
GigaScience, 9, 2020, 1–3

doi: 10.1093/gigascience/giaa063
Commentary

COMMENTARY

The democratization of bioinformatics: A software
engineering perspective
Brendan Lawlor 1,* and Roy D. Sleator 2

1Department of Computer Science, Cork Institute of Technology, Bishopstown, Cork, Ireland; and
2Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
∗Correspondence author. Brendan Lawlor, Department of Computer Science, Cork Institute of Technology, Bishopstown, Cork, Ireland. E-mail:

brendan.lawlor@mycit.ie http://orcid.org/0000-0002-2250-0669

Abstract

Today, thanks to advances in cloud computing, it is possible for small teams of software developers to produce
internet-scale products, a feat that was previously the preserve of large organizations. Herein, we describe how these
advances in software engineering can be made more readily available to bioinformaticians. In the same way that cloud
computing has democratized access to distributed systems engineering for generalist software engineers, access to scalable
and reproducible bioinformatic engineering can be democratized for generalist bioinformaticians and biologists. We
present solutions, based on our own efforts, to achieve this goal.

Keywords: democratization; cloud computing; scalability; bioinformatics; software engineering

Background

Thanks to a number of factors, to which we collectively refer as a
”democratization of software at scale,” it is possible for relatively
small teams of engineers to produce internet-scale products
(i.e., software systems that scale globally), a feat that was pre-
viously the exclusive preserve of large organizations. Those fac-
tors, which include containerization, orchestration, and cloud
computing, share a common theme: abstracting away the ac-
cidental complexity of a problem and leaving only its essen-
tial complexity exposed [1]. In particular, they hide much of the
complexity of network engineering, cluster management, and
running distributed systems reliably and at scale. This empow-
ers software developers to concentrate on their core domain:
providing features to users.

However this stratified approach has not yet been widely
applied in bioinformatics. The day-to-day experience of many
bioinformatic researchers and practitioners is one of frustra-
tions, delays, and impediments to productivity. We believe that
this is due in part to having to work at the wrong level of abstrac-
tion, dealing with implementation details that merely distract
from the work at hand, and being obliged to improvise solutions

that subsequently present problems in terms of scalability and
reproducibility [2]. This need not be the case.

Herein, we describe ways in which the advances in software
engineering, outlined above, can be made more readily available
to bioinformaticians. In the same way that access to distributed
systems engineering has been democratized for generalist soft-
ware engineers, access to scalable and reproducible bioinfor-
matic engineering can be democratized for generalist bioinfor-
maticians and biologists.

Accidental vs Essential

In a highly regarded software engineering article titled ”No Sil-
ver Bullet” [3], Fred Brooks wrote of the difference between “es-
sential tasks” and “accidental tasks” in software. Essential tasks,
according to the author, relate to the fashioning of conceptual
structures that make up the abstract software: analysing and
modelling the problem domain. Accidental tasks, by contrast,
are about implementing these abstractions in real programming
languages, on real computers, with real resource constraints.
While the observations made by Brooks are old, they are cer-

Received: 25 April 2020; Revised: 22 May 2020; Accepted: 26 May 2020

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-2250-0669
http://orcid.org/0000-0001-8231-3323
mailto:brendan.lawlor@mycit.ie
http://orcid.org/0000-0002-2250-0669
http://orcid.org/0000-0002-2250-0669
http://creativecommons.org/licenses/by/4.0/


2 The democratization of bioinformatics: A software engineering perspective

Figure 1 Roles and their interfaces in bioinformatic software development.

tainly not dated. As he predicted, no “silver bullet” has pre-
sented itself in the intervening decades to significantly reduce
the essential complexity of software development. His observa-
tion that most of the progress made in software productivity has
come from “removing artificial barriers that have made the ac-
cidental tasks inordinately hard” remains true.

But what is “accidental” to one discipline is “essential” to
another. The complexities of creating a distributed comput-
ing environment—networking, security, reliability, elasticity—
are “accidental” for generalist software developers but “essen-
tial” for cloud providers such as Amazon Web Services, Azure,
and Google Cloud Platform, who simplify such environments
for those developers. Cloud computing has evolved over the
years from providing infrastructure as as service (IaaS) to of-
fering platform as a service (PaaS). Rather than merely selling
time on virtual machines, cloud providers have opted to pro-
vide entire platforming solutions such as relational databases,
lambda function support, and Kubernetes clusters [4]. This has
freed generalist software developers to concentrate on their es-
sential complexity: the modelling of solutions using scalable
architectures.

In bioinformatics systems, the accidental tasks are those that
require software engineering skills and techniques, which are
additional to the ever-increasing complexity that already exists
in the biological domain. The burden of these accidental tasks,
in the face of greater demands for scale, and mounting concerns
around reproducibility, is widely felt.

