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ABSTRACT

Linkage analysis is a successful procedure to
associate diseases with specific genomic regions.
These regions are often large, containing hun-
dreds of genes, which make experimental methods
employed to identify the disease gene arduous and
expensive. We present two methods to prioritize
candidates for further experimental study: Common
Pathway Scanning (CPS) and Common Module
Profiling (CMP). CPS is based on the assumption
that common phenotypes are associated with dys-
function in proteins that participate in the same
complex or pathway. CPS applies network data
derived from protein–protein interaction (PPI) and
pathway databases to identify relationships between
genes. CMP identifies likely candidates using a
domain-dependent sequence similarity approach,
based on the hypothesis that disruption of genes of
similar function will lead to the same phenotype.
Both algorithms use two forms of input data: known
disease genes or multiple disease loci. When using
known disease genes as input, our combined meth-
ods have a sensitivity of 0.52 and a specificity of 0.97
and reduce the candidate list by 13-fold. Using
multiple loci, our methods successfully identify
disease genes for all benchmark diseases with a
sensitivity of 0.84 and a specificity of 0.63. Our
combined approach prioritizes good candidates and
will accelerate the disease gene discovery process.

INTRODUCTION

The identification of genes responsible for human disease is
critical to gain an understanding of disease mechanisms and
is essential for the development of new diagnostics and thera-
peutics. Genetic linkage analysis has been used successfully

to identify chromosomal loci. Unfortunately, isolating the
disease-causing gene(s) within these loci can be difficult:
genomic regions are often large, containing hundreds of pos-
sible candidate genes, making experimental methods time-
consuming and expensive. Furthermore, searches for single
nucleotide polymorphisms (SNPs) in the genomes of individ-
ual patients from clinical studies will produce a large number
of potential gene candidates (1,2). Clearly, these high-
throughput analyses will require computational approaches
to identify the best candidates for further study.

The completion of the human genome sequencing project
has stimulated the development of new genome-scale bioin-
formatics approaches to understand disease. While some pro-
gress has been made in candidate gene prediction, these
systems can, at best, only claim modest pruning of the
genes in a disease interval (3).

Previous candidate gene prediction systems have largely
been based on keyword similarity to known disease genes
or phenotypes. For example, the G2D system (4,5) is based
on biomedical literature searches and associates pathological
conditions with gene ontology (GO) terms (6). Candidate
genes are then identified by homology to GO-annotated and
disease-associated genes. POCUS (3) finds candidate genes
by identifying an enrichment of keywords associated with
GO, shared InterPro domains (7) and expression profiles
among a given set of susceptibility loci relative to the genome
at large. The method by Tiffin et al. (8) selects candidates
according to their expression profiles within tissues associ-
ated with disease, and relationships between clinical and
molecular data are identified using the eVOC anatomy ontol-
ogy (9). The recent method SUSPECTS (10) again compares
GO, InterPro and expression libraries of putative disease
genes with those known to be involved with the same disease.
Similarly, GeneSeeker (11) integrates keyword data based on
mapping, expression and phenotypic databases from human
and mouse studies. Finally, the method by Freudenberg and
Propping (12) is based on a measure of phenotypic similarity
between diseases and produces clusters of disease genes using
keywords derived from OMIM (13).
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Some of these methods have been incorporated into a con-
sensus approach that has been applied to select candidates for
the complex diseases type 2 diabetes and obesity (14). Using
a consensus of combined methods appears to be effective for
ranking predicted candidate disease genes.

Here, we present Gentrepid, a system which improves on
these early methods by using a combined bioinformatics
approach encompassing methods of domain comparison and
protein pathway and interaction data analysis. The system
combines two methods for the automated prediction of dis-
ease genes within known disease intervals. The first, Com-
mon Pathway Scanning (CPS), is based on the assumption
that common phenotypes are generally associated with dis-
ruption in proteins that participate in the same complex or
pathway (15). Recently, Gandhi et al. (16) showed that dis-
ease genes preferentially interact with other disease-causing
genes and a study by Oti et al. (17) predicted that 10% of pro-
teins interacting with a disease gene product are likely to par-
ticipate in the same disease. Franke et al. (18) described a
system, PRIORITIZER, based on predicted protein–protein
interactions (PPIs), whereby disease genes are identified
through common interactions of proteins in multiple disease
intervals that have common phenotypes.

Our second method, Common Module Profiling (CMP), is
based on the principle that candidate genes may have similar
functions to disease genes that have already been determined
(19). CMP is similar in concept to methods using functional
annotations, but many human proteins lack annotation (20)
and, therefore, similarities would be missed when comparing
keywords alone. For example, only 10 000 human proteins,
�25% of the human proteome, have manually curated
GO-terms.

