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Intelligent prosthetic hand is an important branch of intelligent robotics. It can remotely replace humans to complete various
complex tasks and also help humans to complete rehabilitation training. In human-computer interaction technology, the
prosthetic hand can be accurately controlled by surface electromyography (sEMG). This paper proposes a new multichannel
fusion scheme (MSFS) to extend the virtual channels of sEMG and improve the accuracy of gesture recognition. In addition,
the Temporal Convolutional Network (TCN) in deep learning has been improved to enhance the performance of the network.
Finally, the sEMG is collected by the Myo armband and the prosthetic hand is controlled in real time to validate the new
method. The experimental results show that the method proposed in this paper can improve the accuracy of the control
intelligent prosthetic hand, and the accuracy rate is 93.69%.

1. Introduction

In many areas, intelligent prosthetic hands can replace humans
to complete the work, such as intelligent prosthetic hands
instead of human remote completion of dangerous tasks and
intelligent prosthetic hands to assist human rehabilitation
training. But in the complex and changing environment, the
traditional control of intelligent prosthetic hand method grad-
ually cannot adapt to the requirements. In order to control the
intelligent prosthetic hand efficiently and accurately, this paper
adopts a human-computer interaction control method based
on sEMG. This method can directly react to the human move-
ment intention and control the intelligent prosthetic hand
more accurately.

The sEMG is a bioelectrical signal generated by the contrac-
tion of muscles on the surface of the body. It is a nonstationary
electrical signal with a weak amplitude of 0-1.5mV [1]. How-
ever, sEMG contains rich information relevant to movement
[1, 2]. With the in-depth study and the rapid development of

bioelectrical signal detection technology, sEMG signals have
become widely used, such as for the myoelectric controlled
prosthesis wheelchair [3] and assistive robots [4]. Meanwhile,
gesture recognition is used in remote rescue [5] and factory
robots [6]. Using sEMG to control exoskeleton robots and intel-
ligent prosthetic hands can help people accomplish dangerous
tasks remotely and also assist people in rehabilitation training.
Therefore, sEMG-based human-robot interaction has become
a hot research topic.

For traditional machine learning methods, the accuracy of
gesture recognition is low when the raw sEMG signals are used
as input data [7]. Therefore, researchers considered the use of
data processing and analysis. Hudgins et al. designed a feature
set, containing zero crossings (ZC), slope sign changes (SSC),
mean absolute values (MAV), and waveform lengths (WL)
[8]. Khushaba et al. introduced a novel feature set containing
seven time-domain descriptors for the extraction of spatio-
temporal information [9]. Also, Tang et al. combined image
entropy and density clustering to exploit the keyframes from
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hand gesture video for further feature extraction [10]. Image
processing methods are discussed in [11] which contribute
to better feature extraction.

In this domain, classification methods can be divided into
machine learning and deep learning approaches [12].
Researchers have tried a variety of approaches to attain a high
classification accuracy (CA). Now, conventional machine learn-
ing classifiers include Support Vector Machines (SVMs), Linear
Discriminant Analysis (LDA), and k-Nearest Neighbors (KNN)
[13–16]. Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) are the most popular deep learning
algorithms for image processing [17–21]. Panagiotis et al. [22]
applied TCN to gesture recognition based on sEMG, in which
the output layer of TCN was further processed through average
over time (Aot) or an attention (Att) mechanisms so that the
complete sequence could be described by the use of tag like.

Themain contribution of our work is proposed a newmul-
tichannel fusion scheme and the improved TCN structure. The
MSFS method improves the accuracy of gesture recognition
without increasing the number of electrodes, and this method
can improve the portability of signal acquisition equipment.
The core idea of this method is to increase the number of chan-
nels of the sEMG signal virtually with a limited number of
sEMG electrodes. Finally, this paper constructed an online con-
trol system for intelligent prosthetic hand. The scheme of this
paper is shown in Figure 1. In Figure 1, Myo_data is collected
data using Myo armband; ML is machine learning; TCNS
and TCND are the improved TCN structure.

