuses on “what” objects are 

Fig. 3. Efficient feature map processing through CSPNet-Ghost bottleneck. (a) Traditional convolution operation. (b) Ghost module operation. With 
upper and lower parts generated by convolution and linear operation, respectively. (c) Feature maps from traditional convolution or ghost module. 
(d) CSPNet-Ghost bottleneck. 
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of observational significance, while spatial attention focuses on “where” meaningful objects are located. 
Overall, attention mechanisms have been demonstrated to significantly enhance the performance of object detection models, 

particularly in challenging scenarios where objects are small, occluded, or have complex backgrounds. 

3.2.2. Multi-level prediction scheme 
Fig. 6 (a) and (b) illustrates our proposed PANet-SENet-CBAM (PANet-SC) network architecture. To be specific, B1 ∼ B3 represent 

feature maps in the backbone, P1 ∼ P3 represent unsampled feature maps in the neck, and H1 ∼ H3 represent concatenated feature 
maps after downsampling [40,41]. The green dash curved arrow shows the ability of the SENet attention network to capture key points 
across channels, while the blue dash curved arrow represents the ability of the CBAM attention network to capture key points across 
channels and spaces. 

In IYOLO-NL, the anchor-free approach eliminates the need for manual design of anchor box. Our model also employs a multi-level 
prediction scheme [37] across different feature map levels to enable object detection at varying scales. The specific method is as 
follows.  

• Calculate the regression target parameters l∗, t∗, r∗, and b∗ for each pixel in the feature map.  
• If the anchor points of a certain Fi meet the condition Eq (6): 

{
max(l∗, t∗, r∗, b∗) ≤ mi− 1
max(l∗, t∗, r∗, b∗) ≥ mi

(6)  

then set the pixel as a negative sample. Here mi is the maximum distance that needs to be regressed for feature map i. In the materials 
and experiments section (section 4) of this paper, the maximum regression distances m1, m2, and m3 for the fused feature maps H1 ∼ H3 
are set to 16, 32, and 64, respectively. 

3.3. Global dynamic-k label assignment strategy 

In this subsection, we proposed global dynamic-k label assignment strategy, through Big Sieve and Small Sieve algorithm to 
allocate anchor points in an effective manner. Fig. 7 illustrates the schematic diagram of global dynamic-k label assignment strategy. 

3.3.1. Initial assignment - Big Sieve 
The Big Sieve algorithm is proposed to find all candidate anchor points in a specified area and initially divide positive samples. The 

algorithm calculates relative distance to determine the mask attribute in the specified area. 
As depicted in Fig. 8 (a) and (b), two mask sets B ∗ and S∗ are derived, with B ∗ denoting the mask set for the anchor points in the 

ground-truth bounding box and S∗ signifying the mask of the anchor points in the subdomain π∗. The intersection and union operations 
are executed on these sets, yielding Eq. (7): 

{
Full = B

∗ ∪ S∗

Inner = B
∗
∩ S∗ (7)  

here, Full mask set indicates that anchor points either within the ground-truth bounding box or inside the central subdomain π∗ range. 
In the Inner mask set, a True flag implies that the corresponding anchor point lies inside the center of the ground-truth bounding box. 
True anchor points are potential candidate positive samples, while anchor points with False masks are excluded and assigned a large 
cost weight [3,28], typically 100,000. 

In the initial assignment stage, adjacent anchor points with higher similarity may share the same affiliation. To filter candidate 

Fig. 4. The traditional and novel Spatial Pyramid Pooling network. (a) SSP. (b) SSPP.  
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Fig. 5. Schematic diagrams of attention mechanisms. (a) SENet. (b) CBAM.  

Fig. 6. The traditional PANet and novel PANet-SC network structure. (a) The PANet network. (b) The proposed PANet-SC network.  

Y. Zhou                                                                                                                                                                                                                  



Heliyon 9 (2023) e19064

9

samples during the initial screening for each object, the Big Sieve algorithm starts from the midpoint of the ground-truth bounding box 
and selects points in π∗ every other point (stride equals to 1) until reaching the boundary of Inner set. This significantly reduces the 
number of redundant candidate points compared to YOLOX [28] and FCOS [37], thereby decreasing the likelihood of low-confidence 
samples. 

