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Background: Community-acquired pneumonia (CAP) is a leading cause of morbidity and 
mortality worldwide. Although there are many predictors of death for CAP, there are still 
some limitations. This study aimed to build a simple and accurate model based on available 
and common clinical-related feature variables for predicting CAP mortality by adopting 
machine learning techniques.
Methods: This was a single-center retrospective study. The data used in this study were 
collected from all patients (≥18 years) with CAP admitted to research hospitals between 
January 2012 and April 2020. Each patient had 62 clinical-related features, including clinical 
diagnostic and treatment features. Patients were divided into two endpoints, and by using 
Tensorflow2.4.1 as the modeling framework, a three-layer fully connected neural network 
(FCNN) was built as a base model for classification. For a comprehensive comparison, seven 
classical machine learning methods and their integrated stacking patterns were introduced to 
model and compare the same training and test data.
Results: A total of 3997 patients with CAP were included; 205 (5.12%) died in the hospital. 
After performing deep learning methods, this study established an ensemble FCNN model 
based on 12 FCNNs. By comparing with seven classical machine learning methods, the area 
under the curve of the ensemble FCNN was 0.975 when using deep learning algorithms to 
classify poor from good prognosis based on available and common clinical-related feature 
variables. The predicted outcome was poor prognosis if the ControlNet’s poor prognosis 
score was greater than the cutoff value of 0.50. To confirm the scientificity of the ensemble 
FCNN model, this study analyzed the weight of random forest features and found that 
mainstream prognostic features still held weight, although the model is perfect after integrat-
ing other factors considered less important by previous studies.
Conclusion: This study used deep learning algorithms to classify prognosis based on 
available and common clinical-related feature variables in patients with CAP with high 
accuracy and good generalizability. Every clinical-related feature is important to the model.
Keywords: deep learning, community-acquired pneumonia, mortality, predictor

Background
With the development of medical technology, technologies and opinions related to the 
diagnosis, treatment, and prognosis of community-acquired pneumonia (CAP) are 
continually developing. However, according to recent data, CAP is still one of the 
most common lung diseases worldwide and remains a major clinical and public health 
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problem globally.1 A retrospective survey of the global 
burden of disease covering 195 countries and territories 
worldwide for more than 30 years showed that lower 
respiratory tract infections affected 471.8 million people 
and caused 2.6 million deaths in 2017 alone.2 Sun et al 
conducted a retrospective analysis of CAP incidence using 
the Chinese Urban Basic Medical Insurance database of 23 
provinces and revealed a relatively high level (7.13 per 
1000 person-years) of CAP incidence in China.3 Ceccato 
et al analyzed a prospective observational cohort and found 
that the mortality of CAP ranged from 4.8% to 7.6%.4 In 
China, the mortality of CAP caused by non-influenza 
respiratory viruses in adults was 3.1%.5 Although the devel-
opment and updating of antibiotics have been essential in 
treating pneumonia, the reduction in the pneumonia-related 
death rate has been relatively limited.1 Therefore, it is still of 
great clinical significance to study the prognostic factors of 
pneumonia. Cataudella et al found that the neutrophil-to- 
lymphocyte ratio was an emerging marker predicting prog-
nosis in elderly adults with CAP.6 Guo found that serum 
serial C-reactive protein and procalcitonin levels had mod-
erate predictive values for hospitalized CAP prognosis.7 

Mendez revealed that lymphopenic community-acquired 
pneumonia is associated with a dysregulated immune 
response and increased severity and mortality.8 However, 
different studies selected different populations with pneu-
monia, targeted different predictive indicators, and estab-
lished different predictive models. This approach has 
several limitations, based on the study design, type of tests 
used, and subsequent statistical testing.9

Artificial intelligence (AI) is a gradually changing 
medical practice. Stripped of its science-fiction trappings 
and ambitions, AI at its core is a branch of computer 
science that attempts to understand and construct intelli-
gent entities represented by software programs.10 AI is 
good at dealing with complex nonlinear relations and can 
overcome the shortcomings of traditional models. It is 
characterized by self-learning, associative memory, self- 
adaptation, fault tolerance, and highly parallel processing, 
and it has great potential in disease prediction.11 Deep 
learning is an important component of AI.12 Kuo used 
deep learning to predict the occurrence of hospital- 
acquired pneumonia in 185 patients with schizophrenia, 
and the results revealed that of the seven machine learning 
algorithms, the prediction accuracy of random forest and 
decision tree was better than that of other algorithms.13 

Therefore, this study aimed to build a simple and accurate 
model based on available and common clinical-related 

feature variables for predicting CAP mortality by adopting 
machine learning techniques.