2. Materials and Methods

2.1. Experimental Setup and Protocol. The data recorded in
the Myo dataset came from 10 healthy volunteers, and these
data were collected by the Myo armband (referred to as the
Myo_data in this paper). The details of the volunteer infor-
mation are shown in Table 1.

The subjects are asked to not exercise vigorously before
the experiment to avoid the effects of muscle fatigue [23].
Before wearing the Myo armband, body hair is removed
from the measuring area, and the skin was wiped with 75%
alcohol. During the entire process of sEMG acquisition,
every volunteer must wear the Myo armband in the same
position. The logo LED of the Myo armband and the middle
finger of the subjects are aligned.

During the data collection process, each volunteer was
asked to imitate 10 gestures with the right hand, and each
gesture was repeated 6 times. Figure 2 graphically shows
each gesture, with the names of the ten different gestures
in the figure: (a) no. 1, (b) no. 2, (c) no. 3, (d) no. 4, (e)
no. 5, (f) no. 6, (g) first, (h) good, (i) correct, and (j) okay.
Each repetition lasts for 3 (or 6) seconds, and the rest for 5
seconds after the action. The Myo armband has eight sEMG
differential electrodes and a 9-axis inertial measurement unit
(IMU). It provides a sampling frequency of 200Hz [22].
Before the experiments, participants were informed and
filled out a written informed consent form. The study was
conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee
with reference (HDFY-LL-2020-091).

Four of these ten subjects were selected for testing in the
experiment of real-time gesture recognition. The prepara-
tion process and gestures before data acquisition were as
described above. Four subjects were able-bodied and free
of any muscular disorders, and the specific information of
the subjects is shown in Table 2.

2.2. Multichannel Fusion Method. The more data acquisition
channels, the richer the action information it contains. At
the same time, as the number of data channels increases
within a certain range, the accuracy of gesture recognition
will increase [24]. Therefore, this paper proposes a new
channel fusion algorithm that can virtually increase the
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Figure 1: The scheme of the entire process.

Table 1: Subject information in the Myo_data dataset.

Number of subjects Male to female ratio Average height (cm) Average weight (kg) Average body mass index (kg/m2)

10 1 : 1 170:6 ± 9:49 62:19 ± 3:12 21:37 ± 3:28
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Figure 2: Continued.
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number of channels and improve the gesture recognition
accuracy.

In this work, we use a two-dimensional array ðs ∈ array
ðm ×NÞS ∈ arrayðm ×NÞÞ to represent the sEMG signals,
as the input data of MSFS, where s represents the data of a
hand movement in a single experiment, m (an even number)
is the number of samples for each channel, and N is the
number of channels in the array.

The operation of MSFS consists of three stages, including
sample decomposition, sample reorganization, and data
fusion. The details are shown in Figure 3.

In the sample decomposition process, by splitting the
sEMG data by rows, we can get m sEMG samples of size
ð1 ×NÞ, as

(i) (j)

Figure 2: Data acquisition status of the gestures.

Table 2: Specific information for 4 subjects.

Subject Gender Age Height (cm) Weight (kg) Average body mass index (kg/m2)

A Male 24 175 74 24.16

B Female 23 165 55 20.20

C Male 26 180 81 25.00

D Female 24 155 50 20.81
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Figure 3: The operation of the MSFS method.

Table 3: Pearson correlation coefficient.

Pearson correlation coefficient
(average value)

Adjacent
rows

Adjacent
columns

rNoMSFS 0.47 0.42

rMSFS 0.29 0.39
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si = s1, s2,⋯, sm−1, smf g, ð1Þ

where si represents the decomposed samples and i is
the label of the samples. In the sample reorganization
stage, we recombine s1, s3, s5,⋯, sm−1 into data block A
and recombine s2, s4, s6,⋯, sm into data block B. The size
of data block A and B is ððm/2Þ ×NÞ; Equations (2) and
(3) show the structure of the data.