3.3.2. Fine-grained assignment - Small Sieve 
To achieve fine-grained assignment, the cost matrix is computed between ground-truth bounding boxes and candidate prediction 

boxes generated by candidate anchor points. The GIoU function is used as the bounding box loss Eq. (8): 

Lreg = − log
(
GIoU

(
Bgtbb,Bpred

))
(8)  

where Bgtbb and Bpred represent the ground-truth bounding box and candidate prediction boxes, respectively. The bounding box loss 
function quantifies the dissimilarity between Bgtbb and Bpred. 

The class branch loss is calculated using a binary cross-entropy function that incorporates the Obj prediction branch Eq. (9): 

Fig. 7. The proposed global dynamic-k label assignment strategy.  

Fig. 8. Selection of area using the Big Sieve algorithm. The light green dotted box in (a) is the ground-truth bounding box, and the pink dotted box 
in (b) is the central region π∗ (subdomain) generated by the midpoint of the ground-truth bounding box. 
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Lcls = −
∑n

i=1
(ti log(pi)+ (1 − ti)log (1 − pi)) (9)  

where p = [p0,…,pc− 1], pc represents the probability that the sample is predicted as the c-th class. In Obj prediction branch, t represents 
the label of the sample Eq. (10), 

t =
{

1 Positive Sample
0 Negative Sample (10) 

Therefore, the cost matrix can be obtained as follows [3,28,36] Eq. (11): 

cij =Lcls
ij + λLreg

ij (11)  

where λ is generally set to 3, cij represents the cost matrix of all candidate anchor points. As the value of cij decreases, the matching 
degree between the sample point and a certain ground-truth bounding box increase. 

For each ground-truth bounding box, the proposed Small Sieve algorithm is utilized to dynamically select k precise positive sample 
points from the preliminary candidate anchor points identified by the cost matrix. The algorithm pseudocode is provided in Appendix. 

In the fine-grained assignment stage, the Small Sieve algorithm guarantees that each ground-truth bounding box has k anchor 
points. Additionally, each ambiguous sample point is associated with a unique globally optimal ground-truth bounding box. 

The schematic diagram of the Big Sieve and Small Sieve algorithm is demonstrated in Fig. 9(a–h). Following the Big Sieve and Small 
Sieve assignments, at least one prediction box is generated for each object, with each prediction box corresponding to a unique ground- 
truth bounding box. 

3.3.3. Decoupled head of IYOLO-NL 
The YOLOv5 coupled head, which uses a 1 × 1 convolution operation for classification and regression, suffers from misalignment 

issues [3,28,37]. To tackle this challenge, we implemented the decoupled head from YOLOX to separately handle localization and 
regression [28]. By avoiding misalignment, the decoupled head significantly improves the overall detection performance. 

Using the anchor-free method and the proposed global dynamic-k label assignment strategy, k anchor points are assigned to each 
ground-truth bounding box. However, during the final inference testing, only the most accurate predicted bounding box needs to be 

Fig. 9. The overall process of the global dynamic-k label assignment strategy. (a), (b), (c), (d) represent the single object condition. (e), (f), (g), (h) 
represent the dense and overlaying objects condition. The blue bounding boxes in (a), (e) represent the ground-truth bounding boxes, the pink 
bounding boxes, and blocks in (b), (f) represent the regions and candidate sample points obtained after the initial screening by Big Sieve. The purple 
bounding boxes in (c), (g) represent the prediction boxes generated by the candidate sample points. The (d), (g) represent that each object has k 
candidate points (take 1 as an example), and the corresponding candidate prediction box matches with the related object’s ground-truth bounding 
box. The purple arrows in (d), (g), (h) represent the optimal cost matrix vector for each candidate sample points. For the sake of clarity, the purple 
arrows are omitted in (c), and let objects’ k equals to 1 in (d), (h). 
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matched with each object in the image or video. Thus, the number of anchors associated with each ground-truth bounding box is 
reduced from k to 1. To achieve this, the IYOLO-NL algorithm incorporates the Non-Maximum Suppression (NMS) algorithm, which 
eliminates redundant predicted bounding boxes and retains the most accurate ones. 