CMP uses a domain-based comparative sequence analysis
to identify those proteins with potential functional similarity.
Domain-based sequence comparison searches have been
shown to be more accurate than full-sequence searches (21)
as commonly applied in BLAST or PSI-BLAST database
searches (22). Unlike the keyword systems, CMP calculates
a measure of domain-based similarity to known disease
genes rather than making a binary comparison.

Both methods use two sources of input for disease gene
prediction. First, known disease genes are used to predict
novel disease genes in chromosomal intervals associated
with the same disease. Second, without knowledge of the dis-
ease genes, candidate disease genes are predicted by compar-
ing all the genes in the multiple intervals associated with the
same disease to find relationships between proteins linking
the intervals. The proteins may be related via a common
pathway or shared domains.

MATERIALS AND METHODS

Annotation pipeline

All biological data were combined into a relational database.
Human disease gene information was extracted from the
OMIM database and lists of genes flanking the disease
genes were obtained from EntrezGene (build 35) (23). Pro-
tein sequence data were taken from GenBank (24) and com-
plete protein domain annotation was performed on all
protein sequences using Pfam Hidden Markov models

(25). Finally, all genes were mapped to the latest pathway
and PPI data.

There are currently over 200 biological pathway and net-
work resources available (26). Here, we utilize data from
BioCarta (www.biocarta.com), KEGG (27) and OPHID (28),
the most comprehensive databases of their type. BioCarta and
KEGG are chiefly pathway databases with BioCarta special-
izing in signalling pathways and KEGG in metabolic path-
ways. OPHID is a secondary PPI database containing
literature-derived interaction data from BIND (29), MINT
(30) and HPRD (31), as well as data from recent high-
throughput experimentation (32–35). OPHID also contains
transferred interactions from orthologous proteins in model
organisms.

CPS

Potential disease genes were predicted by identifying all
proteins within a disease interval that are part of a pathway,
described in BioCarta and KEGG. PPI data from OPHID was
used to identify novel disease genes by finding the interaction
partners of known disease genes in a disease interval. Three
levels of interactions were tested for potential disease genes,
based on the shortest path length to a known disease gene.
Unless stated otherwise, result summaries for all the com-
bined methodologies are presented using OPHID interactions
at a distance of one to the nearest disease gene.

When CPS is applied across multiple intervals, i.e. in the
absence of known disease genes, all interaction partners
and pathways associated with the genes in each interval are
compared across intervals. Disease genes are predicted by
identifying common pathways or interaction partners shared
by the intervals associated with a specific phenotype.

CMP

CMP compares the Pfam domain content of each protein
within a disease interval to identify putative disease genes.
Different calculations are performed depending on whether
CMP uses known disease genes or multiple intervals as input.

When known disease genes are used as input, a protein
(candidate) observed to have disease-like domains is assigned
a score (S). Scores are based on the similarity between the
protein’s domains (j) and the domains (i) in the known dis-
ease gene (dg) using SSEARCH (36) bit scores (s).
SSEARCH is an implementation of the Smith and Waterman
local alignment algorithm (37). Scores are normalized by
matching the equivalent region of the disease gene against
itself on a domain by domain basis (Equation 1).

S ¼
P

i max½sðdgi‚candidatejÞ�P
i sðdgi‚dgiÞ

j ¼ 1. . .N: 1

If a protein has multiple domains of the same type, the
highest scoring matching domain is used.

When CMP is used across multiple intervals, a census of
all domains in every interval associated with the disease is
taken. Disease genes are predicted based on the similarity
of their domain content to genes from other intervals associ-
ated with the phenotype. The domain combination is tested
for over-representation in the intervals compared to the gen-
ome as a whole. A similarity score based on the numerator of
Equation 1 is calculated as well as two measures of statistical
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significance. In the first calculation of significance, domains in
a sequence are assumed to be completely uncorrelated. This
represents an upper limit of significance. The expected (ea)
number of genes containing those domains is calculated by:

ea ¼ mnf
Y

i

Pi‚ 2

where m is the number of intervals containing the domains of
interest, n is the number of genes in the interval and f is a form
factor related to the average number of domains per gene. The
probability of encountering domain i is given by:

Pi ¼
Ni

N
‚ 3

where N is all domain types. These numbers are determined
from a census of all domains across the genome. For the
second calculation of significance, domains are assumed to
be completely correlated. This represents a lower limit of sig-
nificance. The expectation (eb) is based on the prevalence of
the rarest domain:

eb ¼ mnf :minðPiÞ 4

Two c2 tests (c2
a and c2

b) are then calculated in the usual man-
ner using the two expectation values at a significance level of
0.995. Clusters of genes containing the same domains are then
ranked according to the two alternative c2 values.

