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In recent years, the cannabinoid type 2 receptor (CB2R) has become a major target for
treating many disease conditions. The old therapeutic paradigm of “one disease-one
target-one drug” is being transformed to “complex disease-many targets-one drug.”
Multitargeting, therefore, attracts much attention as a promising approach. We thus focus
on designing single multitargeting agents (MTAs), which have many advantages over
combined therapies. Using our ligand-based approach, the “Iterative Stochastic
Elimination” (ISE) algorithm, we produce activity models of agonists and antagonists for
desired therapeutic targets and anti-targets. These models are used for sequential virtual
screening and scoring large libraries of molecules in order to pick top-scored candidates
for testing in vitro and in vivo. In this study, we built activity models for CB2R and other
targets for combinations that could be used for several indications. Those additional
targets are the cannabinoid 1 receptor (CB1R), peroxisome proliferator-activated receptor
gamma (PPARγ), and 5-Hydroxytryptamine receptor 4 (5-HT4R). All these models have
high statistical parameters and are reliable. Many more CB2R/CBIR agonists were found
than combined CB2R agonists with CB1R antagonist activity (by 200 fold). CB2R agonism
combined with PPARγ or 5-HT4R agonist activity may be used for treating Inflammatory
Bowel Disease (IBD). Combining CB2R agonism with 5-HT4R generates more candidates
(14,008) than combining CB2R agonism with agonists for the nuclear receptor PPARγ
(374 candidates) from an initial set of ~2.1 million molecules. Improved enrichment of true
vs. false positives may be achieved by requiring a better ISE score cutoff or by performing
docking. Those candidates can be purchased and tested experimentally to validate their
activity. Further, we performed docking to CB2R structures and found lower statistical
performance of the docking (“structure-based”) compared to ISE modeling (“ligand-
based”). Therefore, ISE modeling may be a better starting point for molecular
discovery than docking.
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1 INTRODUCTION

The cannabinoid receptors (CBRs) consist of cannabinoid
receptors 1 (CB1R) and 2 (CB2R), which are members of the
lipid class A G protein-coupled receptors (GPCRs) family. The
CBRs participate in many physiological processes, including
mood regulation, cognitive function, neuroprotection,
nociception, cell growth and proliferation, appetite, and lipid
metabolism (Stasiulewicz et al., 2020). Both are expressed in the
central nervous system (CNS) and in peripheral tissues. CB2Rs
have lower expression levels than CB1Rs in the CNS and are
primarily expressed in immune cells (Wu, 2019). Their different
expression regions in the brain suggest a neuroprotective role of
CB2R, avoiding CB1R mediated side-effects (Deng et al., 2015).
Moreover, CB2R expression can be upregulated in the brain
under some pathological conditions (e.g., addiction,
inflammation, anxiety), suggesting CB2R involvement in
various psychiatric and neurological disorders (Wu, 2019).

In the brain, CB2R is proposed as a potential target for attenuating
inflammation associated with neurodegenerative diseases
(Alzheimer’s disease (AD), Parkinson’s disease (PD), and others)
(Cassano et al., 2017; Bie et al., 2018; Kelly et al., 2020; Mecha
et al., 2020). Several selective CB2R agonists exhibited analgesic
activity in preclinical models of acute inflammatory, chronic, and
neuropathic pain (Murineddu et al., 2013; Soliman et al., 2021). Its role
is also investigated in mental disorders like schizophrenia, depression,
anxiety, and addictions (García-Gutiérrez et al., 2010; García-
Gutiérrez and Manzanares, 2010; Ortega-Alvaro et al., 2011; ZX
et al., 2011; Jordan and Xi, 2019; ME et al., 2019). Other potential
therapeutic areas of CB2Rs were explored: anti-cancer (Guzmán,
2003; Fernández-Ruiz et al., 2007), epilepsy (Ji et al., 2021),
osteoporosis (Idris et al., 2005; Rossi et al., 2011), atopic dermatitis
(Maekawa et al., 2006), (NCT00697710), ischemia/reperfusion injury
(Bátkai et al., 2007; Rajesh et al., 2007), atherosclerosis (Mach et al.,
2008), gastrointestinal inflammation (Wright et al., 2008) and
disorders of reproduction (Maccarrone, 2008).

In the past 2 decades, treating multifactorial illnesses,
i.e., infections, cancer, and CNS disorders, shifted towards
multitargeting (Csermely et al., 2005; Hopkins et al., 2006;
Boran and Iyengar, 2010; L.; Bolognesi, 2013; Bolognesi and
Cavalli, 2016; Zhou et al., 2019). Simultaneous modulation of
multiple targets may have better efficacy and safety profile than
single targeted drugs, and the number of multitargeting new
molecular entities is increasing over the years (Ramsay et al.,
2018). The design of multitargeting agents (MTAs) assigns
desired therapeutic targets and avoids targets associated with
side effects (“anti targets”). In principle, MTA can be a single
compound or a combination of compounds, each directed to a
different target (“cocktails” or as a co-formulated drug-device),
and both are used in the clinic. Despite the highly significant
therapeutic relevance of combinatorial therapy (Conway and
Cohen, 2010; Morphy, 2010; Wright, 2010; Modi et al., 2011;
Lu et al., 2012), single MTA has substantial advantages over
combination therapy: 1) more predictable pharmacokinetic
profile 2) avoiding drug-drug interactions 3) easier dose
regimen and higher compliance 4) enabling to overcome
mutations in relevant diseases such as cancer, viral and

bacterial ailments 5) simultaneous presence of the molecule in
tissues where it is expected to affect and 6) an easier regulatory
process (Hopkins, 2008; Anighoro et al., 2014).