4. Materials and experiments 

In this section, we constructed a face mask dataset from scratch. A series of ablation and comparative experiments were then 
conducted to validate the improved performance of the proposed IYOLO-NL over the baseline model. In addition, the real-time 
detection performance of the IYOLO-NL algorithm was evaluated by deploying multiple YOLO models and other state-of-the-art 
(SOTA) detectors. 

4.1. The face mask dataset 

To verify the detection capability of IYOLO-NL on complex scenes and overlapping objects. We created a comprehensive face mask 
dataset (FMD) comprising of 6130 images, as detailed in Table 1. The dataset includes 29,569 manually annotated ground-truth 
bounding boxes for 6130 pictures, covering 12 distinct scenarios. As demonstrated in Fig. 10(a–d), the horizontal-vertical flipping 
and hue-saturation-exposure adjustment techniques were applied to augment the dataset, resulting in 18,390 images. The dataset was 
divided into three parts, 70% for training, 20% for validation while the remainder was used for testing. The valid datasets were divided 
into 10 parts, with each part containing 368 images except for the last two parts, which consisted of 367 images each. For the test 
datasets, images with dense and tiny-sized faces were classified as small objects (714 images), images with one or two faces were 
classified as large objects (494 images), and the remaining images were classified as medium objects (631 images). All images were 
labeled as three categories.  

• With mask  
• Without mask  
• Mask worn incorrectly 

4.2. Experimental settings 

To improve the model’s detection capability for multiscale objects, mosaicking and mix-up [53] augmentations were employed 
during the training phase. Table 2 presents the experimental environment configuration for all models in this paper, and Table 3 il
lustrates that all models were trained for 100 epochs until maximum accuracy was achieved. The first 5 epochs were dedicated to the 
pretraining stage, and formal training began at the 6th epoch. Mosaic augmentation was turned off in the last 15 epochs. 

4.3. Evaluation indicators 

The common evaluation metrics are: Accuracy, Precision (Pc), Recall (Rc), Average Precision (AP), and mean Average Precision 
(mAP), which are defined as follows Eqs. (12), (13), (14), (15) and (16): 

Accuracy=
TPc + TNc

TPc + TNc + FPc + FNc
(12)  

Pc =
TPc

TPc + FPc
(13) 

Table 1 
The face mask dataset. Providing the number of images (Number of Pics) for each background class, along with the corresponding number of 
manually annotated ground-truth bounding boxes (Number of GTBBs).  

S/N Background Environment Number of Pics Number of GTBBs 

1 Car, Train, Airplane 660 4682 
2 Road, Avenue, Booth 800 6565 
3 Grasses and Flowers 600 2113 
4 TV interview, Tik Tok 720 1819 
5 Dog, Cat, Horse 300 330 
6 Rainy, Cloudy, Snow Day 450 585 
7 Dim light 400 649 
8 Family portrait, Many people 600 5195 
9 Selfie 200 312 

10 Object or Human occlusion 500 522 
11 Concert 550 4526 
12 Canteen, Hospital 350 2271 
Total 6130 29,569  
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Rc =
TPc

TPc + FNc
(14)  

AP=

∫

Pc(Rc)d(Rc) (15)  

mAP=
1
N

∑N

i=1
APi (16) 

Fig. 10. Face mask dataset data augmentation. Data augmentation was performed on the (a) original dataset, through (b) dark-contrast, (c) 
horizontal-vertical flipping, and (d) hue-saturation-exposure adjustment, resulting in 3065, 3065, and 6130 images respectively. The augmented 
FMD dataset contains a total of 18,390 images. 

Table 2 
Experimental environment configuration.  

