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Abstract

Aim

The evaluation of the effects of resuscitation activity factors on the outcome of out-of-hospi-

tal cardiopulmonary arrest (OHCA) requires consideration of the interactions among these

factors. To improve OHCA success rates, this study assessed the prognostic interactions

resulting from simultaneously modifying two prehospital factors using a trained machine

learning model.

Methods

We enrolled 8274 OHCA patients resuscitated by emergency medical services (EMS) in

Nara prefecture, Japan, with a unified activity protocol between January 2010 and Decem-

ber 2018; patients younger than 18 and those with noncardiogenic cardiopulmonary arrest

were excluded. Next, a three-layer neural network model was constructed to predict the

cerebral performance category score of 1 or 2 at one month based on 24 features of prehos-

pital EMS activity. Using this model, we evaluated the prognostic impact of continuously and

simultaneously varying the transport time and the defibrillation or drug-administration time in

the test data based on heatmaps.

Results

The average class sensitivity of the prognostic model was more than 0.86, with a full area

under the receiver operating characteristics curve of 0.94 (95% confidence interval of 0.92–

0.96). By adjusting the two time factors simultaneously, a nonlinear interaction was obtained

between the two adjustments, instead of a linear prediction of the outcome.

Conclusion

Modifications to the parameters using a machine-learning-based prognostic model indicated

an interaction among the prognostic factors. These findings could be used to evaluate which
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factors should be prioritized to reduce time in the trained region of machine learning in order

to improve EMS activities.

Introduction

Low resuscitation success rates in out-of-hospital cardiopulmonary arrest (OHCA) events are

a common problem encountered globally. To facilitate the development of outcome-improve-

ment strategies, prehospital records in the standardized Utstein style have been collected by

institutions globally for several decades [1]. Moreover, prognostic factors have been investi-

gated using big data analysis [2, 3]. Several randomized controlled trials have also been under-

taken to improve OHCA outcomes [4–7].

However, background heterogeneity cannot be ignored in large-cohort studies because of

the heterogeneity in healthcare resources and registries [8, 9]. Additionally, including various

cohorts in a dataset obscures the effect of interventions on subgroups [10]. Therefore, the

improvement strategies identified in previous studies may be ineffective in some regions. Fur-

thermore, because the evaluation of simultaneous interactions between multiple prognostic

factors is difficult using conventional statistical approaches, previously reported approaches

were focused exclusively on the effects of individual factors [11]. Consequently, exploring

strategies for improving prehospital activities while prioritizing the provision of emergency

medical services (EMS) has become difficult.

Recently, machine learning models have been utilized for prediction in OHCA, among

which neural networks are reportedly the most accurate [11–17]. However, since interactions

among the factors affecting the outcome are included in the structure of the neural network,

changing a single factor may simulate situations that would be difficult to handle in a random-

ized controlled trial [12, 18].

In this study, we hypothesized that the effect of modifying the two factors of activity dura-

tion on prognosis would not be linear because of the interactions between the time compo-

nents of EMS activity. Using a prognostic model constructed from EMS activity records

according to a unified protocol, we evaluated the effects of simultaneous changes in the two

EMS activity factors using visual representations. The model proposed in this study was devel-

oped using specific regional data. However, applying the underlying concepts with external

data from diverse backgrounds could facilitate assessment of the current status of EMS activi-

ties in other regions and the suggestion of targets for the improvement of EMS activities spe-

cific to other regions.

Materials and methods

Study design

We conducted a retrospective analysis of the EMS activity in Nara prefecture, Japan as

recorded in the prospectively collected Utstein style. This observational study was approved by

the ethical review board of Nara Medical University (no. 2973). Further, as only anonymized

EMS activity records were used, the requirements for informed consent were waived by the

reviewing authority.

Study population and data sources

Nara prefecture is a rural region with a population of approximately 1.4 million, 30.9% of

which are 65 years and older [19]. Approximately 1000 OHCA cases occur in the prefecture
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annually, and the emergency team is dispatched to all cases in response to emergency requests.

The EMS activities are performed following a unified protocol that conforms with the resusci-

tation guidelines and is reviewed every five years. The EMS activity records are subject to triple

activity checks, and feedback are collected for each incident and compiled annually. This study

examined all OHCA prehospital records where resuscitation was performed by the EMS in

Nara prefecture between January 2010 and December 2018. Patients under 18 years and

patients with non-cardiogenic cardiopulmonary arrest were excluded to reduce the variance in

patient backgrounds.