Targets from different protein superfamilies may challenge the
design of such MTAs, lacking shared/similar ligands or common
structural motifs, which are sometimes the cause of side-effects
(Morphy et al., 2004). Therefore such different targets may be of
more interest. Nevertheless, single MTAs have been discovered
(Ryckmans et al., 2002; Natesan Murugesan et al., 2004; Omar
et al., 2018).

The broad involvement of CB2R in various disorders makes it
a valuable target for multitargeting therapies while combining its
modulation with affecting other relevant proteins in each disease.
Several studies proposed its combination with other targets such
as acetylcholinesterase (AChE) and butyrylcholinesterase for AD
(Gonzalez-Naranjo et al., 2013; Dolles et al., 2016, 2018;
González-Naranjo et al., 2019). Suggestions were also raised to
find dual CB2R/histone deacetylases and CB2R/σ receptor
compounds for treating cancer and neurodegenerative diseases
(Mangiatordi et al., 2020), and to develop multitargeting
analgesics (Maione et al., 2013). Here we shall focus on several
possibilities of multitargeting CB2R with other targets.

1.1 Combined Effects of CB2 and CB1
Receptors
The CBRs play a critical role in several human physiological and
pathological conditions. However, the CNS side effects of CB1R
ligands may limit the therapeutic use of such agents if they cross
the Blood-Brain Barrier (BBB). That is the case of the CB1R inverse
agonists Rimonabant and Taranabant (Moreira and Crippa, 2009;
Martín-García et al., 2010). To overcome the central effects, peripheral
CB1R antagonists were developed (Chorvat, 2013; El-Atawneh et al.,
2019; Quarta and Cota, 2020). Another option is to develop pure
antagonists (An et al., 2020; Stasiulewicz et al., 2020). Agonists of the
CBRs may be used to treat anxiety (Stasiulewicz et al., 2020) or as
analgesics, anti-inflammatory, neuroprotective and anti-emetic
compounds (An et al., 2020). Peripheral CB1R antagonists
combined with CB2R agonists may be used for treating liver
diseases (Mallat et al., 2011) and diabetic complications (Gruden
et al., 2016). This dual activity may be useful in treating obesity,
abolishing diabetes-induced albuminuria, inflammation, tubular
injury, and renal fibrosis (Barutta et al., 2017). Combining CB1R
antagonism with CB2R agonism in the brain is shown to have a
synergistic effect on reward processing (Gobira et al., 2019). Another
option is to design selective CB2R agonists to benefit from their
nociception and neuroinflammation role without psychoactive effects
(Hollinshead et al., 2013;Verty et al., 2015; Poleszak et al., 2020). CB2R
selective agonists are investigated to treat pain, inflammation, arthritis,
addictions, cancer besides their neuroprotective role (An et al., 2020).

1.2 Combined Effects at CB2R, PPARγ, and
5-HT4R
CB2R could be targeted with other receptors to attenuate
inflammation for several autoimmune and inflammatory
conditions. The peroxisome proliferator-activated receptor
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(PPAR)-γ is a nuclear receptor that plays a crucial role in
regulating lipid metabolism and glucose homeostasis. It
associated with metabolic disorders, such as atherosclerosis,
obesity, metabolic syndrome, dyslipidemias, type 2 diabetes,
and cancer (Decara et al., 2020). PPARγ agonists have been
shown to prevent inflammation, dermal fibrosis, and lipoatrophy
in preclinical models of systemic sclerosis (SSc) (Wei et al., 2010).
SSc is an orphan autoimmune multi-organic disease that affects
the connective tissue. Dual CB2/PPARγ agonists such as VCE-
004.8 and JBT-101 (Ajulemic acid, Lenabasum) have alleviated
skin fibrosis and inflammation in SSc models (Rio et al., 2018;
García-Martín et al., 2019). JBT-101 is in clinical trials for SSc
(NCT03398837), dermatomyositis (NCT03813160), and cystic
fibrosis (NCT02465450). Additionally, PPARγ agonists can
suppress the pro-inflammatory cytokines associated with
chronic diseases such as Inflammatory Bowel Disease (IBD).

IBD, including ulcerative colitis (UC) and Crohn’s disease (CD),
has been considered one of the most prevalent GI diseases with
accelerating incidence in newly industrialized countries. Yet it lacks
effective drug targets and medications (Seyedian et al., 2019). As a
lifelong disease, therapy aims to induce remission in the short term
and maintain remission in the long term. New drugs have diverse
mechanisms of action, targeting mainly the inflammation pathways.
The current anti-inflammatory small molecules used to treat IBD are
associatedwith several side effects (5-amino salicylate and its prodrugs
such as Olsalazine and Balsalazide), with more severe toxicity
(Azathioprine, Mercaptopurine, Methotrexate) or with known long
term negative impacts of steroid hormones (glucocorticoids).
Biological drugs are expensive, require more intensive medical
attention in a clinic or at home (self-injections), and, in the case of
TNFalpha antibodies, elicit resistance by immune system response
(Torres et al., 2020). Although the mechanism by which PPARγ acts
on the pathogenesis of IBD has not been clarified (Decara et al., 2020),
natural and chemical PPARγ ligands have ameliorated the fibrotic
process in preliminary clinical trials and experimental models of
intestinal fibrosis (Vetuschi et al., 2018). Moreover, many studies
showed the anti-inflammatory role of PPARγ activation in intestinal
tissues in UC and CD (Decara et al., 2020).