Hardware environment CPU AMD Ryzen 7 5700X 

RAM 64 GB 
Video memory 12 GB 

GPU NVIDIA GeForce RTX 3080Ti 

Software environment OS Ubuntu 

CUDA Toolkit V11.4;  
CUDNN V8.0.4;  
Python 3.9.2;  
torch 1.8.1;  

torchvision 0.9.1;  

Encode environment VSCode   
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where TPc represents the true positives, TNc represents the true negatives, FPc represents the false positives and FNc represents the false 
negatives. AP measures the detection performance of a model for each class, while mAP is the average value of AP across all classes and 
is the primary metric for evaluating the overall performance of the model. 

4.4. IYOLO-NL ablation experiments 

To evaluate the impact of each component on the overall performance of IYOLO-NL, a series of ablation experiments were con
ducted. As illustrated in Table 4, the new sample assignment scheme (decoupled head, anchor-free, multi-level prediction, global 
dynamic-k label assignment strategy) improves the AP by 6.8% when compared with the baseline detector-YOLOv5l, among these 
components, the attention mechanism demonstrates the most significant impact on AP, with an increase of 2.7%. Despite a slight 
increase in the number of parameters, the IYOLO-NL detector incorporates lightweight structures such as SSPP and CSPNet-Ghost 
bottleneck to achieve an average FPS of 97.1, enabling it to perform localization inference on the object in a more efficient manner. 

The decoupled head, which is closely associated with key components such as the anchor-free method and global dynamic-k label 
assignment strategy, is the central element of the IYOLO-NL detector. On the same backbone and neck structure, Fig. 11 (a) shows that 
the IYOLO-NL detector with the decoupled head achieved an AP that was approximately 15% higher in detecting small objects than 
that of the IYOLO-NL detector with the coupled head. Additionally, the IYOLO-NL detector with the decoupled head maintained high 
accuracy in detecting medium- and large-scale objects (Fig. 11 (b) and (c)). 

To ensure objects remain within the receptive field of the feature maps, the maximum distance of the anchor points is limited. 
Furthermore, objects of varying sizes are distributed across different feature maps, with overlapping primarily occurring between 
objects that differ significantly in size [1,28,37,39]. Therefore, the multi-level prediction strategy with PANet-SC improves the 
detection performance of small and overlapping objects. 

The impact of using the ghost module and SSPP on memory usage and training acceleration were analyzed. The ghost module 
includes an identity mapping and nr ⋅ (r − 1) linear operations, each with an average kernel size of d × d (e.g., 3 × 3 or 5× 5). Compared 
to conventional convolutional operations (n ⋅ h ⋅ w ⋅ c ⋅ k ⋅ k), the ghost module has a theoretical acceleration ratio (ra) Eqs. (17) and 
(18): 

ra =
n ⋅ h ⋅ w ⋅ c ⋅ k ⋅ k

n
r ⋅ h ⋅ w ⋅ c ⋅ k ⋅ k +

(
r − 1

)
⋅ n

r ⋅ h ⋅ w ⋅ d ⋅ d
(17)  

=
c ⋅ k ⋅ k

1
r ⋅ c ⋅ k ⋅ k + r− 1

r ⋅ d ⋅ d
≈

r ⋅ c
c + r − 1

≈ r (18)  

which is equal to its parameter compression ratio (rc), the ghost module located in the IYOLO-NL backbone achieves r times higher 
inference speed and spatial computing efficiency compared to the original convolutional network Eq. (19). 

Table 3 
Model experimental parameter settings.  

Parameter Settings Parameter Settings 

Seed none Warmup epochs 5 
Num of class 3 Max epoch 100 

Input size (640,640) Warmup learn rate 0 
Degrees 10.0 No augmentation epochs 15 

Translate 0.1 Min learn ratio 0.05 
Scale (0.1, 2) Weight decay 0.0005 

Mosaic (0.8, 1.6) Momentum 0.9 
Shear 2.0 Test size (640,640) 

Enable mix-up True NMS threshold 0.65  

Table 4 
Results of ablation experiments on IYOLO-NL. Take YOLOv5l as a baseline, iteratively improved it based on the contents in methods column. The 
green numbers in parentheses in the AP column represent the improvement of the current version over the previous one. The FPS results are the 
average of multiple tests.  