Local emergency medical system in the study area

The emergency medical service is activated and dispatched by the communication command

center via an emergency call. Concurrently, the communication command center provides

verbal CPR instructions for all suspected cases of cardiopulmonary arrest. A physician may

accompany EMS at the request of the communications command center. The EMS service in

this country can provide defibrillation for cardiopulmonary arrest patients. They are also capa-

ble of advanced airway management and adrenaline administration under the instruction of a

physician. All cases are transferred to a hospital unless there are clear signs of death.

Data collection and preprocessing

Twenty-four data items obtained from the prehospital Utstein-style EMS activity records were

included in the study. The collected factors were preprocessed as follows. Categorical data

were one-hot encoded, and missing data were encoded as missing data. (S1 Table) Continuous

variables (age, number of defibrillations, and number of drugs administered) had no missing

values and were standardized. However, certain variables that were used later for adjustment

(time from call to contact, time from contact to arrival, etc.) were retained as continuous vari-

ables. Interventions that were not performed on all patients (e.g., defibrillation, drug adminis-

tration) were one-hot-encoded for non-performance and for time from contact to

performance. The preprocessing created 145 input factors. The details of the preprocessing are

shown in S2 Table.

The machine learning model was constructed in this study with the aim of obtaining the

neurological prognostic cerebral performance category (CPC) scores [20] recorded one month

after the occurrence of cardiac arrest. The CPC score indicates the following patient categories:

(1) mild or no neurological deficits, (2) moderate neurological deficits, (3) severe neurological

deficits, (4) in persistent coma or vegetative state, and (5) deceased. The outcome was based on

a binary classification (Yes/No) with a CPC1 or 2 (CPC1/2) as the output factor, indicating a

favorable neurological outcome.

Dataset usage and predictive model construction methods

The collected dataset was stratified using the CPC1/2 method and divided into five groups (Fig

1). One group was pre-separated from the other four groups used for training to be used as test

data and modified data for the final constructed predictive models. The remaining data groups

were used to train and validate four models via the CPC1/2 stratified cross-validation method.

The prediction model was built using a neural network that had the best average class sensi-

tivity after several machine learning model trials. The compared methods included logistic

regression, k-nearest neighbors, support vector machine, decision tree, random forest,

XGBoost, and LightGBM. Increasing the layers improved the performance, but no accuracy

improvement resulted above four layers. Consequently, after considering the training cost, we

chose three layers. To reduce overfitting, Batch Normalization and Dropout were introduced
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into each layer. The Sigmoid function and Binary Cross-Entropy were used for the activation

and loss functions, respectively. The network structure was optimized using the Structure.
Search function available within the Neural Network Console (version 1.9.7587.58782, Sony;

Tokyo, Japan). This function automatically optimizes the network structure to obtain a more

accurate and computationally less-expensive alternative.

To evaluate predictions from imbalanced datasets, accuracy and area under the receiver

operating characteristics curve (AUROC) are inadequate for predicting the minority class pre-

dictions individually [21]. Moreover, if the sensitivity of the majority class is inadequate, the

predicted minority class (such as CPC1/2) can be enormous. Whereas previous studies often

evaluated model accuracy using single class sensitivity [11, 12] or AUROC [13–17], the model

in this study was created to accurately predict the number of minority class predictions. Class

weighting for the loss function can effectively improve the sensitivity of the minority class.

However, the sensitivity of the larger non-CPC1/2 class should be maximal because it signifi-

cantly impacts the predicted CPC1/2 class. Nevertheless, class weighting involves a trade-off

between the sensitivities of the CPC1/2 and non-CPC1/2 classes; therefore, balanced weighting

must be considered to ensure the sensitivity of the CPC1/2 class does not decrease excessively.

Consequently, in our model, the sensitivity of CPC1/2 (minority class) was set to approxi-

mately 80% to ensure the accurate prediction of the CPC1/2 sensitivity and that the value of

the predicted CPC1/2 is controlled; the weights were adjusted to ensure that the sensitivity of

not-CPC1/2 was the highest. Model construction, training, and validation were performed

using Neural Network Console version 1.9.7587.58782 (Sony, Tokyo, Japan). The models were

Fig 1. Overview of the data partitioning and stratified cross-validation method and neural network-based machine learning model. The model was

developed using the stratified cross-validation method with CPC1/2. The machine learning model comprised a three-layer neural network, along with class

weighting to improve the predictive precision for imbalanced data. CPC, cerebral performance category; BN, batch normalization; AUROC, area under the

receiver operating characteristics curve.

https://doi.org/10.1371/journal.pone.0273787.g001
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trained considering a batch size of 100 with 50 epochs and the Adam optimizer (learning

rate = 0.001). All statistical analyses were performed using R 4.0.2 (R Development Core

Team, Vienna, Austria). Differences were considered statistically significant at p< 0.05.