A = s1, s3, s5,⋯, sm−1f g, ð2Þ

B = s2, s4, s6,⋯, smf g: ð3Þ
In the data fusion stage, we spliced the two data blocks

(A, B) into data block C. The size of data block C is
(ðm/2Þ × 2N); its structure refers to (4). The specific operation
of MSFS is shown in Figure 3. In Figure 3, si represents the

samples of the original sEMG signals; m represents the num-
ber of samples; N represents the number of channels, and 2
N represents the number of virtual channels.

C = s1, s3,⋯, sm−1, s2, s4,⋯, smf g: ð4Þ

Adjacent samples of si possess similarity (like s1 and s2 and
s2 and s3). After MSFS, the nonadjacent samples have the
chance to get closer (like s1 and s3 and s2 and s4), which could
reveal hidden correlations between nonadjacent samples. On
the other hand, s1 and s2 are fused into a new sample, which
is equivalent to the fusion of two samples with high similarity
for parallel processing. In this operation, raw sEMG signals are
stacked row by row into a data block (Figure 3 (block A and
block B)) based on algorithmMSFS. Then, the two data blocks
(data block A and B) are concatenated into data block C
(Figure 3 (block C)). Finally, the input data ðm ×NÞ become
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data block Cððm/2Þ × 2NÞ, and the number of channels is
increased from N to 2N.

In order to study the performance of the reorganization
fusion structure, this paper records the absolute value of the
average Pearson correlation coefficient jrj between adjacent
rows (adjacent columns) data before and after using the reor-
ganization fusion algorithm, as shown in Table 3. The above
correlation coefficient satisfies the significance condition and
has statistical significance. A high correlation coefficient indi-
cates a high degree of similarity between data and the more
similar the hand movement information contained. On the
contrary, the lower the value, themore diverse the information
contained.

It can be seen from Table 3 that whether it is between
adjacent rows or adjacent columns, the correlation of the
signal before MSFS processing is greater than the signal after
MSFS processing. It can be inferred from this that the MSFS
algorithm can reduce the correlation between the data and
make the data characterize more abundant and effective hid-
den hand movement information, which is beneficial to the
subsequent signal analysis and feature extraction.

2.3. Data Preprocessing and Feature Extraction. The regular
frequency of the sEMG signals generated from gesture execu-
tion ranges from 20Hz to 500Hz [25]. In this paper, the third-
order Butterworth bandpass filter is used to retain signals with
frequencies between 20Hz and 200Hz. The attenuation rate of
the filter is 18dB per octave. At the same time, this paper uses
a notch filter to remove 50Hz power frequency interference.
In order to prove the effectiveness of the filter, Figure 4 shows
the comparative spectrogram before and after sEMG filtering.

Before feature extraction, the sliding window strategy is
utilized for the segmentation of the sEMG signals to ensure
the continuity of features. The data is divided into windows
by a sliding window strategy to determine the features. We
use (5) to calculate the number of windows:

W = n −window size
sliding step size + 1, ð5Þ

where W is the number of windows and n is the sample-
point number of the sEMG. The operation of the sliding
window is shown in Figure 5.

In order to ensure that the experimental comparison is
carried out fairly, sEMG inputs with the same total sample size
are selected for both types of experiments, and two types of
window sizes are set in this paper according to whether the
MSFS algorithm is used to process the signals. The first size
is for the no MSFS experiment (window size is 1000ms, the
sliding step is 100ms, and the data is updated every 100ms);
the second is the MSFS experiment (window size is 500ms,
the sliding step is 50ms, and the data is updated every
100ms). In both methods, the total amount of data in each
window and the total amount of data in the sliding step are
equal. In general, delays of 300ms or less are acceptable for
real-time control, and segments that are too long could hinder
real-time operation [26]. In this paper, the data is updated
every 20 points that means the data segmentation is updated
every 100ms and the time delay is acceptable.