Methods AP(%) Parameters GFLOPs Latency FPS(Avg) 

YOLOv5l-Baseline 85.5 63.00 M 157.3 10.5 ms 95.2 
+Decoupled Head 86.6(+1.1) 63.86 M 186.1 11.6 ms 86.2 

+Strong Augmentation 89.0(+2.4) 63.86 M 186.1 11.6 ms 86.2 
+Anchor-Free 90.9(+1.9) 63.71 M 185.3 10.2 ms 90.1 

+Multi-Positives 92.6(+1.7) 63.71 M 185.3 10.2 ms 90.1 
+Global Dynamic-K 94.7(+2.1) 63.71 M 185.3 10.2 ms 93.1 

+Attention Mechanism 97.4(+2.7) 63.75 M 191.6 10.4 ms 96.6 
IYOLO-NL 98.7(+12.5) 63.76 M 190.7 10.4 ms 97.1  
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rc =
n ⋅ c ⋅ k ⋅ k

n
r ⋅ c ⋅ k ⋅ k +

(
r − 1

)
⋅ n

r ⋅ d ⋅ d
≈

r ⋅ c
c + r − 1

≈ r (19)  

In contrast to the SPP bottleneck [47], the IYOLO-NL detector achieves equivalent detection results using the SSPP bottleneck, which 
exhibits superior training efficiency and remarkable progress, especially in forward and backward calculations. Table 5 provides 
additional information on SSP and SSPP, demonstrating that the SSPP bottleneck significantly reduces processing time and saves GPU 
memory usage. 

4.5. Compare experiments with SOTA object detectors 

Fig. 12 and Table 6 illustrate the performance of various state-of-the-art (SOTA) object detectors on FMD. Each model was eval
uated separately on the large, medium, and small datasets of the FMD dataset using the data partitioning method described in sub
section 4.1. With the exception of Faster R–CNN [2], object detection models tend to shift towards the lower-right corner as the size of 
the target object decreases, indicating that detection accuracy and latency are highest for large objects and lowest for small objects. 
However, the frame rate (FPS) is higher for smaller objects. 

Under the same experimental environment and training strategies, IYOLO-NL achieved the best performance with an accuracy of 
98.8%, a best AP of 98.7%, a mAP of 95.7%, and a best FPS of 130. It is noteworthy that IYOLO-NL outperformed Faster R–CNN in FPS 
by almost 22 times. Compared to other single-stage detectors, such as SSD [20], EfficientDet [54], benchmark-YOLOv5l, and novel 
YOLOv6~YOLOv8 [3,29], the IYOLO-NL model is located at the top right corner, indicating that it achieved the high AP and mAP 
while maintaining highest FPS, almost 4 times faster than the slowest. 

4.6. IYOLO-NL none left performance compared to baseline YOLOv5l 

IYOLO-NL exhibits substantial improvement over YOLOv5l in terms of evaluation metrics. Fig. 13 (a) and (b) illustrate that IYOLO- 
NL outperforms YOLOv5l in the early stages and consistently maintains superior performance, with higher AP and mAP values. 
Additionally, IYOLO-NL exhibits robustness and stability in real-time mask-wearing detection when compared to the baseline 
YOLOv5l. 

Firstly, as shown in Fig. 14 (a) and (c), when dealing with complex backgrounds, YOLOv5l exhibited “False Detection” phenomena 
where the background was mistakenly detected as a positive object. In contrast, IYOLO-NL demonstrated robustness in handling 
complex backgrounds, as evidenced by its superior performance in Fig. 14 (b) and (d) in the comparative results. 

Secondly, when dealing with dense scenes containing multiple-scale objects, YOLOv5l exhibited significant instances of false 
negatives in its detection results for Fig. 15 (a), (b), (e), and (f), implying YOLOv5l missed some positive objects. In contrast, IYOLO-NL 
accurately detected multiple objects in such crowded scenarios, as demonstrated by its corresponding results for Fig. 15 (c), (d), (g), 

Fig. 11. Multi-scale object detection performance of IYOLO-NL with various heads. The sky-blue solid line represents the IYOLO-NL model with the 
original YOLOv5 detection head, while the orange solid line represents the IYOLO-NL model with the decoupled head. Both models were evaluated 
on (a) small, (b) medium, and (c) large objects, with the error bars displaying the average error across multiple 10-fold cross-validations. 