Sensitivity analysis

To assess model validity, we performed a sensitivity analysis by modifying the adjustable prog-

nostic factors. The previously reported prognostic factors include initial waveform rhythm,

age, collapse to basic-life-support duration, arrival time after EMS dispatch, arrival time at hos-

pital, and incident location [11, 22, 23]. For sensitivity analysis, we evaluated three of the

adjustable factors: age and the times from call to contact and contact to arrival. Each parameter

was added or subtracted independently, and the change in the predicted CPC1/2 was con-

firmed (i.e., age ± 5 years; time from call to contact +10 min and +20 min; time from contact

to arrival, −5 min, +10 min, and +20 min).

Simulation method with parameter manipulation

Using the constructed prediction model, we simulated the change in the predicted CPC1/2 by

adding or subtracting time variables to the test data (n = 1654), previously separated from the

training set beforehand. Time from arrival to defibrillation [24] and time to drug administra-

tion [25–27] have been reported as important prognostic factors of EMS activity time. Further-

more, defibrillation is a primary priority in all cases of shock-adapted waveforms. Therefore,

the adjusted time factors included the elapsed time between (a) arrival of the EMS and arrival

at the hospital, (b) arrival and first defibrillation, and (c) arrival and first-drug administration.

Of these time factors, we adjusted (a) and (b), and (a) and (c) simultaneously. However, the

time of the first defibrillation was adjusted for the 156 patients whose initial waveform was

shockable. The initial drug administration time was adjusted for 588 patients, excluding those

whose cardiac arrest was witnessed by firefighters, paramedics, or emergency lifesaver. Each of

the four prediction models was evaluated against these adjusted test data to determine the

average predicted CPC1/2. A heatmap was created for each result as a percentage increase/

decrease from the average predicted CPC1/2 for the unadjusted test data (S1 Fig).

Continuous variables were described by their median and interquartile range, and categori-

cal variables were expressed as percentages. Comparisons between the five divided groups

were performed using the Kruskal–Wallis test for continuous variables and Fisher’s exact test

for categorical variables. p value < 0.05 indicated a statistically significant difference.

Results

During the study period, 11,504 OHCA with cardiopulmonary resuscitation were recorded.

Of these, 8274 patients (72%) met the inclusion criteria (Fig 2). Table 1 shows the background

of the patients and the dataset created by dividing the patients into five stratified groups based

on CPC1/2.

Fig 1 depicts the prediction model used in this study. The number of multiplications and

additions in a single training run of the neural network model constructed in this study was

approximately 44,000. The average class sensitivities of the four cross-validation models were

0.87, 0.86, 0.91, and 0.90, and the full AUROC was 0.96 (95% CI 0.94–0.97). Using this model

to validate the test data, the mean class sensitivities were 0.86, 0.88, 0.87, and 0.88, and the full

AUROC was 0.94 (95% CI 0.92–0.96) (S2 Fig). Fig 3 shows the sensitivity analysis results. The

influence of increasing/decreasing age and reducing/extending time on the outcome was con-

firmed to exhibit the same trend as the influence of the previously reported prognostic factors

[11].
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Figs 4 and 5 depict the effects of modifying the time parameters. The time elapsed between

contact and arrival and the time to first defibrillation were adjusted. When the time of arrival

at the hospital was exclusively adjusted, the prognosis was found to be better for shorter dura-

tions. Conversely, any delay in arrival at the hospital worsened the prognosis, as expected. Fur-

thermore, a 1 min delay in defibrillation improved the prognosis. Overall, the combination of

short transport and defibrillation durations improved prognosis, whereas any increase/

decrease in the defibrillation time combined with prolonged transportation duration worsened

the prognosis. Increases and decreases in defibrillation time of more than 3 min in a few train-

ing cases (S1 Fig) led to poor outcomes.

Next, we adjusted the times for hospital arrival and first-drug administration. Contrary to

defibrillation, a 1 min reduction in the time for drug administration improved prognosis.

