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Disulfiram has been used clinically for decades as an anti-alcoholic drug. Recently, several
studies have demonstrated the anti-inflammatory effects of disulfiram and its metabolism,
which can alleviate the progression of inflammation in vivo and in vitro. In the current study,
we summarize the anti-inflammatory mechanisms of disulfiram and its metabolism,
including inhibition of pyroptosis by either covalently modifying gasdermin D or
inactivating nod-like receptor protein 3 inflammasome, dual effects of intracellular
reactive oxygen species production, and inhibition of angiogenesis. Furthermore, we
review the potential application of disulfiram and its metabolism in treatment of
inflammatory disorders, such as inflammatory bowel disease, inflammatory injury of
kidney and liver, type 2 diabetes mellitus, sepsis, uveitis, and osteoarthritis.
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INTRODUCTION

Inflammation is an adaptive response of the body to harmful stimuli, which has a protective effect on
the body under normal circumstances (Medzhitov, 2008). However, if the protection is disordered,
the inflammatory response will be excessive, harmful effects are produced and then develop to
diseases (Medzhitov, 2008). Inflammation is involved in the onset of many diseases, and controlling
the progression of inflammation has become a key task in the treatment of these diseases. There are
many inflammatory diseases and the treatment options vary a lot, however, the effects are uneven.
Especially for some severe diseases such as severe acute pancreatitis and severe pneumonia, there is
still a certain mortality rate even after systematic treatment (De Pascale et al., 2012; Zerem, 2014;
Gotts and Matthay, 2016; Rello et al., 2017), so it is extremely necessary to find medicines to treat
inflammatory diseases.

Disulfiram (DSF), a drug used to treat alcoholics, has been used for more than 50 years and is
well tolerated by patients (Fuller et al., 1986). DSF is metabolized in the blood into
diethyldithiocarbamate (DDC) or the DDC copper complex, and the metabolites of DSF
after ingestion are proportional to the intake doses (Johansson, 1992). DDC is further
metabolized to the corresponding sulphoxide and sulphone metabolites, which are inhibitors
of ALDH 1 and ALDH 2 (Johansson, 1992; Zhang et al., 2013), leading to the accumulation of
acetaldehyde when ethanol is ingested (Schroeder et al., 2010), in turn causes a series of
uncomfortable reactions such as nausea, vomit, dizziness, and headache, so as to have an effect in
quitting alcohol. In addition, recent studies show that DSF has anti-cancer effects that have been
identified and part of their mechanisms are described in detail (Sreerama and Sladek, 1993;
Skrott et al., 2017; Wang et al., 2020). Besides, many researchers found its anti-inflammatory
effects and the mechanism was also revealed to some extent recently. Since Gunasekaran et al.
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reported that DSF could prevent inflammatory edema after
spinal cord injury in 1985 (Gunasekaran et al., 1985), DSF and
its metabolites have been found to be effective in a large
number of inflammatory diseases. In this article, we briefly
summarized the mechanism of DSF and its metabolites in the
treatment of inflammatory diseases.

ANTI-INFLAMMATORY MECHANISMS OF
DISULFIRAM

Effects on Pyroptosis
What is Pyroptosis
Pyroptosis is a type of cell death, which was first discovered in
1992 and defined in 2001 (Zychlinsky et al., 1992; Cookson and
Brennan, 2001), and many signaling pathways are involved in
pyroptosis (Fink and Cookson, 2005). Change in cellular
morphology is the formation of cell membrane holes, resulting
in cell swelling and rupture, then the cell contents such as
inflammatory factors are released to stimulate inflammatory
responses (Jorgensen and Miao, 2015; Galluzzi et al., 2018).
Pyroptosis can be classified into canonical inflammation
pathway mediated by caspase-1 and non-canonical
inflammation pathway mediated by caspase-4/5/11 (Jorgensen
and Miao, 2015). Many inflammasomes are involved in
pyroptosis, such as nod-like receptor protein 3 (NLRP3),
absent in melanoma 2 (AIM2), NLRP1 and so on (Vande
Walle and Lamkanfi, 2016). These inflammasomes can activate
caspases that cut gasdermins into C-terminal and N-terminal
gasdermins. The N-terminal gasdermins can perforate the cell
membrane to cause cell swelling and rupture, so that release of
inflammatory factors such as IL-1β and IL-18 results in
inflammation (Ding et al., 2016), and completion of the
pyroptosis process.