Table 5 
Performance comparison of SPP and SSPP structures. Comparison experiments were conducted based on the same IYOLO-NL architecture. The 
compared parameters include parameter size (Params, unit: memory size), billion floating-point operations per second (GFLOPS), GPU usage (unit: 
GB), forward propagation time (Forward, unit: milliseconds), backward propagation time (Backward, unit: milliseconds), and input-output feature 
size (I/O).  

Bottleneck Params GFLOPS GPU Forward Backward I/O 

SPP 2.6 M 334 4.586 GB 80.90 ms 171.2 ms (16,20,20,1024) 
SSPP 2.6 M 334 4.452 GB 55.23 ms 114.9 ms (16,20,20,1024)  
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Fig. 12. The performances of IYOLO-NL and other SOTA object detectors. Deployed 15 object detection models to test the FMD dataset. Each model 
corresponds to a scatter plot, where the scatter points from left represent the best AP and corresponding FPS for the three label categories of large-, 
medium- and small-size data, respectively. The trend of the Faster R–CNN model is the opposite. 

Table 6 
The performances of IYOLO-NL and other SOTA object detectors. Compare in input size, Accuracy, AP, mAP and FPS. The indicators are taken from 
the best performance of each model. All YOLO series detectors (l-type) and other state-of-the-art (SOTA) models were trained and evaluated using the 
same dataset and experimental settings as IYOLO-NL.  

Model Input Size Accuracy(%) AP(%) mAP(%) FPS 

YOLOv1 [21] 448 × 448 71.3% 66.5% 61.2% 35 
YOLOv2 [22] 448 × 448 80.8% 81.2% 79.3% 54 
YOLOv3 [7] 416 × 416 89.7% 82.2% 81.5% 110 
YOLOv4 [1] 416 × 416 93.2% 83.1% 80.7% 95 

YOLOv5 640 × 640 93.4% 85.5% 82.8% 115 
YOLOX [28] 640 × 640 97.3% 96.1% 93.7% 103 
YOLOv6 [29] 640 × 640 96.5% 91.7% 91.1% 97 
YOLOv7 [3] 640 × 640 95.4% 93.6% 92.4% 124 

YOLOv8 640 × 640 94.9% 91.1% 90.6% 121 
Faster R–CNN [2] 600 × 600 94.4% 91.3% 92.1% 6 

SSD [20] 300 × 300 89.8% 87.6% 84.2% 75 
EfficientDet-D0 [54] 512 × 512 91.5% 90.2% 87.6% 32 
EfficientDet-D1 [54] 640 × 640 90.7% 85.6% 83.4% 28 
EfficientDet-D2 [54] 736 × 736 93.2% 91.6% 89.9% 33 

IYOLO-NL 640 × 640 98.8% 98.7% 95.7% 130  

Fig. 13. The performance comparison between IYOLO-NL and YOLOv5l. The red solid line represents IYOLO-NL, and the blue solid line represents 
YOLOv5l. Both models were validated on the FMD dataset with 100 epochs as the benchmark (x-axis), and the y-axis represents: (a) AP, (b) mAP. 
The purple vertical dashed lines in figures indicate the position where IYOLO-NL first surpassed YOLOv5l in each evaluation metric. 
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and (h). 
These findings highlight the advantages of IYOLO-NL over YOLOv5l in challenging scenarios with complex and dense backgrounds 

and suggest its potential for practical applications in real-world settings. 

4.7. IYOLO-NL performance on FMD 

Fig. 16 demonstrates the excellent detection performance of IYOLO-NL on the FMD dataset, particularly in handling dense small 
object scenes. IYOLO-NL can detect small faces in walls or albums without any errors, including small headshots on healthcare 
worker’s ID cards (Fig. 16 (a) and (b)). Even when the nose and mouth area is obstructed by objects such as arms, backs of hands, and 
teacups, IYOLO-NL can correctly identify and classify them without any omissions (Fig. 16 (c)). IYOLO-NL can successfully detect three 
different categories of mask-wearing situations, including multi-scale, overlapping, and small-occluded objects in dense scenes. 
Additionally, IYOLO-NL exhibits style transfer ability, as illustrated in the last two pictures in Fig. 16 (c), where even puppets with face 
masks are correctly detected. 