Recent investigations suggest that serotonin (5-HT) can
influence the development and severity of inflammation within
the gut, particularly in the setting of IBD. 5-HT influences every
major function inherent to the gut, including motility, secretion,
blood flow, and sensation (Coates et al., 2017). Alterations in its
receptor activity in disease conditions may result in many
problematic symptoms, including abdominal pain, diarrhea, or
constipation (Coates et al., 2017). The 5-HT4 receptor (5-HT4R)
mediates enteric neuron survival and neurogenesis of adult mice
(Liu et al., 2009). It promotes the reconstruction of an enteric
neural circuit leading to the recovery of the defecation reflex in
the distal gut (Matsuyoshi et al., 2010). 5-HT4R activation
maintains motility in healthy colons of mice and guinea pigs
and reduces inflammation in colons of mice with colitis (Spohn
et al., 2016). PPARγ and 5-HT4R agonists may be combined with
CB2R as a potential therapy for IBD (Turcotte et al., 2016). A
peripheral CB2R agonist (Olorinab) reached phase II trials for
abdominal pain in CD (NCT03155945) and irritable bowel
syndrome (NCT04043455).

1.3 Multitargeting in Silico
Computational methods allow us to examine options for
designing or discovering multitargeting candidates in a
reliable, fast, and low-cost manner (Sliwoski et al., 2014;
Zhang et al., 2017). Screening candidates for binding against
several targets to find single MTA differs from designing
compounds based on conjugated pharmacophores by merging/
fusing/linking molecules (Morphy and Rankovic, 2005; Zhou
et al., 2019), which could take longer to synthesize and might
increase the molecular weight and affect the drug-likeness
properties.

Our research combines ligand and structure-based methods.
Our algorithm for solving complex combinatorial problems, the
’Iterative stochastic elimination algorithm’ (ISE) (Stern and
Goldblum, 2014; El-Atawneh and Goldblum, 2017), has been
applied in recent years to molecular discovery (Zatsepin et al.,
2016; Da’adoosh et al., 2019; El-Atawneh et al., 2019), including
one example of multitargeting modeling: modeling the properties
of molecules that may be remotely loaded to nanoliposomes and
the properties that enable them to be stable inside the
nanoliposomes, in a biological fluid (Cern et al., 2017).
Molecules that had high scores in both loading and stability
models were chosen. For any discovery of MTAs, virtual
screening (VS) by separate ligand-based models is performed
in sequential order.

After finding top candidate ligands, it is helpful to examine the
structural aspects, since our classifications are based on
physicochemical properties and not on structural elements.
Molecules with similar properties might have different
structures and sizes. Thus, we dock the top candidates to the
target protein if such a structure has been reported. Structures of
CB2R were deposited recently in the Protein Data Bank (PDB),
one with a bound antagonist (PDB code 5ZTY) (Li et al., 2019)
and the other with an agonist (PDB code 6KPC) (Hua et al.,
2020), which makes structure-based design feasible (Tuccinardi
et al., 2006; Cichero et al., 2011). CB2R shares 44% sequence
identity and 68% similarity with CB1R in the transmembrane
regions (Munro et al., 1993). The antagonist-binding pockets in
both receptors are quite distinct, while the agonist-binding
pockets in CB1R and CB2R, including side-chain rotamers, of
the key residues involved in ligands interactions are almost
identical (Li et al., 2019; Hua et al., 2020), which might be the
source of cross-reactivity between their ligands and difficulty in
attaining selectivity. There are also CB1R and PPARγ structures,
with agonists and antagonists in both. Yet, there is no published
atomic-level structure of 5-HT4R, but ligand-based modeling for
5-HT4R with ISE is possible due to its many known ligands.

2 METHODS

2.1 Data Sets
2.1.1 Learning\Training Sets
Compounds with reported activity, agonists (EC50 values) and
antagonists (ki or IC50 values) at the different receptors were
taken from the ChEMBL database (http://www.ebi.ac.uk/
ChEMBLdb/) (Bento et al., 2014). Duplicates were removed
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based on their simplified molecular input line entry specification
(SMILES notation). Molecules with undefined potency values,
error comments, and a confidence score below seven (reported at
ChEMBL) were excluded, as well as molecules that are active
above 100 µM. The active molecules were diluted with random
molecules assumed to be inactive (“decoys”) with a ratio of 1:100
(active: inactive) (Tropsha, 2010). Randoms were picked from the
ZINC database (Sterling and Irwin, 2015), based on the
“applicability domain” (APD) of the actives (Netzeva et al.,
2005). The application of APD for picking randoms imposes
to discover differences between active and inactive molecules with
some basic similarities, thus making the task of classification
more difficult. We apply APD by selecting random molecules for
which the values of molecular weight (MW), calculated lipophilic
character (clogP), hydrogen bond acceptors (HBA), and
hydrogen bond donors (HBD) are within the average ± two
standard deviations for these variables of the active molecules.

2.1.2 Screening Set
The Enamine HTS Collection (Enamine HTS Collection 2021),
consisting of 2,159,632 compounds was used for VS in both
ligand and structure-based methods.

2.2 Datasets Preparation
All molecules were prepared by the “Molecular Database Wash”
(v. 2011.10) (Molecular Operating Environment, 2021). This
includes hydrogen adjustment, removing minor components,
determining the protonation state, enumeration of ionization
states, and tautomer forms. Mutagenic and reactive molecules
(based on calculated descriptors byMOE) were removed from the
learning sets.