Benchmarking

We validated the CPS and CMP methods using data from pre-
viously determined disease phenotypes where at least three
disease genes have been identified (3). Our benchmark dis-
ease set had 170 disease genes. This same set contained
163 disease genes in 2003 when used in the analysis of
POCUS. The disease genes may have been identified via link-
age analysis or through a candidate gene approach. For the
purpose of benchmarking, the disease genes are used to gen-
erate pseudo-intervals to simulate an interval derived by link-
age analysis. Three pseudo-interval sizes are used that
encompass 50, 100 and 150 genes around the known disease
genes. Hereafter, the term interval will be used to refer to
pseudo-intervals in the test set.

When the disease genes are used as the input, the predic-
tive power of each method is tested on each disease gene
using leave-one-out cross validation. In this method one of
the disease genes is disregarded and the remaining known
disease genes are used to identify the omitted disease gene
in its interval. When using multiple intervals, all genes in
the intervals sharing a phenotype are used to identify links
between the intervals via common protein relationships.
The multiple interval technique is useful for phenotypes
were no disease genes are known.

Several measures of predictive power were used: sensitiv-
ity, the probability of finding a disease gene among disease
genes [TP/(TP + FN)]; and specificity, the probability of
not finding a disease gene among non-disease genes
[TN/(TN + FP)]; where TP is the number of true positives,
TN is the number of true negatives, FP is the number of
false positives and FN is the number of false negatives. An
enrichment ratio (ER) is also calculated for each disease from
the proportion of disease genes predicted by the methods

divided by the proportion of disease genes within the disease
intervals (Equation 5). Enrichment is a measure of how well
the system prunes a list of genes in a disease interval to a list
of final candidate disease genes.

ER ¼ TP/ðTPþ FPÞ
ð
P

disease genes/
P

all genesÞ 5

CPS and CMP predictions were compared with a random
selection of candidate genes within a disease interval. The
number of random assignments made is based on the number
of predictions made by each method. Random selections were
performed 1000 times for each disease, from which an aver-
age number of correctly identified disease genes is calculated.

RESULTS

Known disease gene input

Table 1 shows the results of candidate gene prediction for
each of our methods on 170 disease genes for 29 diseases
as used by Turner et al. in their analysis of POCUS. When
using known disease genes as input, our methods make pre-
dictions for all 29 diseases in each of the 50, 100 and 150
gene intervals and correctly predict a disease gene in 20 dis-
eases. In comparison, POCUS made candidate predictions for
eight of the 29 diseases and only five of the diseases had a
disease gene correctly identified.

CPS benchmark performance: CPS identifies novel disease
genes by finding proteins that are linked with the product
of a known disease gene in the pathway and PPI databases.
Results for CPS are divided into three datasets: pathway
data from BioCarta, pathway data from KEGG and PPI
data from OPHID. KEGG pathway data correctly predicts
41 disease genes in 13 diseases. For the 100 gene interval
size, the probability of finding a disease gene (sensitivity)
using KEGG data is 0.26, and the probability of not finding
a disease gene among non-disease genes (specificity) by
KEGG is 0.98. Overall data enrichment is 12-fold for the
100 gene interval size, reducing a list of 100 gene candidates
to just eight genes.

BioCarta pathway data identifies 16 disease genes in
seven diseases. BioCarta has a sensitivity of 0.15, a specifi-
city of 0.99 and an enrichment of 16-fold for the 100 gene
interval size. The complementary nature of these pathway
databases is demonstrated by their unique results. BioCarta
finds disease genes for two diseases, type 2 diabetes mellitus
and breast cancer, where the KEGG data fails. KEGG
finds disease genes for eight diseases where the BioCarta
data fails.

The OPHID PPI dataset contains 48 321 interactions for
10 666 proteins representing 13% of the estimated complete
human-interactome (38). Overall, OPHID has a sensitivity
of 0.42, a specificity of 1.00 and an enrichment of 50-fold
at the 100 gene interval size. These results appear much better
than the pathway data, but the success of prediction might be
influenced by PPI data derived from literature associations of
well studied diseases. In an attempt to remove bias from lit-
erature PPIs and to assess the usefulness of orthology data,
OPHID is further split into several overlapping sets:
human-only data, i.e. the data does not contain transferred
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orthologous interactions (OPHIDh); PPI data derived from
literature searches only, i.e. data from the BIND, HPRD
and MINT databases (OPHIDlit+); and all PPIs except
those from the literature databases (OPHIDlit�).

