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Purpose: Clinicians rely on imaging features to calculate complexity of renal masses

based on validated scoring systems. These scoring methods are labor-intensive and are

subjected to interobserver variability. Artificial intelligence has been increasingly utilized

by the medical community to solve such issues. However, developing reliable algorithms

is usually time-consuming and costly. We created an international community-driven

competition (KiTS19) to develop and identify the best system for automatic segmentation

of kidneys and kidney tumors in contrast CT and report the results.

Methods: A training and test set of CT scans that was manually annotated by trained

individuals were generated from consecutive patients undergoing renal surgery for whom

demographic, clinical and outcome data were available. The KiTS19 Challenge was

a machine learning competition hosted on grand-challenge.org in conjunction with an

international conference. Teams were given 3 months to develop their algorithm using

a full-annotated training set of images and an unannotated test set was released for 2

weeks from which average Sørensen-Dice coefficient between kidney and tumor regions

were calculated across all 90 test cases.

Results: There were 100 valid submissions that were based on deep neural networks

but there were differences in pre-processing strategies, architectural details, and training

procedures. The winning team scored a 0.974 kidney Dice and a 0.851 tumor Dice

resulting in 0.912 composite score. Automatic segmentation of the kidney by the

participating teams performed comparably to expert manual segmentation but was less

reliable when segmenting the tumor.

Conclusion: Rapid advancement in automated semantic segmentation of kidney

lesions is possible with relatively high accuracy when the data is released publicly, and

participation is incentivized. We hope that our findings will encourage further research

that would enable the potential of adopting AI into the medical field.
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INTRODUCTION

Imaging technology has enhanced the diagnosis of renal masses
as cross-sectional abdominal imaging has become a prominent
procedure (1). These scans are mostly performed for non-
urological indications and subsequently the majority of newly
diagnosed renal masses are incidental. Once the abnormality is
identified, specialists generally rely on imaging characteristics to
assess the malignancy potential of the mass and the subsequent
treatment strategy. Nephrometry scores were designed to help
quantify the complexity of the mass and help guide surgical
treatment, prognosis, and patient decision-making. In the
current clinical practice, nephrometry scores are manually
calculated using the methods developed by author Kutikov and
Uzzo. These scores are calculated using data/measurements from
cross-sectional imaging (2). However, the measurements require
additional unreimbursed time from clinicians who already
work incessantly, which subjects the scores to considerable
interobserver variability. Therefore, widespread usage has been
limited despite the potential clinical benefit.

Advances in artificial intelligence (AI), specifically the success
of deep learning algorithms to correctly classify or “interpret”
images, have given rise to nascent applications in the biomedical
field (3). Renal tumors have the tendency to image well, as they
are distinguishable on CT scan from the kidney parenchyma
at diameters as small as 10 mms, which allows them to have
the potential to become fully delineated automatically through
deep learning. The AI-generated segmentation can be used
with codes to translate the segmentations into fully automated
nephrometry scores. Its consistency would aid clinicians to
make quality decisions regarding patient care. Initial forays
into this realm are also being explored in other solid tumors
and anatomical regions of interest (4). There has already been
initial work in this field using CT texture analysis to try to
differentiate angiomyolipomas (a subtype of benign renalmasses)
from malignant tumors (5–7). However, texture analysis often
relies on expert segmentation to extract features that are meant
to be discriminative, and hence requires considerable error-
prone manual effort (8). Reliable automatic segmentation of
kidneys and kidney tumors would alleviate the labor-intensive
process of manual segmentation which is one of the primary
obstacles limiting the translation of these technologies into
the clinic.

This paper describes an international community-driven
competition to develop and identify the best system for automatic
segmentation of kidneys and kidney tumors in contrast CT.
More than 100 competing teams developed systems based on
a large collection of imaging studies with high-quality manual
segmentations made available to them in the spring of 2019.
Teams then submitted their systems’ predictions on a hold-
out set of cases for which the manual segmentations were
undisclosed. These predictions were centrally aggregated and
scored according to a widely used agreement metric. The
purpose of this paper is to characterize the performance of these
automated solutions and how it relates to tumor characteristics.
Our hope is that this will enable a heightened awareness of
the potential weaknesses of automatic segmentation systems and
help to guide their future development.

FIGURE 1 | Referral sites of the different locations where the imaging was

performed.