The Direct Effect of Disulfiram on Gasdermin D
(GSDMD)
GSDMD is a member of the gasdermin protein family and plays
an important role in the pyroptosis process. After being cleaved to
N-terminal and C-terminal GSDMD by caspase-1/4/5/11, the
N-terminal fragment can be transferred to the plasma membrane
and form a membrane pore (Sborgi et al., 2016). In turn, IL-1β,
IL-18 and other inflammatorymediators are released through this
pore (Shi et al., 2015). Hu JJ et al. demonstrated in mouse
experiment that DSF can inhibit the release of IL-1β without
affecting other proteins such as caspase-1 and pro-IL-1β, thus
confirming that DSF could inhibit pyroptosis by inhibiting
GSDMD, and further confirming that DSF could covalently
modify cys192 of GSDMD, rather than other gasdermins,
inhibiting plasma membrane pore formation and the
pyroptosis process (Hu et al., 2020). Furthermore, DSF can
reduce the release of inflammatory mediators such as tumor
necrosis factor (TNF) and IL-6 through the GSDMD pathway
(Hu et al., 2020), thus reducing the inflammatory response to
some extent. And it can be inferred that all pyroptosis pathways
ending in GSDMD will be affected by DSF.

The Effect of Disulfiram on the Nod-Like Receptor
Protein 3 Inflammasome and Indirect Effect on
GSDMD
The NLRP3 inflammasome is one of the pyroptosis-associated
inflammasomes leading to activation of caspase-1 which
determines IL-1β and IL-18 maturation and release,
contributes to pyroptosis (Jo et al., 2016). Deng et al. found
that DSF could inhibit NLRP3, therefore inhibiting the release of
IL-1β and the occurrence of cell pyroptosis in mouse J774A.1 and
human THP-1 macrophage cell lines (Deng et al., 2020).

The activation of NLRP3 due to lysosomal destruction is also
an important process during pyroptosis (Chen et al., 2015).
Destabilization of the lysosomal membrane can lead to the
release of cathepsin B, which activates the NLRP3
inflammasome (Newman et al., 2009; Jin and Flavell, 2010;
Lamkanfi and Dixit, 2012), inducing the pyroptosis process.
DSF can protect lysosomal membrane, reduce cathepsin B
release therefore alleviating the inflammatory response (Deng
et al., 2020).

The Dual Effects of Disulfiram on Reactive
Oxygen Species
Reactive oxygen species (ROS), which play an important role in
the development of many inflammatory diseases, are produced
from the NADPH oxidase or the mitochondrial respiratory chain
in the process of aerobic metabolism of organisms (Mittal et al.,
2014; Blaser et al., 2016). A large number of literatures have
confirmed that the production of ROS is one of the key elements
of NLRP3 activation (Tschopp and Schroder, 2010; Bauernfeind
et al., 2011), activation of NLRP3 can be blocked when using ROS
inhibitors (Zhou et al., 2011). Recently, researchers have
discovered that LPS/nigericin-induced mitochondrial ROS did
not decrease after adding DSF, indicating that DSF can reduce
intracellular ROS production by reducing the source of NADPH
oxidase (Deng et al., 2020). Furthermore, researchers found that
DSF can inhibit NLRP3-dependent IL-1β secretion (Deng et al.,
2020), so it can be inferred that DSF can inhibit NLRP3 activity by
reducing ROS production.

Disulfiram Inhibits Inflammation by
Inhibiting Angiogenesis
Angiogenesis is an important stage in the inflammatory process,
which is a key mechanism for leukocyte cells to enter the
inflammation site through the vascular endothelium
(Szekanecz and Koch, 2007). Angiogenic factors such as
vascular endothelial growth factor (VEGF) and TNF-α can
promote vessel formation (Leibovich et al., 1987; Marikovsky
et al., 2003). DSF reduces TNF-α production and dose-
dependently reduces the production of VEGF, thereby
reducing angiogenesis and inflammation (Marikovsky et al.,
2003). Another study has shown that DSF can reduce VEGF
generation and inhibit angiogenesis in vivo by acting on the
EGFR/Src/VEGF pathway, and this effect can be enhanced by the
combination of copper (Li et al., 2015). Furthermore, DSF can
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cause ROS accumulation, induce intracellular oxidative stress,
and cause endothelial cell growth arrest (Marikovsky et al., 2002),
thus inhibiting angiogenesis.