Although the combination of short transportation duration and defibrillation time demon-

strated the most improvement in prognosis, a short transportation duration improved progno-

sis even when drug administration was delayed. Conversely, shortening the drug-

administration time also improved prognosis despite delays in hospital arrival. In both cases,

an interaction between two factors was found to influence prognosis, instead of the monotonic

effect of a single factor.

Fig 2. Patient selection flowchart. EMS, emergency medical services; OHCA, out-of-hospital cardiopulmonary arrest.

https://doi.org/10.1371/journal.pone.0273787.g002
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Table 1. Overall patient background and comparison between five groups classified by CPC1/2.

Five groups (classified by CPC1/2)

Variables Overall 1 2 3 4 5 p

value

n = 8274 n = 1654 n = 1656 n = 1655 n = 1655 n = 1654

Age (years), median [IQR] 81 [71,

87]

80 [72,

87]

81 [71,

87]

81 [71,

88]

80 [71,

88]

81 [71,

87]

0.98

Sex (male), n (%) 4592 (56) 907 (55) 912 (55) 909 (55) 942 (57) 922 (56) 0.73

Guideline2010, n (%) 4360 (53) 901 (55) 857 (52) 863 (52) 888 (54) 851 (52) 0.34

Guideline2015, n (%) 3914 (47) 753 (46) 799 (48) 792 (48) 767 (46) 803 (49) 0.34

Witnessed arrest, n (%) 3298 (40) 640 (39) 675 (41) 673 (41) 661 (40) 649 (39) 0.7

Type of witness, n (%) Family 1692 (20) 318 (19) 347 (21) 361 (22) 326 (20) 340 (21) 0.77

Friends 91 (1) 22 (1) 21 (1) 14 (1) 16 (1) 18 (1)

Colleagues 71 (1) 10 (1) 12 (1) 18 (1) 13 (1) 18 (1)

Passers-by 65 (1) 10 (1) 14 (1) 13 (1) 10 (1) 18 (1)

Other 703 (9) 151 (9) 139 (8) 132 (8) 151 (9) 130 (8)

Firefighter 2 (0) 1 (0) 0 (0) 1 (0) 0 (0) 0 (0)

Paramedic 172 (2) 25 (2) 40 (2) 33 (2) 37 (2) 37 (2)

Emergency lifesaver 502 (6) 103 (6) 102 (6) 101 (6) 108 (7) 88 (5)

Bystander CPR, n (%) 4264 (52) 878 (53) 830 (50) 820 (50) 879 (53) 857 (52) 0.12

Bystander CPR (actions), n (%) Compressions only 4247 (51) 876 (53) 824 (50) 817 (49) 878 (53) 852 (52) 0.1

Compressions and

ventilations

531 (6) 96 (6) 117 (7) 111 (7) 110 (7) 97 (6) 0.49

AED use by bystander, n (%) 134 (2) 24 (2) 32 (2) 22 (1) 30 (2) 26 (2) 0.62

EMS with emergency lifesaver, n (%) 8089 (98) 1622 (98) 1622 (98) 1619 (98) 1617 (98) 1609 (97) 0.6

EMS with medical doctor, n (%) 465 (6) 88 (5.3) 78 (5) 97 (6) 101 (6) 101 (6) 0.34

First monitored rhythm, n (%) VF 704 (9) 134 (8) 137 (8) 149 (9) 138 (8) 146 (9) 0.95

Pulseless VT 52 (2) 9 (1) 11 (1) 11 (1) 11 (1) 10 (1)

PEA 1669 (20) 342 (22) 330 (20) 349 (21) 306 (19) 342 (21)

Asystole 5416 (66) 1091 (66) 1090 (66) 1064 (64) 1105 (67) 1066 (64)

Other 433 (5) 78 (5) 88 (5) 82 (5.0) 95 (6) 90 (5)

Defibrillation, n (%) 1019 (12) 197 (12) 200 (12) 217

(13.1)

200 (12) 205 (12) 0.84

Median time from contact with patients by EMS to shock by

EMS, minute, median [IQR]

4 [3, 12] 5 [3, 12] 4 [3, 12] 5 [3, 12] 4 [3, 11] 4 [3, 12] 0.59

Frequency of prehospital defibrillation, median [IQR] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0.79

Routes of medication administration, n (%) 3778 (46) 721 (44) 785 (47) 738 (45) 752 (45) 782 (47) 0.12

Adrenaline, n (%) 2947 (36) 556 (34) 591 (36) 575 (35) 614 (37) 611 (37) 0.18

Median time from contact with patients by EMS to

adrenaline (minute) median [IQR]