METHODS

Dataset
All patients who underwent surgery for a renal mass between
January 2010–July 2018 were eligible for inclusion (n = 544) as
the state of Minnesota is an opt-out state, meaning that each
patient that attended our clinic is asked to sign aHIPAA form that
enables them to share their data for research. They must actively
opt-out if they wish their data not to be shared. Our Clinical Data
Repository (CDR) office pulled the data after obtaining approval
from our Institutional Review Board (IRB) for consent waivers
for this retrospective study. The CDR office ensured that only
patients who signed the HIPAA form consenting to have their
data used in research are accessible via the encrypted and secure
data shelter hosted by the University of Minnesota. The research
team then assigned each scan a random case number that prevent
any protected health information from being released to the
public. We restricted the inclusion to only patients with available
pre-operative CT abdominal/pelvic imaging in the late arterial
phase (n = 326). The images were acquired at over 70 different
clinics with scanners spanning four different manufacturers. We
restricted to late-arterial phase CT images for consistency and
because this was the most common contrast phase available. We
also excluded patients that had a tumor thrombus to simplify
an unambiguous definition of kidney tumor voxels (n = 26).
Therefore, we included 300 patients in this study. Even though
all patients underwent surgery at a single site, their images were
acquired from over 70 different clinics across the country within
a month before surgery, with scanners spanning four different
manufactures (see Figure 1).

We reviewed the medical record of all included patients
to extract pre-operative demographic and clinical data. Intra-
operative data such as surgical technique, operative time,
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ischaemia time (in partial nephrectomy cases) and blood
transfusion were also recorded. Detailed pathological data on
the excised mass were also recorded including histological
subtype, T stage, and ISUP grade. Finally, post-operative progress
of patients was also recorded including complications, renal
function, and survival.

The CT images for each of the included patients were retrieved
and reviewed. Annotations were performed to delineate the
kidneys and tumors in each axial view of these 300 scans. In
total, more than 50,000 regions were delineated, encompassing
several 100 h of effort by a group of twenty-five medical students.
They had a 60min virtual training facilitated by a Computer
Science Ph.D., student (NH) who guided them through cases.
For 1 week after the initial training, the students were monitored
and had their performance validated against that of a staff
urologic oncologist (CW). Given the different radiodensities of
normal renal parenchyma, cysts, tumors, and perinephric fat, we
used simple image processing techniques such as denoising and
thresholding to consistently delineate the boundaries between
these structures and therefore define a reliable ground truth for
each case.

The interobserver agreement of the annotation process was
assessed using the gold standard for calculating an average
Sørenson Dice score between human annotators using the
software Python. Thirty randomly selected cases were chosen and
the mean Dice score for the kidney region was 0.983, while the
mean Dice was 0.923 for the tumor alone. A detailed description
of the validation process is reported elsewhere in Heller et al. (9).

The 2019 Kidney and Kidney Tumor
Segmentation Challenge
The KiTS19 Challenge was a machine learning competition
hosted on grand-challenge.org from March 1, 2019, to October
13, 2019 and held in conjunction with the 2019 International
Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) in Shenzhen, China (10). The
aim of the challenge was for teams to develop a method of
automatic semantic segmentation of kidneys and tumors.

A training set of 210 fully annotated cases were made publicly
available 3 months prior to the testing phase, at which time
a test set of 90 cases without segmentations was released, and
teams were given 2 weeks to automatically segment these cases
with the systems that they developed. Teams were permitted to
use other publicly available data to help develop their model.
They were also mandated to submit a detailed manuscript on
their study methods to be eligible for the KiTS19 Challenge.
Teams were allowed to make only one submission to the KiTS19
Challenge and all predictions were required to be entirely
automatic with no manual intervention. The official MICCAI
2019 Leader board was released shortly after the testing phase
closed. Teams were ranked based on the average Sørensen-Dice
coefficient between kidney and tumor regions across all 90 test
cases. A cash prize of $5000 from Intuitive Surgical was offered to
the winning team to incentivize participation. The leader board
has remained open following the KiTS19 Challenge and there
have been 657 submissions in total at the time of writing but

only the data from the official KiTS19 Challenge is included in
this paper.

RENAL nephrometry score is a standardized classification
system that assesses the anatomical features of a renal tumor.
The components of the nephrometry score include tumor
size, the proportion of the mass which is endophytic, the
proximity to the collecting system, whether it is anterior or
posterior and is location relative to polar lines (2). We sought
to replicate the standard tumor characteristics defined by the
RENAL nephrometry score through automatic segmentations
and compared its accuracy to that of manual calculations.
The nephrometry score was calculated by medically trained
data collectors.

Statistical Analysis
Statistical analysis was performed in R version 3.4. We used
descriptive statistics to summarize data. We plotted average
Sørensen-Dice coefficients for each element of the RENAL
nephrometry score, including size, endophycity, nearness to
collecting system, location. We used standard cut-offs for each
element that was described in the original scoring system.
We calculated differences using one-way analysis of variance.
Statistical significance was set at p-value of 0.05.