In Fig. 1 we take a step back and look at the enterprise of cre-
ating modern, scalable, cloud-native bioinformatic applications
in a wider context. A useful way to view the relevant roles and
their relationships is presented, which emphasizes that what is
accidental to one domain is essential to another. It identifies
ways of interacting at the boundaries of these roles, which we
discuss next.

The figure coins the acronym EaaS to indicate the ”engineer-
ing as a service” that generalist software engineers, standing
on the shoulders of PaaS, could in turn offer to bioinformati-
cians. Similarly, bioinformaticians can blend their understand-
ing of computation and biology into applications and pipelines
(software as a service [SaaS]) that can be easily used not only by
other bioinformaticians but by all biologists. The work of clini-
cians and researchers can be seen as ”biology as a service”—to
academia and to society.

Docker at the Interfaces

The breadth of engineering knowledge required to do repro-
ducible bioinformatic work at scale is perhaps not fully appre-
ciated [5]. Such skills cannot be absorbed in their entirety by
bioinformaticians and other scientific programmers. In order to
create bioinformatic systems of scale, there are different kinds
of complexity that come into play, which fall well outside what
should be considered as the essential tasks of the bioinformati-
cian, such as concurrent programming techniques, reproducible
build and deployment methods, and so forth.

The current situation is influenced by the latent assumption
that, because bioinformatics is a mix of biology and computa-
tion, there is no call for software specialists. There is also the
view held by some, but without much evidence, that software
engineers cannot work alongside scientists for various reasons
including complexity, process, and budgets.

Our position is that not only is such collaboration possible,
it is necessary. The key is knowing where to draw the bound-
ary between the disciplines, and what information or artefacts
should cross that boundary. As part of the development of bioin-
formatic pipelines for the Simplicity project [6], we used Docker
technology to address both of these questions.

Docker is already widely used in the life sciences [7, 8], and
we present it here in addition as an ideal crossover technology
between software engineers and bioinformaticians. By specify-
ing in code form (the Dockerfile) exactly what a container should
contain, questions of Linux distributions and versions, system
configurations, installed libraries and tools, directory structures,
environment variables, and many other elements can be speci-
fied, built, and tested by a software engineer. This can be used
to create running Docker containers on which bioinformatic
pipelines can be developed and tested by a bioinformatician, us-
ing the tools installed.

The simple text Dockerfile is easily shared and updated over
time. When the bioinformatician hits a technical problem, the
software engineer can reproduce it, investigate it, and fix it and
then send an amended Dockerfile back to the bioinformatician.
When the bioinformatician has finished, the Dockerfile becomes
the means by which a Docker image is created, distributed, and
run by any other users.

Conclusions

Software engineering has a vital part to play in bioinformatics,
distinct from, but in support of, the integral role of computation
in answering biological questions. The use of Docker at the in-
terface between these roles can democratize access to internet-
scale engineering for biology researchers and practitioners.

Abbreviations

Eaas: engineering as a service; IaaS: infrastructure as as service;
Paas: platform as a service; SaaS: software as a service.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

B.L. and R.S. conceived of the presented paper. B.L. took the lead
in writing the manuscript. R.S. supervised the process, making
changes and corrections as appropriate.



Lawlor and Sleator 3

References

1. Armbrust M, Fox A, Griffith R, et al. A view of cloud computing.
Commun ACM 2010;53(4):50–8.

2. Grüning B, Chilton J, Köster J, et al. Practical computational
reproducibility in the life sciences. Cell Syst 2018;6(6):631–5.

3. Brooks F, No silver bullet, IEEE computer. 1987, 20, 4, 10–19.
4. Mell P, Grance T, The NIST definition of cloud computing, Na-

tional Institution of Standards and Technology, 800-145. 2011.
5. Storer T. Bridging the chasm: A survey of software engineer-

ing practice in scientific programming. ACM Comput Surv
2017;50(4):1–32.

6. Walsh P, Carroll J, Sleator RD. Accelerating in silico research
with workflows: a lesson in simplicity. Comput Biol Med
2013;43(12):2028–35.

7. Menegidio FB, Jabes DL, Costa de Oliveira R, et al. Dugong:
A Docker image, based on Ubuntu Linux, focused on repro-
ducibility and replicability for bioinformatics analyses. Bioin-
formatics 2017;34(3):514–5.

8. da Veiga Leprevost F, Grüning BA, Alves Aflitos S, et al.
BioContainers: An open-source and community-driven
framework for software standardization. Bioinformatics
2017;33(16):2580–2.