DISULFIRAM AND INFLAMMATORY
DISORDERS
The Therapeutic Effect of Disulfiram on
Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a chronic intestinal
inflammatory disease of unknown etiology, including Crohn’s
disease and Ulcerative Colitis (Moazzami et al., 2019), and has a
certain risk of cancer (Bernstein et al., 2001). Clinically,
abdominal pain and diarrhea are the main manifestations,
which seriously affect the quality of life of patients (Sawczenko
and Sandhu, 2003; Gupta et al., 2008). Oxygen free radicals play a
role in tissue damage in the pathogenesis of colitis (Parks et al.,
1983). Acetaldehyde dehydrogenase is responsible for the main
source of ROS in colon (Sharon and Stenson, 1984), and the
activity of ROS in tissues can be reflected in the level of
molondialdehyde (MDA) when membrane lipids are damaged
(Ohkawa et al., 1979). DSF can reduce MDA levels in the colonic
tissues of rats with colitis (Bilsel et al., 2002). This may be due to
the fact that DSF is the inhibitor of acetaldehyde dehydrogenase
(Sawczenko and Sandhu, 2003; Gupta et al., 2008), however, the
exact mechanism is still unclear.

Disulfiram for the Treatment of
Inflammatory Liver Diseases
Non-alcoholic fatty liver disease (NAFLD) is a kind of disease
which is characterized by excessive accumulation of lipids in liver
cells, and is the most common chronic liver disease, which can be
divided into simple steatosis and nonalcoholic steatohepatitis
(NASH) (Haas et al., 2016; Younossi et al., 2016; Lau et al.,
2017). NASH manifests itself as steatosis and inflammatory
damage to the hepatocyte. NAFLD can develop into liver
cirrhosis and even liver cancer. Rats receiving methionine and
choline deficient (MCD) diet can develop NASH (Van Herck
et al., 2017; Liu et al., 2018), with fat accumulation, oxidative
stress, and inflammation and fibrosis in liver cells (Hebbard and
George, 2011; Ibrahim et al., 2016; Lau et al., 2017). It manifests
itself mainly as a reduction in serum cholesterol (CHO) and high-
density lipoprotein (HDL) levels and an increase in alanine
transaminase (ALT) and endoplasmic reticulum stress and an
up-regulation of cytochrome P450 2E1 in mouse liver, which can
produce superoxide anion radicals (Leung and Nieto, 2013).
These manifestations can be inhibited by the treatment with
the diethyldithiocarbamate (DDC), the DSF metabolites (Liu
et al., 2018). What’s more, DDC treatment can improve the
liver function damage caused by MCD diet (Liu et al., 2018).
Besides, the use of tetraethylthiuram DSF (TDSF) in animals on
the MCD diet resulted in a significant reduction in inflammatory
cell infiltration in the liver (Schwartz et al., 2013).

Alcoholic liver disease is a chronic liver disease caused by
long-term heavy alcohol consumption, which can cause

alcoholic hepatitis (Hines and Wheeler, 2004; Jerrells et al.,
2007; Gao et al., 2019), and may develop into liver cancer
(Altamirano and Bataller, 2011). Acetaldehyde levels
increased in ALDH2 (-) mice when exposed to alcohol, and
hepatitis was attenuated in ALDH2 (-) mice compared to wild-
type mice (Hines and Wheeler, 2004; Jerrells et al., 2007; Gao
et al., 2019). It can be inferred that DSF, as an ALDH inhibitor,
can reduce hepatitis caused by alcohol use.

Mice on MCD diet developed liver fibrosis and collagen
deposition can be observed around the central lobular vein. By
reducing the aggregation of hepatic stellate cells (HSC) and
myofibroblasts, DDC significantly reduced liver fibrosis
induced by MCD diet (Hines and Wheeler, 2004; Jerrells et al.,
2007; Gao et al., 2019).