Using the orthology data leads to more false positives
and the difference between correct predictions is negligible:
OPHID finds one more disease gene than OPHIDh. Figure 1
shows the sensitivities for each of the datasets compared
with the proportion of correct predictions at increasing path
lengths for the 100 gene interval size. At the first level of inter-
actions the majority of correct predictions, 54, is found using
the OPHIDlit+ set, with a sensitivity of 0.45 and specificity of
1.00. The non-literature PPIs find 17 disease genes, with a sen-
sitivity of 0.21 and a specificity of 1.00. While the probability
of finding a disease gene is lower in the non-literature set,
overall enrichment is the same, 53-fold, and the proportion
of correct predictions is the same, 0.55. Therefore, it is the lar-
ger coverage of the literature data that gives it the advantage
over the non-literature set and suggests that the experimental
data and orthology data held in the OPHIDlit� set is of equal
quality to the literature assignments.

Figure 2 shows the number of false positives returned by
the interaction data at increasing path lengths up to a distance
of three interactions from the known disease genes. As the
shortest path length increases, the sensitivity improves, but
the number of false positives increases exponentially and
reduces the specificity. At a distance of two interactions,
the full OPHID set finds 84 disease genes with a sensitivity
of 0.49, a specificity of 0.96 and an enrichment of 11-fold.
Increasing the distance to three interactions, finds 123 disease
genes, with a high sensitivity of 0.72, but a smaller specificity
of 0.82 and a poor 4-fold enrichment.

Combining the results from the full OPHID set (where the
shortest path length is one) with the results from BioCarta and
KEGG, CPS correctly identifies 78 disease genes for 20 dis-
eases. Overall CPS performance has a sensitivity of 0.47 with
a specificity of 0.98 and an enrichment of 17-fold at the
100 gene interval size. Less than 0.6% of proteins rejected
will be disease genes.

CMP benchmark performance: CMP identifies disease genes
using domain-based comparative sequence analysis. This is

Table 1. Number of correctly predicted disease genes by each method using known disease genes

Disease Known
Disease
Genes

Successful Automated Predictions
CMP CPS CPS CPS CPS CPS CPS Random

BioCarta KEGG OPHID OPHIDh OPHIDlit+ OPHIDlit� Total 50 100 150

aan 4 0 0 0 3 3 3 2 3 0.1 0.1 0.1
alz 8 2 3 6 5 5 5 3 6 0.3 0.2 0.2
aml 4 0 0 0 0 0 0 0 0 0.2 0.2 0.2
bb 4 0 0 0 0 0 0 0 0 0.0 0.0 0.0
bc 9 0 4 0 6 6 6 0 6 0.5 0.5 0.5
bcc 4 1 1 2 3 3 3 0 3 0.1 0.0 0.1
cchn 6 5 0 0 5 4 4 4 5 0.4 0.3 0.3
cf 5 0 2 2 0 0 0 0 2 0.2 0.2 0.2
cfh 12 5 0 4 4 4 4 0 9 1.0 0.7 0.8
cmt 5 0 0 0 2 2 2 0 2 0.2 0.2 0.2
ebl 5 3 0 5 5 5 5 0 5 0.2 0.1 0.1
ed 7 5 0 2 0 0 0 0 5 0.4 0.3 0.2
fap 4 0 0 3 0 0 0 0 3 0.2 0.2 0.1
gc 5 0 2 3 0 0 0 0 4 0.3 0.2 0.2
h 5 0 0 0 0 0 0 0 0 0.1 0.2 0.2
ibd 5 0 2 3 4 4 4 2 4 0.4 0.3 0.3
joag 4 0 0 0 0 0 0 0 0 0.1 0.1 0.1
lca 6 0 0 0 0 0 0 0 0 0.1 0.1 0.1
lhscr 5 0 0 2 2 2 2 0 4 0.2 0.3 0.3
md 6 2 0 0 2 2 2 0 3 0.1 0.1 0.1
mf 4 0 0 0 0 0 0 0 0 0.2 0.2 0.2
mody 6 2 0 0 4 4 4 2 5 0.3 0.3 0.3
niddm 8 4 2 0 2 2 2 2 5 0.6 0.4 0.3
oc 4 0 0 4 2 2 2 2 4 0.3 0.3 0.3
pc 6 0 0 0 0 0 0 0 0 0.1 0.1 0.2
pd 3 0 0 3 2 2 2 0 3 0.1 0.0 0.0
rp 10 0 0 0 0 0 0 0 0 0.2 0.2 0.2
sle 3 0 0 0 0 0 0 0 0 0.2 0.1 0.2
tcp 13 3 0 2 4 4 4 0 7 0.9 0.8 0.8
Total 170 32 16 41 55 54 54 17 88 8.0 6.6 6.7