4.8. Comparison of IYOLO-NL and previous studies 

We compared the detection performance of IYOLO-NL with other methods, including traditional handcrafted methods and various- 
stage neural network methods trained on different sources (i.e., datasets, environments) and evaluated with different indicators, as 
shown in Table 7. Despite the varying comparative conditions, IYOLO-NL demonstrates the best detection performance among all the 
methods, especially in FPS, by comprehensively processing three categories. 

4.9. Potential and limitations of the IYOLO-NL 

Our proposed IYOLO-NL model is versatile and can be applied to any real-world object detection task. Although we only 
demonstrate its application to face mask detection in this paper, it covers more than three types of objects: faces, masks, hands, 
clothing, and any other objects that may occlude the face area in real-world scenarios. The comprehensive performance of our model 
far exceeds that of previous research methods. Specifically, IYOLO-NL achieves a score of 99.6% AP in face detection, which is a well- 
established research area. 

Fig. 14. Comparison of the detection effects of YOLOv5l and IYOLO-NL. The detection results of YOLOv5l are (a), (c), while the corresponding 
results of IYOLO-NL are (b), (d). 

Y. Zhou                                                                                                                                                                                                                  



Heliyon 9 (2023) e19064

17

We categorized the dataset into three groups based on size: large, medium, and small. Despite the conventional limitations of the 
YOLO detector, our study found that novel IYOLO-NL model performs better than the YOLOv5 baseline in detecting multi-scale objects. 
The detection of puppets in our results confirmed the transferability of IYOLO-NL. Furthermore, IYOLO-NL’s anchor-free design 
eliminates the need for parameter settings and enables effortless switching between datasets. 

In practical applications, IYOLO-NL achieves an average of 97 FPS with 98.8% accuracy during real-world inference, fulfilling the 
requirement for high-precision and real-time monitoring. The proposed IYOLO-NL model has the potential to enhance safety, reduce 
costs, and improve efficiency in various real-world applications, such as public safety, transportation, and industrial automation. 

IYOLO-NL is a single-stage object detection model optimized for GPU training and inference, which can efficiently utilize GPU 
resources compared to the current mainstream YOLO models. However, its performance on edge devices (such as smartphones and 
microcontrollers that rely on CPU for computation) may be limited. To enhance its efficacy on devices with limited GPU resources, we 
suggest adjusting the dynamic-k parameter of the global dynamic label assignment strategy or considering using a MobileNet structure 
instead of the IYOLO-NL backbone. 

5. Conclusion 

In this paper, a novel real-time object detector IYOLO-NL was proposed. IYOLO-NL redefined the manner of sample assignment by 
using novel global dynamic-k label assignment strategy in an anchor-free fashion. To reduce computational complexity and enhance 
inference speed, the developed CSPNet-Ghost bottleneck and SSPP network were utilized in the backbone. In the Neck part, the IYOLO- 
NL employed the proposed PANet-SC with multi-level prediction scheme to cope with multi-scale, overlapping and small objects more 
effectively and accurately. To avoid misalignment problems and improve prediction performance, IYOLO-NL adopted a decouple head 
as the model output medium. 

The FMD dataset and IYOLO-NL model were constructed for face mask detection. Several experiments indicated that IYOLO-NL 
outperforms the baseline YOLOv5l and other methods with 98.8% accuracy, 95.7% mAP and 130 FPS. IYOLO-NL demonstrated 
outstanding performance in addressing complex backgrounds, overlapping objects, and other related challenges, highlighting its 
robustness and “None Left” characteristic. IYOLO-NL takes a leading position in the real-time face mask detection field when compared 
with SOTA detectors such as YOLOX, YOLOv6, YOLOv7 and YOLOv8. Along with the improvement of the YOLO models, we hope 
IYOLO-NL can achieve better performance in the future. 