Disulfiram for Inflammatory Kidney
Diseases
Renal fibrosis is the pathological response of the kidney to a
variety of pathogenic factors such as inflammation and ischemia.
When the kidney is stimulated by injury, the inflammatory
pathway is activated and further activates pro-fibrotic cells
(Black et al., 2019). NLRP3 plays an important role in the
activation of renal fibrosis (Granata et al., 2015; Zhang and
Wang, 2019). In the mouse model with NLRP3 knockout
diabetic nephropathy, renal inflammation and fibrosis can be
partially suppressed, suggesting that the pro-inflammatory effect
of the NLRP3 inflammasome may promote renal fibrosis (Wu
et al., 2018). Unilateral ureteral obstruction (UUO) is an
experimental model of kidney injury and can cause renal
fibrosis. After using DSF on UUO rats, the expression of IL-
1β, IL-6, IL-18 and TNF-α in the peripheral blood and kidney
tissues of the rats decrease significantly, and the degree of
reduction was negatively correlated with the drug dose. What’s
more, the use of DSF reduces the expression of GSDMD, and DSF
could downregulate the level of α-SMA and upregulate the level of
E-cadherin in renal tissues. These findings indicate that DSF can
ameliorate renal fibrosis of UUO rats by inhibiting pyroptosis and
other pathways (Zhang et al., 2021). Other studies have shown
that DSF can reduce cisplatin-induced acute renal toxicity in rats
by decreasing oxidative stress and inflammation (Khairnar et al.,
2020).

Disulfiram for Sepsis
Sepsis is a severe systemic inflammatory response following
infection (Heumann et al., 1998), with a mortality rate of
about 25% when no complication occurs or 80% when
accompanied with multiple organ failure (Galley, 2011).
Lipopolysaccharide (LPS) in the cell wall of Gram-negative
bacteria is one of the stimulating factors that can cause sepsis
(Heumann et al., 1998). LPS can induce sepsis in mice, while
caspase-11 (-) mice were not induced to sepsis, suggesting that the
non-canonical inflammasome pathway dominates LPS-induced
sepsis (Kayagaki et al., 2011). Hu JJ at al. reported that DSF can
prolong the survival time of LPS-induced sepsis mice. By the
combination of copper, the therapeutic effect of DSF was further
strengthened. These results suggest that DSF can inhibit sepsis
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induced by the non-canonical pyroptosis pathway (Hu et al.,
2020).

Disulfiram for Type 2 Diabetes
Type 2 diabetes is one of the most common diseases in internal
medicine and has a high incidence in middle-aged and elderly
people. Its hyperglycemic characteristic can lead to a series of
complications (Vijan, 2015; American Diabetes Association,
2020). The onset of type 2 diabetes is associated with
decreased pancreatic beta cell function and insulin resistance
(Nagai et al., 2009; Zheng et al., 2018). Studies have shown that
the onset of type 2 diabetes is related to ROS: glycation and the
consequent increase of ROS can inhibit the transcription of
insulin genes in mouse β-cell–derived HIT-T15 cells
(Matsuoka et al., 1997). Based on rat models of type 2
diabetes, researchers found that oral administration of DSF
increased insulin levels, improved glucose tolerance and
reduced blood glucose and cholesterol levels in diabetic rats
(Nagai et al., 2009). Furthermore, researchers found that DSF
and its derivatives can covalently bind to the C128 site to inhibit
fructose-1,6-bisphosphatase (FBPase), an important rate-limiting
enzyme in the process of gluconeogenesis, thereby reducing blood
glucose output (Huang et al., 2020). However, more in-depth
research is needed on the treatment of DSF for diabetes.

Disulfiram for Uveitis
Uveitis is considered an inflammatory disease that occurs in
the uvea, the retina, the blood vessels of the retina, and the
vitreous, and can cause blindness (Nussenblatt, 1990). The
main pathophysiological characteristics are infiltration of
inflammatory cells and accumulation of inflammatory
factors in aqueous humor (Mo et al., 1999). DSF can dose-
dependently reduce inflammatory cells infiltration and protein
concentration in aqueous humor of LPS-induced rat model of
uveitis, and decrease the levels of inflammatory factors such as
NO, TNF-α and PGE2 in aqueous humor (Kanai et al., 2010;
Kanai et al., 2011). However, its mechanism needs to be further
elucidated.