16 [12,

21]

15 [12,

21]

16 [12,

21]

16 [12,

21]

16 [12,

22]

16 [12,

22]

0.16

Frequency of prehospital adrenaline, n (%) 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0.28

Advanced airway management, n (%) 7320 (89) 1475 (89) 1463 (88) 1459 (88) 1464 (89) 1459 (88) 0.89

Median time from call to contact with patients by EMS,

minute, median [IQR]

8 [7, 10] 8 [7, 10] 8 [7, 10] 8 [7, 10] 8 [7, 10] 8 [7, 10] 0.74

Time from contact by EMS to hospital arrival (minute),

median [IQR]

28 [22,

36]

28 [22,

36]

28 [22,

35]

28 [23,

36]

28 [22,

36]

28 [23,

36]

0.54

ROSC during transport, n (%) 824 (10) 175 (11) 148 (9) 170 (10) 167 (10) 164 (10) 0.58

CPC 1 or 2, n (%) 286 (4) 57 (3) 58 (4) 57 (3) 57 (3) 57 (3) 1

CPR: cardio pulmonary arrest; AED: automated external defibrillator; EMS: emergency medical services; VF: ventricular fibrillation; VT: ventricular tachycardia; PEA:

pulseless electrical activity; IQR: interquartile range; ROSC: return of spontaneous circulation; CPC: cerebral performance category

https://doi.org/10.1371/journal.pone.0273787.t001
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Discussion

In this study, we developed a neurological prognostic model that demonstrates a full AUROC

of 0.96 with weights adjusted to accurately predict the number of minority classes based on

prehospital information. We simultaneously and consecutively adjusted the values of two EMS

time factors in the model, thereby obtaining a graphical representation of non-monotonic,

nonlinear effects on the predicted outcome. This is the first attempt to demonstrate that prog-

nosis can be performed by considering the interaction between multiple EMS activity factors.

Prehospital EMS activities involve several considerations, including the choice of the inter-

vention to be prioritized and whether they should be performed at the scene or prioritized for

arrival at the hospital. Other considerations include whether a reduction in the time taken for

each factor improves the outcome and whether an increase in time is acceptable. If yes, to what

extent? Previous studies focused on single prognostic factors, such as early drug administration

[25–29] or early defibrillation [24, 30]. However, because prognostic factors (e.g., defibrilla-

tion, drug administration, and transport times) are characterized by covariation and multicol-

linearity, the effects of the interaction between them must be considered. The possibility of

predicting the interaction between these factors using a machine learning model has been pre-

viously reported [11], thereby increasing factor-effect representations in such models. How-

ever, most prognostic-factor-modification-effect studies focused on modifying the values of a

single factor [12, 18]. Moreover, single-factor modification is insufficient for devising an EMS

activities-improvement strategy. This study assessed the prognostic impact of simultaneously

modifying two time factors that influence EMS activities.

The nonlinear prognostic impact of the two modifiers identified in this study could be used

to prioritize EMS activities. Reducing transport time and time for interventions have both

been reported to improve prognosis. However, performing all of these at the same time is diffi-

cult in the EMS setting; hence, a decision needs to be made as to whether transport or

Fig 3. Modification of single factors changes the predicted CPC1/2. Changes in predicted outcome obtained by modifying a single factor. A higher age

worsened the prognosis, and vice versa. Time delay worsened the prognosis, whereas reducing the duration improved the prognosis. CPC, cerebral

performance category.

https://doi.org/10.1371/journal.pone.0273787.g003
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intervention should be prioritized. In this study, reducing the time before defibrillation

improved outcomes. However, delays in transport time worsened the overall outcome; thus,

avoiding delays in transport is the most important activity target. On the other hand, as

regards drug administration, prolonging both transport time and time for drug administration

has a similar impact on outcomes. Consequently, if one cannot be achieved earlier, priority

should be given to the other to avoid a worsening outcome.

Previous resuscitation-improvement trials only accepted interventions with a positive effect

based on the evidence obtained using statistical methods. In this regard, machine learning

models theoretically allow for the modification of any parameter. Additionally, our study

results confirm the prognostic impact of delayed interventions. An investigation of factors that

worsen the outcome can provide the necessary information, particularly when normal activi-

ties are interrupted.