At present, the commonly used feature extraction
methods in sEMG-based application systems include time-
domain feature methods, frequency-domain feature methods,
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and time-frequency domain feature methods [27]. From the
perspective of comprehensive consideration, this paper con-
structed a feature set to extract features of sEMG and it could
obtain richer gesture characterization information. This fea-
ture set includes the above-mentioned 8 types of time domain
features and 2 types of frequency domain features, including
mean absolute value (MAV), root mean square (RMS), stan-
dard deviation (STD), waveform length (WL),Willison ampli-
tude (WA), zero crossing (ZC), sign change of slope (SSC),
integrated electromyogram (IEMG), mean power frequency
(MPF), and median frequency (MF).

The calculation of the feature set can provide rich informa-
tion for the classification of hand movements, and at the same
time, it will also lead to a rapid increase in data dimensions.
High-dimensional input data is prone to dimensional disasters,
which invisibly increases the requirements for the memory and
processing capabilities of the computing system and affects the
recognition effect of the classifier’s handmovements. Therefore,
it is also necessary to reduce the dimensionality of the data after
feature extraction, which will be discussed in Experimental
Results and Discussion of this paper.

2.4. Gesture Recognition Proposed Method. The TCN
includes convolutional layer, residual connection, and fully
connected layer. Among them, the convolutional layer uses
the dilated convolution operation method. The dilated con-
volutional layer is a unidirectional structure, and the struc-
ture flow of this layer is shown in Figure 6.

After several comparison tests, the parameter values cho-
sen in this paper are dilated coefficient d = 2, convolution
kernel size k = 3, convolution stride = 1, padding = SAME,
and the receptive field of neuron is 5. The input data size
of the TCNS and TCND is ð21 × nÞ, where n is the dimen-
sion of the input data and 21 is the number of samples. This
paper uses single-dimensional data ð21 × 1Þ as an example to
illustrate the network architecture.

Table 4: Dimensionality reduction results.

Database Input dimension The number of principal components

Myo_data 80 10

Myo_data+MSFS 160 20

DB5 160 20

DB5+MSFS 320 40

Table 5: The accuracy, recall, and precision of 10-gesture recognition (%).

Algorithm MSFS (Y/N) Dimension Accuracy Recall Precision F1 score

KNN N 10 87.59 87.60 87.70 87.65

KNN Y 20 88.63 88.64 88.70 88.67

LDA N 10 87.67 87.68 87.85 87.76

LDA Y 20 88.15 88.19 88.32 88.25

SVM N 10 84.74 84.70 84.89 84.79

SVM Y 20 85.27 85.24 85.42 85.33

Table 6: The average accuracy of 10-gesture recognition (%).

Algorithm MSFS (Y/N) Accuracy Recall Precision F1 score

TCNS N 91.52 91.54 91.60 91.57

TCNS Y 92.34 92.36 92.42 92.39

TCND N 92.41 92.44 92.61 92.52

TCND Y 93.69 93.71 93.80 93.75
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Figure 10: Accuracy curves of the network training set for the
proposed two TCN models.
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2.4.1. Temporal Convolutional Network-Single (TCNS). The
network structure of TCNS is shown in Figure 7. The net-
work includes TCNS_1 and TCNS_2 substructure blocks,
residual connection, and full connection layer. Both sub-
structure blocks include two dilated convolutional layers,
and there is a batch normalized BN layer between each
dilated convolutional layer and the activation layer.

The residual structure connects the initial input infor-
mation of the entire network with the feature data output

by the hidden layer, which can effectively alleviate the prob-
lem of network degradation. After the training is completed,
the data is tiled and input into the fully connected layer, and
the number of classification results output by the last fully
connected layer is the same as the number of gestures to
be classified. The dilated coefficient d in this structure
increases with the deepening of the network, which can
increase the receptive field of neurons and gradually obtain
more global hand motion characterization information.
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Figure 11: Loss curves of the network training set for the proposed two TCN models.
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2.4.2. Temporal Convolutional Network-Double (TCND).
The structure of TCND is shown in Figure 8. The network
consists of two channels, each of which includes three
dilated convolutional layers and one residual structure, and
there has one BN layer between each dilated convolutional
layer and the activation layer.