2.3 Descriptors Calculation
The standard descriptors we calculated for building the models
are the 2-dimensional (2D) descriptors by QuaSAR- MOE
(v.2011.10) with 186 descriptors. The complete descriptors list
is given at (http://www.cadaster.eu/sites/cadaster.eu/files/
challenge/descr.htm). Descriptors with low variance
(Smialowski et al., 2010), or highly correlated descriptors
(Pearson correlation coefficient > 0.9), were excluded, using
the Knime platform (v. 4.0.1) (Berthold et al., 2008) to exclude
out of two highly correlated descriptors the one which has greater
similarity to other descriptors. We have also tested the
performance of 3D descriptors for CB2R (see results and
discussion).

2.4 Activity Models Constructed by the
Iterative Stochastic Elimination Algorithm
Our generic ISE algorithm has been applied to many problems
related to drug discovery and has been presented in reviews, with
details of the mathematical and statistical criteria to distinguish
between two activities based on physicochemical properties
(descriptors) of known active vs. inactive compounds (Stern
and Goldblum, 2014; El-Atawneh and Goldblum, 2017). For
each model, five cross-validations were performed (James
et al., 2013), with 4 out of the five-folds producing the model,

and the fifth fold was used as a test set. We include some of the
main details of model construction and screening in
Supplementary Data section 1.1.

2.5 Tanimoto Fingerprint Similarity
The “Atom-pair” fingerprints for the active molecules were
generated using RDKit toolkit (RDKit, 2018) (in Knime
platform v. 4.0.1) (Berthold et al., 2008). The “Tanimoto
similarity coefficient” (Tc) for the fingerprints is based on the
CDK toolkit.

2.6 Docking
The two structures of CB2R were downloaded from the PDB
(5ZTY (Li et al., 2019) and 6KPC (Hua et al., 2020)), and prepared
by the “Protein Preparation Wizard” (Schrödinger Suit 2019-3)
(Madhavi Sastry et al., 2013). For 5ZTY, we allowed C-OH
rotations of SER90, THR114, TYR190; for 6KPC, we allowed
such rotations of TYR25, SER90, THR114, TYR190, and SER285
for the grid construction. Alanine (ALA) scan was performed to
assign the critical residues in the binding site of the two structures
for 23 residues detected by PDBsum (Laskowski, 2009). The
screened molecules were prepared using “LigPrep” (Schrödinger
Release, 2018), with default settings, except the chirality option
that was set to “Generate all combinations” for the Enamine
database (5,024,833 entries were generated). Molecular docking
was performed with Glide HTVS and SP (Richard A. Friesner
et al., 2006).

In the docking analysis, we examined the geometric character
of binding by requiring the docked molecules to be in contact
with residues that were found to be “hot spots” by performing a
virtual ALA scan.

3 RESULTS

3.1 Ligand-Based Approach
3.1.1 Iterative Stochastic Elimination Algorithm
Activity Models
We constructed several models for each target based on the
relevant molecular activity reported by ChEMBL. There are
molecules reported as partial agonists and inverse agonists for
the CB2R (access date: January/2016), and those were excluded
from the present study. Some models were constructed with a
subset of highly active molecules (i.e., activity values less than
5 nM or 10 nM) from the larger set of reported activities. We
choose the best-performing model based on Matthews
Correlation Coefficient (MCC, Supplementary Data S1.1)
(Matthews, 1975), Area under the ROC curve (AUC), and the
Enrichment Factor (EF, Supplementary Data S1.1) (Table 1).
Only ten molecules were reported with IC50 activity for 5-HT4R
(access date: December/2017), so we used the reported Ki values
for constructing the antagonist models (reported for 227
molecules). For PPARγ (access date: February/2018) and 5-
HT4R agonist models, we built only one model based on the
available data. The PPARγ antagonist models (access date:
October/2021) have similar performance, and we chose the Ki

model because it has a better EF value. All models have good
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mean MCC values > 0.65, AUC > 0.9, and EF values vary from 12
to 71 with a positive (> 0.0) index cutoff. The learning sets’
similarity is low for all chosen models (average Tc ≤ 0.5,
Supplementary Table S1).

All constructed Models are presented in Table 1. The models
used for screening are marked. Models constructed on the basis of
active molecules with highest affinity (Nanmolar range) have
better statistical parameters than those constructed on the basis of
100 µM activities, and were thus used for screening. That is the
case of CB2R/CB1R/PPARγ agonists and antagonists, and
5HT4R antagonists. Only a single model of actives with lesser
activity, of 5HT4R agonists, was used for screening. However the
number of molecules with lesser affinity among the 155 used for
modeling is small: only 5 molecules have EC50 values between 1
and 100 µM. Also, the 5HT4R model for agonists is the one with
best statistical parameters compared to all other GPCR models
for actives up to 100 µM.

3.1.1.1 Performance of 3D Descriptors
Taking the learning set of the chosen 2D-based CB2R agonist
model (Model 2- with 275 active molecules < 5 nM diluted with
30,000 randoms), we built 3D and the 2D/3D combined
descriptors’ based models. The ISE agonist model based on 2D
descriptors performed better than the 3D, and the 2D/3D
combined descriptors by MCC, AUC, and EF (Supplementary
Table S2). The 3D model has a lower mean MCC (0.5) and AUC
(0.85) than the combined 2D/3D model.