Methods
Training and Test Cohort
Two different cohorts were used to achieve a broad patient 
representation and improve the ability to generalize the 
results to other cohorts: patients with CAP between 
January 2012 and April 2020 at the Third Affiliated 
Hospital of Sun Yat-sen University, Guangzhou, China. 
Common inclusion criteria for the two cohorts were diag-
nosis of CAP, including the presence of a new pulmonary 
infiltrate associated with at least one of the following:14 

new or increased cough with or without purulent tracheo-
bronchial secretion or new pathogenic bacteria isolated 
from sputum or tracheal aspirate culture with ≥104 colony- 
forming units/mL, fever (>37.8°C) or hypothermia 
(<35.6°C), leukocytosis, left shift, or leukopenia based 
on local normal values. As severe acute respiratory syn-
drome coronavirus 2(SARS-CoV-2) has been around the 
world since early 2020, from then on all CAP patients in 
the general ward had been screened for SARS-CoV-2 
before hospitalization. Patients with SARS-CoV-2, 
acquired immunodeficiency syndrome, interstitial lung dis-
ease, or missing key data were excluded. Patients were 
labeled as having distinct prognoses depending on the 
follow-up data. Patients were assigned to the good out-
come group if they had no record of CAP-related deaths 
during hospitalization. The poor outcome group consisted 
of patients who died during hospitalization. A total of 
3977 patients were eventually included in the training 
and internal test sets, including 3772 patients with good 
prognosis and 205 patients with poor prognosis. Compared 
to the number of patients with a good prognosis, few 
patients had a poor prognosis. To balance the number of 
patients with the two outcomes, which makes the follow-
ing modeling process reliable, a downsampling method for 
negative samples (with a good prognosis) was adopted. 
A total of 3772 samples were randomly divided into 12 
non-overlapping subsets, each containing 250 negative 
samples. Simultaneously, the positive samples were repli-
cated into 12 sets by up-sampling. A negative subset and 
a positive set constituted a model dataset, and the model 
training set and internal test set were randomly divided in 
a ratio of 4:1. Thus, 12 datasets with balanced positive and 
negative sample sizes were used to train 12 models.
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Data Preparation
Each patient not only had a good or bad outcome, but also 
had 62 clinical-related features, including clinical diagnos-
tic features and clinical treatment features. For features 
with continuous values, it is necessary to normalize them 
to distribute in the range of 0 to 1, while classification 
features need to be transformed into one hot coding form. 
When a feature has a vacancy value, it is filled with its 
mean or the level with the highest frequency. Feature 
A contains only diagnostic information, and Feature 
B contains diagnostic and treatment information.

Base Classification Model
Using Tensorflow2.4.1 as a modeling framework, 
a three-layer fully connected neural network (FCNN) 
was built as a base model for the classification. 
Twenty neurons were set in the first layer, ten neurons 
in the second layer, and “Relu” was selected as the 
activation function for the layers. For the last layer, 
two neurons corresponding to “good prognosis” and 
“poor prognosis” were set respectively, and the activa-
tion function was set to “Softmax.” The “Adam” opti-
mizer was adopted when the model was compiled with 
the learning rate set to 0.0008, and the training loss 
function was based on binary cross-entropy.