CMP results are based on a cut-off threshold of 0.1. CPS-interactions go to the 1st level of interaction only. CPS-OHPID contains all PPI data from OPHID. CPS-
OPHIDh contains human data only. CPS-OPHIDlit+ contains data from literature databases only. CPS-OPHIDlit� does not contain PPI data from literature
databases. Random is calculated on total predictions for the 50, 100 and 150 interval size. Disease abbreviations: aan, adrenoleukodystrophy, autosomal neonatal;
alz, Alzheimer disease; aml, acute myeloid leukemia; bb, Bardet-Biedl syndrome; bc, breast cancer; bcc, basal cell carcinoma; cchn, colorectal cancer, hereditary
nonpolyposis; cf, cystic fibrosis; cfh, cardiomyopathy, familial hypertrophic; cmt, Charcot-Marie-Tooth disease; ebl, epidermolysis bullosa letalis; ed, epiphyseal
dysplasia, multiple types 1–5; fap, familial adenomatous polyposis; gc, gastric cancer; h, hypertension; ibd, inflammatory bowel disease; joag, juvenile-onset
primary open angle glaucoma; lca, Leber congenital amaurosis; lhscr, long-segment Hirschsprung disease; md, muscular dystrophy, limb-girdle; mf, familial
meningioma; mody, maturity-onset diabetes of the young; niddm, type 2 diabetes mellitus; oc, ovarian carcinom; pc, prostate cancer; pd, Parkinson disease; rp,
retinitis pigmentosa; sle, systemic lupus erythematosus; tcp, thyroid carcinoma, papillary.
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achieved by first using Pfam Hidden Markov models to anno-
tate the domain content of known disease genes. Putative dis-
ease genes are then identified based on a shared domain
content with the known disease genes. Several score thresh-
olds were tested: the ratio of true positives to false positives
is best at a threshold of 0.4. However, at a threshold of 0.1,
CMP finds more disease genes and sensitivity is at its best.
At this threshold, 7.5, 11.6 and 18.5% of predictions are
disease-causing genes for the 50, 100 and 150 gene intervals,
respectively. Less than 0.8% of proteins rejected will be dis-
ease genes.

Independently, CMP correctly predicts 32 disease genes
for 10 diseases at a score threshold of 0.1 and has a sensitivity
of 0.2 and a specificity of 0.98 for each interval size. Overall
enrichment for all diseases was 11-fold at the 100 gene
interval size.

Multiple interval input

For poorly characterized diseases no disease genes may
have been identified, but several loci may have been isolated.
In this case, a multiple interval comparison implementation
of the two methods can be used which allows ab initio
prediction of disease genes.

Figure 2. Performance of PPI data from (a) OPHID, (b) OPHIDh, (c) OPHIDlit+ and (d) OPHIDlit�. Results are shown for three levels of interaction using the
shortest path length to a disease gene (Distance). Black diamonds represent the number of disease genes found. The number of non-disease genes returned are
presented for the 50 gene interval (square), 100 gene interval (triangle) and 150 gene interval (x). The number of disease genes returned by random selection
are presented for the 50 gene interval (*), 100 gene interval (circle) and 150 gene interval (+).

Figure 1. Sensitivity (continuous line) and proportion of predicted genes
that are actually disease genes (dashed line) for OPHID (diamond),
OPHIDh (circle), OPHIDlit+ (triangle) and OPHIDlit� (square) at three
levels of interactions (Distance). Results are shown for the 100 interval
size only.
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CPS benchmark performance: When multiple loci are used as
the input to CPS the system found common pathways or PPIs
for 100 disease genes in the 100 gene intervals. While sensitiv-
ity is high 0.59, more false positives are predicted compared to
input from known disease genes. False positives occur because
common pathway and PPIs are found for non-disease genes in
intervals associated with each phenotype. This reduces speci-
ficity to 0.84 and the ER to 3.7-fold. The pathway and PPI data
complement each other: CPS using pathway data alone finds
28 disease genes that are missed by the PPI data. Conversely,
CPS using PPI data alone finds 33 disease genes that the path-
way data misses and together they find the same 39 disease
genes (Figure 3). In the absence of known disease genes, the
use of network data on multiple disease loci is a powerful
approach to identify disease genes. Table 2 shows the results
for each of the individual methods.

CMP benchmark performance: When multiple loci are
used as the input to CMP, a census of the domain content
of all genes in the specified loci is taken. The aim is to search
for domain combinations that are over-represented in the loci
associated with the phenotype. The tally of genes with a spe-
cific domain content is compared with the number of genes
expected by chance based on the prevalence of those domains
in the genome (see Materials and Methods). Clusters of genes
with similar domain content are ranked based on two

estimates of significance: the first assumes that the domain
content of the cluster is completely uncorrelated and is an
upper estimate of the significance (c2

a); the second assumes
the domains are highly correlated and the prevalence is deter-
mined by the rarest domain (c2

b). These two values are the
same for single domain proteins.