3.2 Multitargeting Candidates
To find multitargeting candidates for the different indications, we
performed hierarchical VS. First, focusing on the CBRs, we
screened the Enamine database (DB) through the different

CBR activity models, considering desired activity, i.e., of CB2R
agonists, and the unwanted activity as anti targets. Molecules with
a positive index pass the model, and those with a negative score

TABLE 1 | Models of agonists and antagonists for the four receptorsa.

Model # Actives # Randoms Top MCC Mean MCCc AUC EFd # Filters

CB2R agonists Model 1 (Actives < 100 µM) 1254 100000 0.61 0.57 0.87 11 (38) 3911
Model 2 (Actives < 5 nM)b 275 30000 0.73 0.70 0.90 17 (54) 2933

CB2R antagonists Model 1 (IC50 values, Actives < 100 µM) 689 70000 0.64 0.57 0.85 18 (71) 1738
Model 2 (IC50 values, Actives < 50 nM) 198 22000 0.73 0.69 0.91 8 (34) 3832
Model 3 (Ki values, Actives < 100 µM)b 2437 200000 0.67 0.63 0.92 17 (56) 2747

CB1R agonists Model 1 (Actives < 100 µM) 513 53000 0.66 0.62 0.89 11 (23) 3273
Model 2 (Actives < 100 nM) 183 25000 0.8 0.77 0.90 11 (26) 2951
Model 3 (Actives < 50 nM)b 127 13000 0.83 0.79 0.92 12 (27) 2509

CB1R antagonists Model 1 (Actives < 100 µM) 973 93000 0.7 0.65 0.9 14 (33) 2231
Model 2 (IC50 values, Actives < 10 nM)b 296 33000 0.78 0.75 0.92 25 (50) 1399
Model 3 (Ki values, Actives < 10 nM) 332 35000 0.75 0.7 0.91 20 (65) 1960

PPARγ agonists Model 1 (Actives < 10 nM)b 243 50000 0.91 0.89 0.96 62 (130) 3299
PPARγ antagonists Model 1 (IC50 values, Actives < 10 nM) 194 20000 0.91 0.86 0.98 37 (74) 2677

Model 2 (Ki values, Actives < 100 nM)b 168 17000 0.93 0.91 0.96 71 (98) 682
5-HT4R agonists Model 1 (Actives < 100 µM)b 155 35000 0.94 0.92 0.98 37 (94) 3122
5-HT4R antagonists Model 1 (Ki values, Actives < 100 µM) 227 50000 0.85 0.81 0.96 20 (61) 1035

Model 2 (Ki values, Actives < 50 nM)b 148 35000 0.94 0.92 0.98 29 (52) 1475

aFor each model, we present the number of active and random molecules used to generate the model, the top and average MCC of the filters, the AUC and EF values of the test set.
Besides the number of the total filters generated by each model.
bThe chosen models for VS.
cMean MCC of the top 1000 filters.
dEF values above index cutoff = 0.7 are given in parenthesis.
# = number.

FIGURE 1 | Screening for multitargeted candidates. Enamine database
(2,159,632 compounds) was screened through agonist (ago) and antagonist
(antago) ISE models. Numbers are of molecules with a positive index for
models with a “✓” symbol, while failing to pass the models is marked by
“X” (due to a negative index).
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are considered to fail. We found 241,260 CB2 selective agonists
(about 11% of the dataset); those molecules passed the CB2R
agonist model and did not pass the CB2R antagonist model. They
also did not pass the CB1R agonist and antagonist models.
Adding the CB1R agonists or antagonists to CB2 agonists, we
found many less candidates (63,735 and 324, respectively), as
shown in Figure 1. Raising the index cutoff above 0.0 reduces
these numbers.

Looking for additional activities of the selective CB2R agonists,
we screened those 241,260 candidates through the PPARγ and
5-HT4R agonist models (Figure 1). To avoid anti-targets we
screened the same set by the antagonist models of PPARγ and 5-
HT4R. This yielded 374 CB2R and PPARγ agonists, and 14,008
candidates for CB2R and 5-HT4R agonism with no antagonism
at any of the three receptors. We found 28 candidate agonists for
simultaneously hitting all the three targets of CB2R, PPARγ, and
5-HT4R. All the mentioned hit sets are internally diverse, as well
as being diverse (by Tanimoto criteria) towards the actives used
for model construction: comparisons yield a low average
Tanimoto coefficient of Tc ≤ 0.4 (Supplementary Table S3).

3.2.1 Common Substructures for the Multitargeting
Hits
Common substructures could be used to explain why molecules
are candidates for binding and activating different receptors. We
examined that possibility for each multitargeting set. To perform
that task, we used Canvas (v. 4.2.012, Schrödinger Suit 2019-4) to
find the maximum common substructure. In Figure 2, we display
the major common substructures for five different groups:
agonists of all three receptors, CB2R/PPARγ, CB2R/5-HT4R as
well as CB2R/CB1R agonists and CB2Ragonists/CB1R
antagonists. A larger scope of common substructures is
presented in Supplementary Figure S1.

Figure 2 presents major substructure elements of top
multitargeted screened molecules. It is easy to detect some of
the fragments which appear in more than 20% of each
multitargeted group: tertiary and secondary amines,
benzylamine, anisol, alkyl chains with amines or amide, and
benzenesulfonamide. It is noteworthy that all the 28 CB2R/
PPARγ/5-HT4R multitargeted candidates have a tertiary
amine moiety, which is not abundant in either CB2R/PPARγ
or CB2R/5-HT4R. Two fragments of CB2R/PPARγ—anisol and
N-butylbenzylamine contribute to the triple multitargeting, while
the only fragment of the CB2R/5-HT4R in the triple target is a
phenyl ring. All three structures common to CB2R agonists/
CB1R antagonists are secondary amines. Only a single secondary
amine is among the main fragments of CB2R/CB1R agonists, and
the two others are an aromatic sulfonamide and an amide of
N-pentylamine.