In this structure, the TCND_1 channel d = 2, the recep-
tive field of the network neuron is small, that is, the convo-

lution operation is performed in a small range to extract
the relatively detailed action characterization information
in the input data. TCND_2 channel d = 4, relative the recep-
tive field of the TCND_1 channel neuron is enlarged, that is,
more global information can be obtained. After the fusion of
the two channels of information, the TCND network has
more diversified gesture representation information, which
helps to improve the classification results.

3. Experimental Results and Discussion

In order to verify the effectiveness of the method proposed in
this paper, two cases of offline gesture recognition and real-
time gesture recognition are verified. Experiment 1 and Exper-
iment 2 are offline gesture recognition experiments, and DB5
database (DB5 is the fifth subdataset of the publicly available
multimodal database, and the dataset records sEMG for 10
complete subjects) with Myo_data is selected as the experi-
mental data. The effect of MSFS algorithm is verified by exper-
iment 1 through experimental comparison. Experiment 2
verifies the gesture recognition accuracy of TCNS and TCND
network structure. Experiment 3 is a real-time gesture recog-
nition experiment, through which the sEMG of 10 gestures
of the subject is collected in real time, and the subject’s own
network model is constructed and the accuracy of gesture rec-
ognition is verified.

3.1. PCA-Based Feature Information Optimization. The calcu-
lation of the feature set can provide rich information for the
classification of hand movements, and at the same time, it will
also lead to a rapid increase in data dimensions. High-
dimensional input data is prone to dimensional disasters,
which invisibly increases the requirements for the memory
and processing capabilities of the computing system and affects
the recognition effect of the classifier’s hand movements.

This paper chose to use the Principal Component Anal-
ysis (PCA) to perform dimensionality reduction and feature
selection on the high-dimensional data after feature extrac-
tion and select the retained feature dimensions by compar-
ing the cumulative variance contribution rate of each input
data. As shown in Figure 9, for the Myo_data database, the
number of channels of the original sEMG is 8. After feature
extraction, an 80-dimensional feature vector is obtained.
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Figure 14: The implementation process of the system.

Figure 15: The status of intelligent prosthetic hand control.
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Table 7: Average accuracy (%) of 10-gesture recognition by
applying MSFS-TCND algorithm.

Algorithm Accuracy Recall Precision F1 score

MSFS-TCND 90.03 90.25 90.11 89.97
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Shown in Figure 9(a) is the cumulative variance contri-
bution of 10 components. The rate has reached more than
95%, so the first 10 principal components are selected as
the best dimensionality reduction result. Figure 9(b) shows
that the top 20 principal components are selected as the best
dimensionality reduction results using the MSFS method of
Myo_data. Figure 9(c) shows that the DB5 database selects
the top 20 principal components as the best dimensionality
reduction result. Figure 9(d) shows that DB5 using MSFS
method selects the first 40 principal components as the best
dimensionality reduction results. The dimensionality reduc-
tion results of each database are shown in Table 4.

3.1.1. Gesture Recognition Based on Machine Learning
(Experiment 1). Experiment 1 used three machine learning
algorithms: KNN, LDA, and SVM to recognize gestures.
This paper used the cross-validation method when calculat-
ing the indicators of gesture recognition. Specifically, the
data of each gesture is divided into 10 parts, each part in
turn as the test set, and the rest as the training set. The final
experimental result is the average of 10 cross-validation. In
this paper, accuracy, recall, and precision are used to evalu-
ate this system, and Table 5 shows the results.