Disulfiram for the Inflammatory Response
of Chondrocytes
Osteoarthritis is a chronic bone and joint disease that is more
likely to occur in middle-aged and elderly people (Lespasio et al.,
2017). In severe cases, it can cause joint pain and interfere with
normal movement (Huang et al., 2015; Lespasio et al., 2017).
Degenerative changes in articular cartilage can result in
osteoarthritis (Goldring and Berenbaum, 2015). In C28/I2 cells
(human chondrocytes), LPS and ATP can induce inflammation
and pyroptosis (Li et al., 2021). Co-treatment with disulfiram and
glycyrrhizic acid promote the proliferation and alleviate
pyroptosis in LPS and ATP stimulated C28/I2 chondrocytes,
and can reduce the production of ROS. DSF, when used at
high concentrations, shows little effect on cell proliferation
and pyroptosis (Li et al., 2021). This may provide new ideas
for the treatment of osteoarthritis.

PROSPECTIVE

Inflammation plays a central role in the pathogenesis of many
diseases. Therefore, the treatment of inflammation plays an
important role in the treatment of many diseases. DSF has
been used clinically for decades as an alcohol-abuse drug and
plays a role in the treatment of other diseases such as cataract,
obesity, myelodysplastic syndrome, leukemia, acquired
immunodeficiency syndrome, Alzheimer’s disease, etc. (Vassar
et al., 1999; Nagai and Ito, 2014; Elliott et al., 2015; Hassani et al.,
2018; Reinhardt et al., 2018; Meggyesy et al., 2020; Yang et al.,
2020; Zha et al., 2021). DSF is one of the older drugs that have
been found to have anticancer and anti-inflammatory effects, and
the effects on inflammation manifest as follows: ① inhibition of
pyroptosis; ② inhibition of ROS; ③ inhibition of angiogenesis.
There are many kinds of inflammatory diseases, and theoretically
patients with diseases related to the anti-inflammatory
mechanism of DSF may benefit from DSF therapy. In
addition, the DSF analogues and the compound of DSF and
copper may have the same effect as DSF, and the use of DSF in
combination with other drugs may enhance anti-inflammatory
effects.

However, the application of DSF is still very limited. The half-
life of DSF is 7.3 h in plasma (Johansson, 1992), which is
metabolized into other substances soon after ingestion and its
metabolism is complex in the human body. According to current
reports, DSF has a wide range of treatments in vivo and in vitro
experiments and seems to be a panacea. This phenomenon is
related to DSF metabolites or the mechanism of action, and it is
necessary to further elaborate the anti-inflammatory mechanism
of DSF. The current researches on DSF are basically the studies of
DSF itself, not its metabolites. However, there is currently no
evidence of pharmacological activity of DSF as a molecular entity
in vivo throughout all the medical or biomedical researches (even
in the treatment of alcoholism), so the studies using disulfiram
instead of its metabolites can’t explain what actually works
in vitro or when animals are given oral or intraperitoneal
injections of DSF. So many studies did not mention this issue,
which is not rigorous and may exaggerate the effect of the drug;
this could also explain the panacea illusion. Furthermore, the
dosage of DSF in vivo and in vitro experiments far exceeds the
recommended dose of the drug, which is 500 mg/day for humans
(Brewer, 1984), so it is necessary to consider whether it can reach
the effective concentration when applied to humans. Therefore,
in order to truly study the effects of DSF more thoroughly,
researches should use DSF metabolites (including DDC copper
complex or those not mentioned in this review) in vivo and
in vitro experiments, and strictly control their dosage. Finally, the
current studies are all preclinical studies, so it is hard to determine
whether there will be side effects and serious consequences in the
future clinical applications. Therefore, after confirming the
therapeutic effect of DSF on diseases, how to rationally apply
the drug in clinical practice has also become a problem worth
considering. With the deepening of research, more and more
functions of DSF have been revealed. DSF is believed to play an
increasingly important role in clinical practice in the future.
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