3.3 Structure-Based Confirmation of CB2R
Ligands
The structures of CB2R (6KPC (Hua et al., 2020) with an agonist
and 5ZTY (Li et al., 2019) with an antagonist) have similar
binding pockets and binding residues (Li et al., 2019; Hua
et al., 2020) (Supplementary Table S4). Similarity is also
observed between the CB2R and CB1R binding pockets (Li
et al., 2019). This creates an obstacle to distinguishing between
agonist and antagonist activity for the CB2R if we consider
docking alone. We examined the binding residues in both
structures by applying a virtual ALA scan (Schrödinger Suit
2019-3) (Madhavi Sastry et al., 2013) for 23 residues in the
binding site (Supplementary Table S4). AM12033 (6KPC-
CB2R agonist) has 19 interactions, mainly with hydrophobic
and aromatic residues and 3 H-bonds, with LEU 182 and SER285.

FIGURE 2 | Major common multitargeted substructures. The numbers on each substructure indicate the number of molecules that include it. We chose 303 top
candidates (with index score >0.7) for assigning substructures to CB2R/CB1R agonists and 227 top candidates (Index > 0.7) for the substructures of CB2/5-HT4
agonists. Other substructures were assigned for sets with an index > 0.0.
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AM10257 (5ZTY- CB2R antagonist) has 16 interactions with no
H-bonds (as shown in PDBsum (Laskowski, 2009)).

The calculated stability for the 23 residues (by virtual ALA
scan) does not differ dramatically between 6KPC and 5ZTY. The
considered contacts in the 6KPC agonist structure in order to
suggest more successful docked ligands are: hydrogen bonding
with LEU182 and SER285, and Van der Waals (VDW)
interactions with the following: TYR25, PHE87, PHE91,
PHE94, ILE110, PHE183, TYR190, LEU191, TRP194, LEU262,
MET265, PHE281.

3.3.1 Docking Validation
To choose one out of the two structures for detecting agonists
and/or antagonists of CB2R, we constructed similar grids for the
docking region in both structures, 6KPC and 5ZTY. We then
redocked the ligands in both structures and performed cross-
docking between the two. For 6KPC, the agonist, AM12033, got a
better docking score (−12.2 kcal/mol) than the antagonist
AM10257 (−8.7 kcal/mol). However, in 5ZTY, both agonist
and antagonist got similar docking scores (−9.8 and
−10.8 kcal/mol, respectively). The redocked positions of the
agonist and antagonist are shown in Figure 3.

To further examine the binding of ligands to both structures, we
docked overall 23 known ligands of CB2R and of CB1R with different
selectivities (Supplementary Table S5) (An et al., 2020). Docking
scores are not correlated with experimental Ki values (An et al., 2020)
in Supplementary Table S5. Detailed interactions with binding site
residues for the 19 ligands that passed docking to the 6KPC structure
are listed in Supplementary Table S6. None of the interactions can be
related to a specific activity. This is also seen in Supplementary Figure
S2, where the best-docked ligand of each activity type is compared to
the 6KPC ligand (AM12033). Finally, we screened the learning set of

the CB2R agonist modeling (275 active molecules and 30,000
randoms), resulting in a very low AUC for docking to both 6KPC
and 5ZTY: 0.45 and 0.44, respectively. The ISEmodel, however, got an
AUC of 0.9. Due to the success in redocking an agonist, and the need
for discovering agonists, we continued all docking experiments
with 6KPC.

3.4 Virtual Screening: Ligand-Based vs.
Structure-Based Methods
We compared ligand (ISE) and structure-based (docking)methods by
performing VS of the Enamine DB (2,159,632 compounds) for CB2R.
ISE screening is extremely fast compared to docking (Figure 4). A
positive index in screening by theCB2R agonistmodel was assigned to
241,260 molecules. We pick molecules with higher indexes and better
EF values to improve the quality of our candidates, thus resulting in
fewer molecules. For example, with a high index cutoff ≥ 0.7, 41,102
molecules pass, and the EF equals 54. That EF is only 17 at a lower
index cutoff >0.0 (for 241,260 molecules). Docking was applied to the
ISE candidates with a positive index: SP docking to the 6KPC structure
found 238,718molecules with docking scores of 6.6 to −12.8 kcal/mol.
Filtration was based on docking scores ≤ −9 kcal/mol and hydrogen
bonds with LEU182 and SER285, to a final set of 131 candidates.

Docking to CB2R was performed in two stages with the same
6KPC structure. First, HTVS docking was executed for the whole
Enamine DB. The docked poses have a docking score range from
10.4 to −12.5 kcal/mol. Molecules with docking scores of less than
−9 kcal/mol were further docked by the SP protocol (130,358
molecules). Most of these molecules (130,080) passed SP with a
5.7 to −12.9 kcal/mol docking score. By picking those with a score
better than −9 kcal/mol and hydrogen bonds with LEU182 and
SER285, only 73 molecules remain. Ten out of the 73 docking hits

FIGURE 3 | Superimposition of the redocked ligands at 6KPC and 5ZTY. (A) Left: relevant residues at 6KPC are shown in azure sticks (SER90, PHE94, LEU182,
THR114 and LEU182). The redocked agonist (AM12033, docking score = −12.2 kcal/mol)—blue alignedwith the original ligand (pink), with RMSD = 0.94. Right: relevant
residues (PHE94 and TRP194) at 5ZTY are shown in blue sticks. The redocked antagonist (AM10257, docking score = −10.8 kcal/mol)—yellow aligned with the original
ligand (gray), with RMSD = 1.5. (B) 2D representation of the agonist and antagonist ligands.
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have positive ISE index scores. Only nine molecules are shared
between the two SP screenings. Both sets are diverse from the known
active CB2R agonists, and from each other (average Tc ~0.3).