RESULTS

KiTS19 Challenge Participation
There were 106 unique teams from across five continents
who submitted valid predictions to the challenge of which six
were excluded for not meeting all submission requirements.
Therefore, 100 predictions were included in the final MICCAI
2019 Leader board. The KiTS19 Challenge was recognized at
MICCAI 2019 as the challenge with the greatest number of
participants (11). A convenience sample of 67 teams were
anonymously surveyed about their participation in this challenge.
On average, teams reported spending ∼170 h (SD 212 h)
working on their respective models, and only 6% of teams
reported working with a physician. Submissions were entirely
based on deep neural networks but there were considerable
differences in pre-processing strategies, architectural details,
and training procedures. A complete description of the high-
performing KiTS19 Challenge methodologies was reported by
Heller et al. (12).

Winning Algorithm
The top-ranking model was submitted by the German Cancer
Research Center. This submission utilized three 3D U-Net
architectures which is a convolutional neural network created
for volumetric segmentation in biomedicine. This submission
scored a 0.974 kidney Dice and a 0.851 tumor Dice resulting in
0.912 composite score. A detailed description of this algorithm
and procedure of this model is outlined in Isensee and Maier-
Hein (13).

Comparison to Benchmarks
Figure 2 shows the performance of all teams on the 90 test cases.
Automatic segmentation of the kidney by the participating teams
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FIGURE 2 | Performance of participating teams in segmenting the kidney and tumor (dotted lines represent inter-observer agreement for kidney and tumor

segmentation).

performed comparably to expert manual segmentation but was
less reliable when segmenting the tumor. This also applied to
the winning algorithm which performed well in delineating the
kidney compared to the inter-observer agreement of manual
segmentations (mean Dice 0.974 vs. 0.983) but was inferior to the
inter-observer agreement of manual segmentations (mean Dice
0.851 vs. 0.923).

Factors Impacting the Accuracy of
Automatic Segmentation
When examining the components of the RENAL score, there
was no significant association between kidney Dice scores
and any renal components on multivariable analysis. Tumor
Dice, however, significantly associated with tumor size (p <

0.01, Table 1A, Figure 3A), endophycity (p < 0.01, Table 1B,
Figure 3B), collecting system involvement (p < 0.01, Table 1C,
Figure 3C), and location relative to polar lines (p < 0.01,
Table 1D, Figure 3D). Automatic segmentation performed
worse on tumors that were smaller, more endophytic, not
involved with the collecting system, and beyond the polar lines.

DISCUSSION

We found that by making high-quality, segmented data publicly
available and creating an incentivized challenge, we were
able to coordinate ∼20,000 h of effort globally on automatic
segmentations of kidney and kidney tumor. This challenge
demonstrated that artificial intelligence could automate the
digital quantification of kidney masses with only slightly worse
performance than humans, while automatic kidney segmentation

was found to exhibit virtually identical performance to
humans. Automated segmentation shows tremendous promise
for the automation of this and related tasks. It seems certain
that with additional training scans from a wider range of
centers and contrast phases, the algorithms will approach and
potentially surpass human level performance and make for an
extremely useful tool for characterizing renal masses at point
of care.

We foresee that automated segmentation will serve as a
basis for many advances in prognosis, diagnosis, and the
treatment of kidney tumors. Automatic segmentation could aid

radiologists in flagging/identifying concerning lesions on CT
scans performed for other indications and thereby reducing
the risk of a missed diagnosis. Automated segmentation will
also permit more widespread and unambiguous calculation
of nephrometry scores such as the RENAL score (2) while
incorporated components such as tumors centrality calculated by
C-index (14), and the risk of surgical and medical perioperative
complications calculated by PADUA scores (15) as well. While
these scores have shown to be associated with a range of
clinical outcomes, they have been limited by marked inter-
observer variation and the human capital required to generate
the scores. The inter-class correlation between radiology fellows,
urology fellows, a radiology resident, and medical school
students for C-index, PADUA and RENAL scores have been
reported to be 0.77, 0.68, and 0.66, respectively (16). Therefore,
automation of such calculations would enable the consistency
of predictions that could be easily exportable even to resource-
poor and medically underserved areas. Furthermore, we envision
that automated segmentation of kidney tumors would open
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FIGURE 3 | Continued
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FIGURE 3 | Performance of participating teams based on each component of the RENAL score: (A) tumor diameter, (B) the proportion of the mass, which is

endophytic, (C) proximity to collecting system, and (D) location relative to polar lines.

the door to sophisticated tumor and kidney analytics such
as radiomics/texture and be poised to discover new imaging
biomarkers associated with patient relevant outcomes. Based on
imaging characteristics we may be able to predict the probability
of the incidentally detected mass to be malignant or aggressive in

nature. Therefore, we can use imaging characteristics to stratify
risk and help guide treatment decisions.

The KiTS19 Challenge demonstrates the vast potential of
community-driven efforts for developing AI applications in the
medical field. Such open challenges facilitate the pooling of
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TABLE 1 | Mean DICE for components of nephrometry score (A) tumor diameter, (B) the proportion of the mass, which is endophytic, (C) proximity to collecting system,

and (D) location relative to polar lines.