Comparison of the CMP results are shown in Table 2.
Results have been split into subgroups: those that contain mul-
tiple Pfam domains (multi) and those that contain at least one
Pfam domain (all). Sensitivity is low for the multi-domain
method because disease genes with zero or one Pfam domain
are included in the false negatives. However, the specificity
is very high indicating that if the target disease genes are
multiple domain proteins, the method is very effective.

As the method is essentially the same as CMP using known
disease genes correct predictions are fairly similar. The 36
disease genes potentially identifiable by CMP, based on
their domain similarity, can be divided into 16 clusters, con-
taining two or more disease genes. Of these genes, 32 were
identified by CMP using known disease genes as a starting
point, while four fell below the 0.1 threshold similarity.
Using multiple intervals as input, two clusters containing
four genes were not found as determined by significance.
For example, genes RET and NTRK1 involved in thyroid car-
cinoma have a protein kinase domain in common, but protein

Figure 3. Combined prediction success. (a) Correct predictions based on known disease genes. (b) Correct predictions based on multiple intervals. (c) Combined
CPS and CMP predictions for familial hypertrophic cardiomyopathy using known disease genes. Disease genes are represented by their HUGO-name. Gene-
linking lines are predictions by CPS and CMP. For example, TNNT2 is found by the known disease gene TNNI3 using CPS-PPI and CMP predictions, and
TNNI3 is found by the known disease gene TNNT2 using CPS-PPI predictions. PRKAG2 and TPM1 were found using PPI data at a distance of three, all other
PPI predictions are at a distance of one.

Table 2. Multiple interval benchmark results

Method 50 100 150
Sensitivity Specificity ER Sensitivity Specificity ER Sensitivity Specificity ER

CPS-pathway 0.35 0.90 3.4 0.39 0.89 3.4 0.41 0.88 3.2
CPS-PPI 0.39 0.95 7.3 0.42 0.93 6.1 0.47 0.92 5.6
CPS 0.54 0.87 4.0 0.59 0.84 3.7 0.62 0.82 3.5
CMP (c2

a multi) 0.17 0.95 3.3 0.19 0.94 3.1 0.23 0.93 3.2
CMP (c2

aall) 0.46 0.77 1.9 0.55 0.72 1.9 0.59 0.69 1.9
CMP (c2

b multi) 0.16 0.95 3.2 0.18 0.94 3.1 0.22 0.94 3.3
CMP (c2

b all) 0.46 0.77 2.0 0.55 0.72 1.9 0.58 0.69 1.9
CPS-CMP (c2

a all) 0.74 0.69 2.3 0.84 0.63 2.2 0.87 0.59 2.1

c2
a, significance based on the assumption that domains in a gene are uncorrelated; c2

b, significance based on the assumption that domains in a gene are correlated;
multi, genes that contain multiple Pfam domains only; all, genes that contain at least one Pfam domain. All c2 tests are at a significance level of 0.995.
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kinase domains are very common in the genome and thus
lowered the significance of the shared domain.

Of the 14 successfully identified gene clusters, 11 were
ranked in the top 10 for that disease based on either score
of significance and 13 were in the top 20. The c2

a test favours
multi-domain proteins whereas disease genes that are single
domain proteins have a better chance of being detected
with c2

b.

Success of combined methods

While both methods successfully identify disease-causing
genes, performance is improved when the methods are com-
bined. The methods tend to be complementary, with one find-
ing disease genes where the other method fails (Figure 3).

An example of the success of the combined methods can be
seen for familial hypertrophic cardiomyopathy (Figure 3c).
For the 12 known disease genes, 9 were found by the standard
implementation of CPS and CMP and a further 2 genes were
found by CPS-PPI data using a distance of three interactions
to a known disease gene. Both CPS-PPI data and CMP
identify disease genes through relationships between titin
(TTN) and myosin-binding protein C (MYBPC3), and between
troponin I type 3 (TNNI3) and troponin T2 (TNNT2). CMP
exclusively links disease genes myosin heavy polypeptide
6 (MYH6) and myosin heavy polypeptide 7 (MYH7). The
CPS-pathway-data from KEGG links actin (ACTC), myosin
light polypeptide kinase 2 (MYLK2), myosin light polypeptide
3 (MYL3) and titin through the ‘regulation of actin cytoskele-
ton’ pathway.

The probability of finding a disease gene increases when
combining the results from the two methods: sensitivity
increases to 0.51 with a specificity of 0.97 for the 50, 100
and 150 gene intervals when using known disease genes as
input. Of the rejected genes, only 0.5% will be disease
genes. Overall enrichment is 11-fold in the 50 gene interval
and 13-fold in the 100 and 150 gene intervals. Figure 4
shows the enrichment scores for each disease using the com-
bined methodology. The combined methods are only worse
than random when no correct predictions are made.