4 DISCUSSION

The CBRs exert many physiological functions and are thus
considered valuable therapeutic targets. CB2R, in particular,
gains more attention due to its protective actions, involved in
many pathological conditions such as cancer, CNS disorders, and
a variety of disorders in the cardiovascular, gastrointestinal, and
reproductive systems (Pacher and Mechoulam, 2011), while
being devoid of psychoactive effects associated with the CB1R
central activation. Finding single multitargeting agents (Morphy
et al., 2004; Morphy and Rankovic, 2005; Zhang et al., 2017) for
CB2R combined with other targets such as CB1R, PPARγ, and the
5-HT4R is not a trivial endeavor but one worth pursuing.
Searching by virtual screening may suggest candidates in a
shorter time than by in vitro screening and allows to test vast
numbers of compounds. Our approach is to begin by
constructing models for the binding or function of molecules
at specific targets based on previously published results (“ligand-
based” modeling). Our main tool for modeling is our ISE
algorithm. The number of molecules for each model should
not be less than a few dozens. Multitargeting requires to
construct models for each of the relevant targets and anti-
targets. If these models are of good quality, they may be used
for VS, scoring, and sorting millions of molecules in a short time.

Here we present activity models built by the ISE algorithm for
agonists and antagonists at each target. All models are statistically
valid and should be useful (Table 1). The algorithm generates
filters based on the ranges of physicochemical properties
(computed) of known active molecules and randoms. Those
filters are used for scoring by VS. It is noteworthy that the
PPARγ and 5-HT4R models perform better than the models
of CBRs. Their active sets are more similar (by Tc) than those of

the CBRs, as shown in Supplementary Table S1. With an average
Tc~0.5, these sets of agonists may still be considered to be diverse.
For VS, we use filters with top MCC values up to 20% below the
maximal value or just the best 1,000 filters.

Choosing between 2D and 3D descriptors depends on the
problem we want to solve. Even though 3D descriptors are more
representative, they don’t yield better results, as have been studied
in a large number and diverse range of applications over the past
decades (Ekins et al., 2007). Some studies have shown that
combining 2D and 3D molecular descriptors may improve
models’ performance (Yera et al., 2011; Kombo et al., 2013).
But for the CB2R agonist model, both the 3D-based and
combined 2D/3D models have lower performance than the
2D-based model as shown in section 3.1.1.1.

Screening through ISE models was performed to find MTAs
for several target combinations which reflect different indications
(Figure 1). First, we screened through CBR models, which are
involved in many pathological disorders. CB2R selective agonists
have neuroprotective and anti-inflammatory effects (An et al.,
2020). It is possible to reduce the number of molecules by
increasing the cutoff index above 0.0. The higher that index,
there will be less molecules to test further—but the enrichment
factor, with more “true positives” will be greater. By performing
SP docking of 241,260 molecules, subsequent to ISE modeling, we
got 131 candidates (Figure 4). We got more candidates when
combining CB2R agonists with CB1R agonist activity (63,735)
rather than with CB1R antagonist activity 324) (Figure 1). That
may be due to the high degree of structural similarity in the
orthosteric binding pockets between agonist-bound CB2R and
CB1R structures (Shahbazi et al., 2020).

Combining CB2R ligands that are active at CB1R might elicit
central side effects associated with the CB1R. Therefore, it is
important to limit CB1R activity to the periphery and avoid
central activities, either agonistic or antagonistic. By applying
criteria for peripheral action of CB1R ligands, it is possible to
combine with CB2R ligands, particularly the combination of
CB2R agonists/CB1R antagonists. Those candidates may be

FIGURE 4 | Workflows of VS of the Enamine database by ISE (left) and by docking (right). The screening times (in seconds) and the number of candidates are
indicated for each step. The SP docking for the ISE hits was performed for 857,546 entries (generated by ligprep from the 241,260 candidates). The docking protocol
(HTVS, on the right) was performed for 5,026,503 entries (generated by ligprep). Only 130,358molecules passed the score filtration, and those continued to SP docking.
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tested for multiple metabolic disorders, such as obesity and renal
fibrosis (Barutta et al., 2017).

4.1 Some Implications of Ligand-Based
Multitargeting
Multitargeting by ISE could be based on molecules with known
activities on two or more targets. One publication mentions the
construction of such a database, but it is not accessible (Chen
et al., 2017). It is highly unlikely that enough molecules will be
found to enable ISE modeling. Therefore, in the main spirit of ISE,
each “variable” (in that case, a target, withmany ligands as its “values”)
requires separate model construction. Screening and scoring through
any single model reduce the molecular library size by 10-fold or more.
In HTS, it is common to discover 1 out of 1,000 molecules tested for
activity. However, that is a real activity in vitro, while we only suggest
candidates for in vitro testing, which may include false positives.
Therefore their numbers are much larger.