A <4 cm 4–7 cm >7 cm P -value

Mean DICE for segmenting kidney for all teams

(SD)

0.92 (0.08) 0.92 (0.10) 0.89 (0.11) 0.11

Mean DICE for segmenting tumor for all teams

(SD)

0.45 (0.21) 0.70 (0.21) 0.75 (0.19) <0.01

Winning algorithm DICE for kidney 0.97 0.97 0.97

Winning algorithm DICE for tumor 0.80 0.91 0.89

B >50% exophytic <50% endophytic Entirely endophytic P-value

Mean DICE for segmenting kidney for all teams

(SD)

0.91 (0.09) 0.91 (0.10) 0.92 (0.09) 0.56

Mean DICE for segmenting tumor for all teams

(SD)

0.61 (0.21) 0.51 (0.20) 0.41 (0.19) <0.01

Winning algorithm DICE for kidney 0.97 0.98 0.97

Winning algorithm DICE for tumor 0.88 0.86 0.74

C ≥7 mm >4 and <7 mm ≤4 mm P-value

Mean DICE for segmenting kidney for all teams

(SD)

0.92 (0.09) 0.94 (0.09) 0.91 (0.10) 0.11

Mean DICE for segmenting tumor for all teams

(SD)

0.44 (0.21) 0.56 (0.23) 0.64 (0.19) <0.01

Winning algorithm DICE for kidney 0.97 0.98 0.97

Winning algorithm DICE for tumor 0.75 0.93 0.88

D Entirely above upper or

below lower polar line

Crosses polar line 50% mass crosses polar line or mass

entirely between polar lines or

crosses axial midline

P-value

Mean DICE for segmenting kidney for all teams

(SD)

0.93 (0.08) 0.92 (0.09) 0.90 (0.10) 0.09

Mean DICE for segmenting tumor for all teams

(SD)

0.43 (0.21) 0.52 (0.19) 068 (0.20) <0.01

Winning algorithm DICE for kidney 0.97 0.97 0.97

Winning algorithm DICE for tumor 0.77 0.79 0.92

knowledge and efforts to identify the high-performing solutions
to problems in a timely manner compared to isolated individual
efforts which can take significant time and effort to replicate
and benchmark against. Mak et al. conducted a financially
incentivised online challenge to develop an AI solution to
segment lung tumors for radiation therapy targeting (17). This
challenge had 34 submitted algorithms and following multiple
phases created a model with a DICE score of 0.68. This model
outperformed other commercially available software and was
comparable to interobserver variation between five radiation
oncologists. This data suggests that additional collaborative
work on the top algorithms from the KiTS19 Challenge would
improve on current performance and may already be performing
at a clinically acceptable level. There have also been similar
competitions in other organs such as breast cancer in which
the Digital Mammography DREAM Challenge attempted to
segment tumors from mammograms with good success (18).
The success of these events suggests that competitions in
oncology can hasten the development of high-quality tools
which ultimately improve outcomes for cancer patients by

developing innovative methods in an open, low-cost, and
swift manner.

The findings of this study should be interpreted within
the context of its limitations. Firstly, the algorithms from
this challenge may not function as well in a different
patient population or in different ethnicities/nationalities.
Despite the relatively wide range of scanners and radiology
services represented in our data, they are all limited to
a small geographic region. In addition, the impact of
not working with a clinical expert could cause tumors
to go unnoticed by the algorithms which would lead
to less aggressive treatment plans such as surveillance.
Furthermore, the dataset used is relatively small compared
to non-segmentation or non-medical imaging AI challenges
and our performance estimates are therefore less precise
than we could make with a larger, more diverse dataset.
Nonetheless, our dataset and the results of our challenge
represent a significant advancement in kidney and kidney
tumor segmentation and provide a solid platform for
further improvement.
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CONCLUSION

Rapid advancement in automated semantic segmentation of
kidney lesions is possible with relatively high accuracy when
the data is released publicly, and participation is incentivized.
This allows for the development of a range of clinical
applications which include automated diagnosis and patient
specific prediction models. These can aid in decision-making
to choose the ideal treatment for cancer patients and, at the
same time, facilitate better anatomy specific surgical training or
planningmodels. The use of competitions to develop AI solutions
in medicine is feasible, time-efficient, and cost-effective.

It is envisioned that reliable automatic segmentation
would form the basis to quantitatively study kidney tumor
morphology/texture and permit the automation of nephrometry
scores and other predictors for a range of clinical outcomes (19).
Therefore, segmentation is a necessary step toward creating high
fidelity surgical training models such as 3D printed kidneys (20)
or augmented or virtual reality.
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