However, the prognostic impact after parameter modification should be interpreted cau-

tiously. Only 21 (15%) patients for whom the parameters were modified in this study had a

defibrillation time that was delayed by more than 3 min from contact. Because only a few

instances of defibrillation times of more than 3 min were modified, the effect of time reduction

Fig 4. Modification of time from ambulance contact to hospital arrival and first defibrillation. The square box indicates no adjustments. The two ends of

the color spectrum show a 6% increase and decrease in predicted CPC1/2, respectively. Overall, reducing the time for hospital arrival improved outcomes,

whereas delays worsened them. A reduced time to defibrillation strengthened this trend, but it was obscured when the time to defibrillation was reduced by

more than 3 min or delayed by more than 2 min. CPC, cerebral performance category.

https://doi.org/10.1371/journal.pone.0273787.g004
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may have been underestimated. By contrast, simulation is considered possible in the case of

delay, particularly in transport time, to the extent that there may be actual examples in the

training data. If the background data to be modified are not understood and the data are not

modified to the extent that they are realistic, the results may be underestimated, risking misin-

terpretation. Therefore, prior to making any modifications to the population data, careful con-

firmation of the content is crucial, which can be facilitated by the proposed model.

Limitations

This study has several limitations. First, the input data used to construct the prediction model

were limited to 22 prehospital factors. Further, patient clinical/personal features were not

included. Additionally, as regards factors prior to EMS arrival, we could not collect data on the

impact of verbal instructions from the communication command centers on prognosis, and

thus could not use them as a feature. Furthermore, cardiopulmonary resuscitation is evidently

continued on arrival at the hospital; however, this was not evaluated in this study. Additionally,

cardiac catheterization and target temperature management performed after hospitalization

are known to affect the outcome [31]. Therefore, more accurate prediction models may be

Fig 5. Modification of times from ambulance contact to hospital arrival and first-drug administration. The square box indicates no adjustments. The two

ends of the color spectrum show a 6% increase and decrease in predicted CPC1/2, respectively. Overall, reducing the time for hospital arrival improved

outcomes, whereas delays worsened them. Reducing the time to drug administration strengthened the effect of reducing the transport time, but reducing the

transport time improved the prognosis even with delayed drug administration. CPC, cerebral performance category.

https://doi.org/10.1371/journal.pone.0273787.g005
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possible if therapeutic interventions, such as cardiac catheterization and targeted temperature

management, are included as parameters for model construction [15]. However, we limited

our research to prehospital information because we focused on EMS activities that are gener-

ally available in other areas. Furthermore, EMS activities that have not been collected cannot

be evaluated in this model. For example, the depth and frequency of chest compressions are

known to be important; however, we could not assess their effect. Second, the predictive accu-

racy of machine learning decreases in uncommon cases, which were included in the training

model. Therefore, caution should be exercised when evaluating a small amount of data con-

taining less well-trained cases. In this study, the prediction ability of the proposed model may

have been reduced owing to the consideration of a wide range of time reduction or extension.

Therefore, only a few cases were available for training the machine learning model. However,

because the effect of modification on the predictive ability could not be evaluated, we could

not determine the modification threshold of the predictive potential. Therefore, the preferred

use of the results is to estimate the direction in which outcome is improved by two modified

factors, rather than to focus on cases with large adjustments. This problem can be minimized

by using a training dataset with a large number of intervention time cases, of which there were

only a few in this study. Third, the findings of this study cannot be adapted to other regions

because adaptation is limited to the region where the training data were collected. We consider

that the machine learning model presented in this study can be validated for external data if

the dataset is based on the Utstein style. However, the potential existence of unknown interac-

tions between factors that were not identified in this study cannot be ruled out, in which case

the hyperparameters of the model may need to be modified. In addition, the findings of

machine learning models are affected by several biases inherent in the training data, thereby

resulting in inaccurate decision-making [32]. Therefore, the construction of a prognostic

model that considers the factor-interaction results obtained using the proposed method must

be validated using data collected from other regions. Finally, this study used only prehospital

information in the Utstein style. The same method may be used in regions with such data

available; however, external validation is required to verify whether the best prediction model

can be reproduced in other regions. Furthermore, any change in resuscitation procedures that

are not currently used, for example, the introduction of new medications or equipment, will

require the introduction of additional factors into this model.

Conclusions

A machine learning prognostic model trained on prehospital data allowed us to evaluate the

interaction effect of two simultaneously modified parameters on outcome. The impact of each

parameter modification on outcome may provide useful information for developing measures

to improve EMS activities.
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