Removing the literature-derived PPI data, but still using
known disease genes, only slightly reduces overall perfor-
mance: sensitivity is 0.42, specificity is 0.97 and enrichment
is 11-fold at the 100 gene interval. When extending the
OPHID interaction data to the second level of interaction,
overall sensitivity increases to 0.59, but with a reduction in
both specificity, 0.93, and enrichment, 8-fold, for each inter-
val size.

For the combined multiple interval predictions at the
100 gene interval size, sensitivity greatly improves to 0.84,
however, the increase in false positives from CMP (c2

a all)
causes specificity and enrichment to fall to 0.63 and
2.2-fold, respectively.

Failed predictions

While our methods found disease genes for most of the dis-
eases, all methods failed for nine diseases when using
known disease genes as input (Table 1). For six of these dis-
eases, disease genes are correctly predicted when the PPI
interaction data are extended to a distance of two and three
interactions to the nearest known disease gene. This leaves

three diseases without successful predictions: Bardet-Biedl
syndrome; juvenile-onset primary open angle glaucoma and
Leber congenital amaurosis. Each of the genes involved in
these diseases have distinct Pfam domains. For this reason
they cannot be identified by the CMP method. CPS fails
because interaction and pathway data are not available for
these genes. However, it is likely that these genes perform
their functions as part of the same biochemical pathway.
This has recently become apparent for Bardet-Biedl syn-
drome where defects in ciliary proteins have been delineated

Figure 4. Candidate gene enrichment for the 50 (a), 100 (b) and 150 (c) gene
interval sizes using the combined methods. Enrichment values are on the
y-axis and diseases are listed alphabetically from left to right on the x-axis, as
in Table 1. Black diamonds represent enrichment of data using known disease
genes. Grey squares represent enrichment of data using multiple intervals.
The dashed line represents data enrichment by random selection.
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(39). Our current knowledge of pathways is incomplete, but
as more data becomes available predictions will improve.

DISCUSSION

Two methods for candidate disease gene prediction have been
presented in this study. CPS hypothesizes that novel disease
genes reside in the same pathways as those of known disease
genes and CMP assumes that novel disease-causing genes
that produce the same phenotype as known disease genes
are likely to have similar functions. The genes in the novel
interval of interest are then tested for relationships to
known disease genes or genes in other characterized disease
intervals. Both CPS and CMP can effectively recover known
disease genes for a broad array of diseases.

Many previous candidate gene prediction methods have
relied on functional annotation, such as GO terms, which
can be general or absent. Only 25% of human proteins
have manually annotated GO terms. Many more human pro-
teins have predicted annotations, but 35% have no annotation
at all. Furthermore, these systems will be biased to well stud-
ied and well annotated diseases and may not be useful in the
analysis of uncharacterized diseases.

Our methods are based directly on biological data, and dif-
fer from earlier candidate gene prediction techniques, which
use blanket systems based on descriptive keywords to cover
all aspects of disease. Such methods include POCUS (3),
G2D (4,5) and SUSPECTS (10). New systems biology
approaches to candidate gene prediction, which are based
directly on biological data, mine PPI and pathway databases.
Those described by Franke et al. (18) and Oti et al. (17) as
well as our own CPS fall into this category. Our CMP method
is quite different to any other method described previously, in
that it tries to associate particular protein modules with spe-
cific diseases. Not only does this technique represent a more
powerful way of finding homologs than BLAST searches but
it also has the potential to find otherwise unrelated proteins
that engage in homophilic interactions (e.g. through EGF
domains) or share a common functional unit but are otherwise
unrelated, e.g. the protein kinase domains found in thyroid
carcinoma.

Comparison with other methods is difficult as benchmark
datasets are different and some methods merely rank candi-
dates without applying a cut-off. In an attempt to fairly assess
our methods compared to others, we have used the disease set
as applied in the analysis of POCUS. Turner et al. (3) previ-
ously compared other methods against POCUS by calculating
and comparing ERs: van Driel et al. (11) studied eight diseases
and reduced an average 163 genes to 22, producing a 7-fold
enrichment. Freudenberg and Propping (12) found two-third
of the disease genes in the top 15% of candidates, giving a
7-fold enrichment. Generally, these keyword methods have
been shown to provide a 7- to 10-fold enrichment (3). The
updated G2D method is the most successful of these methods,
correctly identifying disease genes for 47% of diseases within
their ranked top eight predictions, which is below our perfor-
mance. Using known disease genes as input, we correctly pre-
dicted disease genes for 69% of diseases with an average
success rate of one in seven (14%) gene predictions and a
13-fold enrichment. A 13-fold enrichment prunes a list of

100 gene candidates to just eight genes, and significantly
reduces the time and cost of experimental studies.