The three algorithms in this experiment are all con-
structed by the scikit learn library in Python 3.7, and the
ratio of training set to test set is 1 : 9. In this experimental
results below, Y indicates that the MSFS algorithm is used,
and N indicates that the MSFS algorithm is not used.

According to the experimental results, the MSFS method
based on sEMG has excellent performance for recognizing
hand gestures. The effect of gesture recognition based on
KNN and LDA is equivalent, and the average accuracy and
other indicators have reached more than 87%. At the same
time, theMSFS algorithm also played a role in this experiment.

The accuracy of the classifier is the most common eval-
uation criterion, which visually reflects the probability of
predicting a correct gesture. In this paper, recall, precision,
and F1 score are added as auxiliary evaluation metrics.
According to the experimental results, the F1 score for
LDA with KNN using the MSFS method is higher than the
method without MSFS.

3.1.2. Gesture Recognition Based on TCNS and TCND
(Experiment 2). Experiment 2 used TCNS and TCND to rec-
ognize 10 gestures. Parameters of TCNS: the size of the con-
volution kernel of the dilated con_1 (2, 4, and 5) is k = 1 × 3;
stride = 1; padding = SAME; the values of the convolution
layer d are set to 1 (2, 4, and 8). Each of the two residual
block structures contains 1 convolution layer with dilated
factor d = 1; the convolution kernel size of this layer is k =
1 × 1; stride = 1; padding = SAME.

Parameters of TCND: the size of the convolution kernel
of the dilated con_1 (2, 4, and 5) is k = 1 × 3; stride = 1;
padding = SAME; the TCND_1 part has two d = 2 dilated
convolutional layers, and the TCND_2 part is the two
dilated convolution layers. Then, the output fusion of the
above two channels is combined by applying the dilated
con_7 and dilated con_8.

Table 6 shows the average accuracy of gesture recogni-
tion based on TCNS and TCND.

This experiment uses the visualization tool TensorBoard
provided by TensorFlow to optimize the network model.
The training results of the TCNS and TCND network using
the MSFS algorithm are shown in Figure 10.

As the number of network training steps increases, the
gesture recognition accuracy of the two network structures
gradually increases. Before the number of training steps
reaches 10, the recognition accuracy of the two increases
quickly, and then, the accuracy rate is in a steady upward
trend. By observing the accuracy curves of the training set, it
can be found that when the number of training steps is more
than 30, and the accuracy curves of the training sets of the
two networks gradually become stable. In the training process
of TCNS and TCNDnetwork, the programwill save themodel
parameters of the corresponding network and apply the train-
ing results to subsequent network test experiments.

Figure 11 shows the loss change curve of the correspond-
ing network.

When the training steps are less than 20, the loss curves
of the two network structures are in a state of rapid decline,
but it can be clearly observed that the loss curve of the
TCND network declines faster. In addition, the loss curves
of the training set of the two networks fluctuated between
50 and 60 steps. Among them, the fluctuation amplitude of
the TCNS network is larger than that of TCND. By analyz-
ing the curve of the accuracy and loss of the above network
training set, it can be found that the gesture recognition
effect of the TCND network is good and relatively stable.

The comparison of Figure 12 shows that the recognition
accuracy of the TCN is relatively high, and the classification
effect of the TCND network is significantly higher than the
other four classification algorithms. Moreover, the perfor-
mance will be more superior when adapted MSFS method.
Therefore, this paper used TCND network for real-time ges-
ture recognition.

3.1.3. Online Gesture Recognition and Prosthetic Hand
Control (Experiment 3). The intelligent prosthetic hand
interaction system based on sEMG is composed of three
parts: sEMG collection, gesture recognition, and intelligent
prosthetic hand control.

The prosthetic hand used in this study is made by 3D print-
ing technology. The 3D printingmaterial used in the smart arti-
ficial hand is a nylon material made of polyamide resin. The
structure of the prosthetic hand includes five fingers, a palm,
and a base, and the components are connected by 11 SG90 ser-
vos with an angle ranging from 0 to 180 degrees. Different ges-
tures correspond to different finger bending states, and the
bending and extension of the fingers depend on the change of
the rotation angle of the steering gear. The hardware structure
of prosthetic hand control system is shown in Figure 13.