As we add more targets and anti-targets, the number of
candidates decreases: we found, among our ~2.1 million screened
molecules, only 374 candidates for combined (simultaneous) CB2R
and PPARγ agonism, which may be tested for SSc (Wei et al., 2010),
dermatomyositis, cystic fibrosis, and IBD (Decara et al., 2020).
Adding 5-HT4R agonists reduces that number to 28, while CB2R
and 5-HT4R agonists that could be valuable for IBD have 14,008
candidates. The much larger number of shared molecules that could
hit CB2R and 5-HT4R (compared to sharing between CB2R and
PPARγ) reflects the fact that both are aminergic GPCRs of the A
family with 27% sequence similarity, as calculated by blastp
(McGinnis and Madden, 2004), and may have a greater chance
for ligand cross-reactivity (Yang et al., 2021). PPARγ belongs to a
different family of cytoplasmic nuclear receptors. Moreover, only 60
molecules are shared between PPARγ and 5-HT4R agonists
(without screening through CB2R models).

Screening by ISE models has already succeeded in achieving
“scaffold hopping” (Zatsepin et al., 2016; Da’adoosh et al., 2019;
El-Atawneh et al., 2019) due to the use of physicochemical
properties rather than of structures. Even in those cases of
greater similarity among the actives (agonists of PPARγ (0.52)
and of 5-HT4R (0.5), Supplementary Table S1), the top screened
candidates are varied among themselves, i.e., Tc = 0.4 for the 28
multitargeted agonists of CB2R/PPARγ/5-HT4R. That is also the
case of screened molecules vs. actives in the learning sets (all
results in Supplementary Table S3).

The main substructure elements presented inFigure 2mayhelp to
understand how it is possible that a single molecule binds to different
binding sites: the amine moieties—frequently two amines in a
molecule—are singly charged, and the first protonation reduces the
pKa of the other amine. Amine protonation prevails in four out of the
five multitargeted sets, except for CB2R/CB1R agonists in which a
negative charge on the oxygen of the amidesmayhave a leading role. It
is also clear from the difference between the coupling ofCB2R agonists
with either CB1R agonists or antagonists, that it is possible to separate
between these multitarget pairs. It would still be impossible to suggest
a synthesis of multitargeted compounds based on these major
fragments, but it is easy to pick molecules that contain these
fragments for each multitargeted alternative by requiring to include

these substructures with their statistical weight as in Figure 2 or even
better, as in Supplementary Figure S1. None of these moieties
resemble the structures of known cannabinoid ligands (classical,
non-classical, amino-alkylindoles, and those with the eicosanoid
group).

4.2 The Impact of Structure-Based
Modeling
Structures of CB2R have been recently deposited in the PDB (Li et al.,
2019; Hua et al., 2020) and enable to perform structure-based
studies—docking, pharmacophore, and molecular dynamics. The
similarity between CB2R agonist/antagonist complexes and CB1R
and CB2R structures make it challenging to design ligands with high
selectivity (Hua et al., 2020). Docking is considered a time-consuming
approach, as shown inFigure 4. Screening by docking has been shown
to bemuch less reliable statistically than our ligand-based approach for
CB2R agonism. Our ISE models screen molecules based on their
properties and not on structural elements. That may result in top
screened molecules having similar properties but different sizes and
volumes, which may or may not be accommodated by the targets.
Some of these molecules might not fit into binding sites and will be
rejected. The results of our CB2R modeling confirm our preferable
sequence of actions: ligand-based modeling should be followed by
structure-based testing, which is better than structure-based
docking alone.

Virtual ALA scan was used in this and other of our studies for
picking “hot spots”—the main residues that contribute to the
binding of smaller or larger ligands (i.e., including protein-
protein interactions). Those “hot spots” determine the region of
the grids for screening by docking and provide the initial geometric
criteria that are applied prior to considering the docking scores. In
ALA scan, we replace a larger side chain (of 18 amino acids, except
for GLY andALA) with a shorter one.We do not however apply any
minimization or dynamics to that change, which positions a methyl
group in the Cβ position, with tetrahedral angles vis-à-vis Cα, in
place of a longer side chain, leaving some “void”. No other side chain
position is modified around the virtually mutated one. This protocol
is due to our wish to discover molecules that replace an existing
ligand/protein with an exact similar conformation of side chains in
the protein target, as in the PDB, in order to promote competition.
That is clearly not the case with genetically mutated ALA scan. In
that in vitro experiment, other side chains could change their
conformations in the vicinity and more remote from the ALA
mutated position. In vitro ALA scan may even change
conformations of the main protein chain. Therefore, it is
rewarding if mutagenesis studies support some of our results
such as for PHE87, PHE91, PHE94, HIS95 (Li et al., 2019), and
TRP194 (Zhang et al., 2011). TYR190 mutation to Ile resulted in a
loss of ligand recognition and function (McAllister et al., 2002).

This is a theoretical study, which includes statistics (AUC, EF) that
clarify what are the chances for discovering multitargeted actives.
Naturally, the next step is to pick top candidates from each set for
biochemical experiments. Our multitargeting results also suggest
which multitargeting sets have a greater chance to be
experimentally confirmed. Previously, we published our theoretical
predictions and experimental validations of the binding of 8molecules
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out of 15 predicted candidates (picked by ISEmodeling from a library
of 1.8million) (El-Atawneh et al., 2019). Finally, only in vitro testing of
candidates predicted by eachmethod in silicowill confirmor refute the
VS results conducted by ISE and docking approaches.
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