There are three other methods, POCUS, PRIORITIZER
(18) and the method by Tiffin et al. (8), that attempt the
more ambitious task of ab initio predictions in the absence
of known disease genes. The ability to perform this task is
particularly useful for phenotypes were no disease genes
are known or where the known disease genes account for
only a small percentage of cases presenting with the disease.
While POCUS makes very few predictions, for the eight
diseases that it does make predictions (28%), the quality of
prediction is high with a one in four success rate and
23-fold enrichment. The PRIORITIZER method by Franke
et al. (18) correctly identified disease genes for 64% of dis-
eases with a success rate of one in eight predictions and a
2.8-fold enrichment. The method by Tiffin et al. correctly
identified disease genes for 88% of diseases with a 1.6-fold
enrichment. Our combined methods make correct predictions
for all diseases with a 2.2-fold enrichment. Another consid-
eration when comparing these results is the range of interval
sizes used in the benchmark. POCUS used intervals based on
keyword densities and sizes ranged from 2 to 19 Mb, which
are small and more typical of monogenic diseases. Franke
et al. (18) used intervals of 50, 100 and 150 genes, but
only included those genes that had predicted interactions.
Our benchmark intervals range from 50 genes (from 1 Mb)
to 150 genes (up to 51 Mb). The larger interval sizes are
realistic for complex diseases (40) and include all genes.

Our side-by-side use of two prediction systems based
directly on independent biological data shows the value of
this approach. Recently several prediction systems were
benchmarked against each other using obesity and type 2 dia-
betes phenotypes (14). A meta-analysis was then used to
choose the best candidates based on consensus. The comple-
mentarity of data predicted by our two systems (Figure 3)
show that a consensus method is not always appropriate.
Had we used this approach far fewer disease genes would
have been found. Clearly the independence of data sources
needs to be considered before applying consensus
approaches. On the other hand, the type of relationships
flagged by CMP is clearly related to pathway data. Pathways
may expand by gene duplication and subsequent specializa-
tion of the daughters, possibly in association with discrete
tissue expression. Similarly, protein complexes consisting of
homo-oligomers may differentiate by duplication and special-
ization of genes encoding similar subunits. If pathway and
interaction data were comprehensive then the alternative pre-
dictions provided by CMP may not be necessary, but clearly
this is not yet the case.

Given that several systems biology approaches have now
been published, it is worthwhile examining the caveats asso-
ciated with these methodologies. CPS with PPI data alone
found the majority of disease genes in the benchmark tests.
But, some of the interaction data is likely to be dubious,
because high-throughput experiments, such as yeast two-
hybrid and TAP systems will associate proteins that would
otherwise never be present in the same cell or subcellular
compartment (41). Furthermore, the various PPIs curated
from computational searches of the literature have limited
overlap with each other (38), which may be indicative of a
high false positive rate. While there is strong evidence to
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suggest that PPIs are conserved through evolution (42), errors
in the source data will perpetuate through the databases.
These caveats make predicted interactions, such as the Baye-
sian approach applied by Franke et al. (18), inaccurate. As
more evidence for PPIs are collected, the performance of
CPS and other similar methods will improve. The results
using PPI data alone are already very encouraging: the full
OPHID dataset enriches the candidate list by 50-fold, far bet-
ter than any other reported method.

Finally, our methods were able to make predictions for
both Mendelian and complex diseases. Identifying the disease
genes for complex diseases is inherently difficult. Our meth-
ods scored well on our test set, but we intend to further inves-
tigate the performance on a larger dataset of diseases. In
addition, although some of the predicted disease genes are
not currently known to be involved in the disease, which
are counted as false positives in this study, it is possible
that they may be uncharacterized disease genes. Our bench-
mark results are available at our web site, www.gentrepid.
org, for further analysis. Our methods are also available to
identify potential disease genes in user-specified intervals.

A new era of genomics and bioinformatics has permitted a
genome-scale perspective of disease and is enabling new
technologies to identify disease-causing systems. Our meth-
ods will accelerate the disease gene discovery process by
gathering and sifting through all knowledge of each candidate
gene including its homologs and interaction partners. In addi-
tion, it will significantly reduce the cost of expensive experi-
mental studies. Identification of the disease gene enables
targeted research on how mutations in the gene contribute
to disease and provides specific leads towards cures. The
results presented here are better than other reported methods
for disease gene prediction. CPS and CMP utilize information
from protein sequence and interaction databases, enabling
accurate disease gene identification. In the multiple interval
input mode, our methods do not require a priori knowledge
of the disease or disease genes. They will, therefore, be a
powerful tool in candidate disease gene prediction for poorly
characterized diseases.
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