Ethics statement 

Due to the characteristics of the study, it does not require approval by the ethics committee. All participants provided informed 
consent for the publication of their images. 

Fig. 15. Comparison of the detection effects of YOLOv5l and IYOLO-NL on crowded objects. The detection results of YOLOv5l are (a), (b), (e), and 
(f), while the corresponding results of IYOLO-NL are (c), (d), (g), and (h). 
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Fig. 16. Detection results of IYOLO-NL on FMD dataset. (a) Three label detection results. (b) Dense and Small objects detection results. (c) 
Overlaying, occlude and style transfer objects detection results. 
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Appendix  

Table A1 
Small Sieve pseudocode. 

Table 7 
Comparison of IYOLO-NL and previous studies. The highlighted blue entries are our IYOLO-NL. The comparison range covers conventional, multi- 
stage, two-stage, and single-stage algorithms. The classes list indicates the number of classifications for the tested objects (correctly wearing 
masks, not wearing masks, not correctly wearing masks, etc.). The datasets list shows the source of the original data. Some papers use accuracy and 
precision interchangeably (or separately), so the highest numerical value of two indicators in that column is displayed. The data marked "-" in the 
table indicates that there is no corresponding description in the corresponding paper.  

Category Method Classes Datasets Accuracy&Precious mAP FPS 

Conventional Dewantara et al. [12] 2 1000 images, self-built 86.9% – 25 
Nieto-Rodriguez et al. [55] 2 677 test cases, self-built 95% – 10 

Petrovic et al. [56] 3 – 84%–91% – 38 
Fang et al. [57] 2 6024 images, self-built 96.5%  46 

Multi-Stage Cota et al. [14] 2 2270 images, self-built – 85.92% 15 
Lin et al. [15] 2 992 images, self-built Daytime:95.8% 

Nighttime:94.6% 
– – 

Qin et al. [58] 3 3835 images, self-built 98.7% – 33 
Two-Stage Mercaldo et al. [16] 2 4095 images 98% – – 

Zereen et al. [17] 2 5504 images, self-built 97.13% – – 
Rudraraju et al. [59] 3 1270 images, self-built 90% – – 

Single-Stage Zhang et al. [60] 3 4672 images, self-built – 84.1% – 
Deng et al. [61] 2 3656 images, self-built – 91.7% – 
Loey et al. [23] 1 1415 images, Kaggle – 81% – 
Jiang et al. [25] 3 9205 images, self-built – 73.7% 16 

Sharma [62] 2 – – 60% – 
IYOLO-NL Ours 3 6130 images, self-built 98.8% 95.7% 130  
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Step 1. Construct the cost matrix from the loss function. 

Step 2. Initialize the matching matrix between the ground-truth bounding box and the initial candidate points and assign all values in 
the matching matrix to 0, indicating that they are not matched. 

Step 3. Calculate the IoU between the ground-truth bounding boxes and the candidate prediction boxes. Find the top-10 largest IoUs 
and their corresponding data in the IoU matrix. 

Step 4. Sum up the IoUs of the top-10 samples, then count the number of anchor points allocated to the current ground-truth 
bounding box, i.e., the dynamic-k. 

Step 5. For each ground-truth bounding box, use the breadth-first search algorithm (BFS) to calculate the positions of the k anchor 
points with the smallest cost values. 

Step 6. Filter out the shared candidate anchor points, i.e., eliminate the cases where one candidate anchor point is matched to 

Y. Zhou                                                                                                                                                                                                                  



Heliyon 9 (2023) e19064

21

multiple ground-truth bounding boxes. To be specific, calculate the position with the smallest loss value through the Dijkstra algorithm 
among the shared candidate anchor points, set the mask of that position to 1, and set the rest of the positions in the same column to 0. 

Step 7. Return the number of candidate anchor points, the matching information (IoU value, ground-truth bounding box index, etc.) 
between anchor points and ground-truth bounding boxes, and update the positive sample mask. 
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