The implementation process of the system is shown in
Figure 14.

Experiment 3 included 4 of the 10 subject groups; they are
healthy and without any muscle diseases. This experiment
consists of two stages. The first stage is the network model
training stage. The experiment subjects need to make 10
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gestures in the prescribed order (the gestures are the same as
the Myo_data database). Each gesture lasts for 5 s, and there
are 5-second rest time between different gestures, the above
experiment procedure needs to be repeated for 20 rounds,
and there is a 5-minute rest time between each round of exper-
iments. At this stage, the sEMG data collected by each subject
will be stored separately, and then, network training will be
carried out separately and the subject’s own network model
will be constructed.

The second stage is the online test stage. In this stage, the
above-mentioned subjects all perform experiments based on
their respective network models. First, they make 10 ges-
tures, and each action lasts for 2 seconds. During this period,
every 5 recognition results are obtained to make a judgment.
The gesture with the most number of times for every 5 ges-
ture results is regarded as a prosthetic hand control instruc-
tion. Every 10 gesture is a round, repeat the above
experiment 15 times, rest for 5 minutes between each round,
and do not move the position of the Myo armband during
the whole experiment.

In the process of online gesture recognition, the 10 ges-
tures correspond to codes 0~9, for example, “no. 1” corre-
sponds to the code “0” and “first” corresponds to the code
“6.” Then, the program will send the code of the experiment
result to the intelligent prosthetic hand system. After receiving
the instruction signal, the system will convert the signal into
the rotation angle of the corresponding steering gear and
finally realize the control of the intelligent prosthetic hand.

Figure 15 shows the status of gesture recognition and
intelligent prosthetic hand control.

A total of 300 controls of the intelligent dummy hand were
completed in this experiment. Figure 16 records the number of
experiments in which each of the 10 gestures was correctly
recognized versus incorrectly recognized. The best recognition
was achieved for the “first” and “good,” both of which were
correctly recognized up to 29 times, which shows that the
distinguishability of the “first” and “good” is higher compared
to other gestures. However, no. 4 and no. 6 gestures have a
lower recognizability. The reason may be that there are differ-
ences in the signal intensities acquired during the sEMG
acquisition process, which affects the recognition effect of
the system. Therefore, it is very necessary to conduct a unified
muscle force training for the subjects before the experiment.
Secondly, it may be due to the low degree of distinction
between the various hand movements, which can easily be
mistaken for other gestures similar to it.

To clearly see the effectiveness of the proposed MSFS-
TCND method applied to real-time gesture recognition, in
Table 7, we calculate the accuracy, recall, precision, and F1
score for online recognition of 10 gestures. The average
online recognition accuracy of 10 gestures reaches 90.0%.

4. Conclusion

Due to the complex and ever-changing environment, the
traditional way of controlling robots is gradually revealing
its drawbacks. In order to improve the accuracy and effi-
ciency of the control of the robot, this paper proposes a sys-
tem based on sEMG to control the intelligent prosthetic

hand. It can be applied in the field of rehabilitation robot
and remote control robot.

The article proposes that the MSFS method can improve
the richness of the acquired sEMG by adding virtual sEMG
channels. In addition, the deep learning TCN is improved
and combined with the MSFS method to improve the accu-
racy of gesture recognition. The test data demonstrates that
the accuracy of real-time gesture recognition is substantially
improved by combining MSFS with the improved TCN.
Finally, in order to verify the validity of the proposed net-
work, an intelligent robotic system based on 3D printing
technology is designed. The intelligent prosthetic hand can
accurately respond to the subject’s movement intention.

In future research, try to include the feedback informa-
tion of the intelligent prosthetic hand, so as to continuously
improve the intelligent prosthetic hand system.
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