Prognostic Network
Twelve models based on FCNN were trained on the 12 
datasets and internal test cohorts with the patients’ distinct 
outcomes as ground truth. Twelve scores for each patient 
were predicted by the 12 models. The scores were between 0 
and 1, and a score closer to 1 indicated a high probability of 
poor prognosis. On the contrary, a value closer to 0 indicated 
a high probability of a good prognosis. By averaging the 12 
selected models’ scores for a patient, an ensemble model, 
named as “ProgNet”, was created and used to predict the 
patient’s final poor prognosis score (PPS). PPS is 
a continuous quantized value, which ranges from 0 to 1. 
Based on Features A and B, two different prognostic net-
works and their corresponding PPS could be obtained.

Traditional Machine Learning methods
For a comprehensive comparison, seven classical machine 
learning methods, including logistic regression, support 
vector machine, K-nearest neighbor, Gaussian naive 
Bayes, decision tree, and random forest, and their 

integrated stacking patterns, were introduced to model 
and compare the same training and test data.

Model Performance Evaluation Metrics
For the binary classification tasks of the base model on 
patches in the internal cohort, the confusion matrix and 
receiver operating characteristic (ROC) curve were esti-
mated. A confusion matrix was used to visually evaluate 
the performance of the deep learning algorithms. Each row 
of the matrix represented an instance of a real label, and 
each column represented an instance of the prediction 
label. The sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) were calcu-
lated using the confusion matrix. The ROC curve was 
depicted by plotting the true positive rate (TPR, sensitiv-
ity) versus the false positive rate (FPR, 1-specificity) at 
various threshold settings. Accuracy was measured using 
the area under the ROC curve (AUC) and F1 score. To 
determine a suitable threshold for dichotomizing 
ProgNet’s predicted probability of poor prognosis, we 
computed the index of the dichotomized ProgNet predic-
tion for thresholds at 0.01, 0.02, and up to and including 
0.99 for patients. The threshold for obtaining the maxi-
mum TPR-FPR was selected as the cutoff value for 
ProgNet. The predicted outcome was poor prognosis if 
the ControlNet PPS was greater than the cutoff value; 
otherwise, PPS was less than or equal to the cutoff 
value, and the predicted outcome was a good prognosis.

Results
A total of 3997 patients with CAP were included at the 
Third Affiliated Hospital of Sun Yat-sen University, 
Guangzhou, China; 205 (5.12%) died in the hospital. 
First, using Tensorflow2.4.1 as the modeling framework, 
a three-layer FCNN was built as a base model for classi-
fication. Twelve models based on FCNN were trained on 
the 12 datasets in the training and internal test cohorts with 
the patients’ distinct outcomes as ground truth (Figure 1). 
The current study found that the AUC of the 12 models 
ranged from 0.882 to 0.989 (Figure 2A), with an accuracy 
rate ranging from 0.793 to 0.990. PPV and NPV were 
satisfactory. In order to improve the prediction accuracy 
of the model, this study averaged the scores of the 12 
selected models for a patient and established an ensemble 
model (ensemble FCNN). The AUC of the ensemble 
FCNN was 0.975 (Figure 2B), with an accuracy rate of 
0.952 (Table 1).
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To prove the superiority of the ensemble FCNN model, 
we compared it with other seven classical machine learn-
ing methods based on the same training and test data, 
including logistic regression, support vector machine, 
K-nearest neighbor, Gaussian naive Bayes, decision tree, 
and random forest, and their integrated stacking patterns. 

The results showed that the ensemble FCNN model had 
the best AUC, achieving 0.975, with the best accuracy rate 
of 0.952 (Table 2).

The predicted outcome was poor prognosis if the 
ControlNet’s poor prognosis score was greater than the cut-
off value of 0.50. To confirm the scientificity of the 

Figure 1 Deep learning flowchart.

Figure 2 (A,B)Area under the ROC curve of each model and method.
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ensemble FCNN model, we also analyzed the weight of 
random forest features (Figure 3, Supplementary Table S1) 
found that many mainstream prognostic features were still 
held important weight, but the model was perfect after 
integrating other factors considered less important by pre-
vious studies.

Discussion
In this study, each patient had 62 clinical-related features, 
including clinical diagnostic and treatment features. Based 
on the available and common clinical-related feature vari-
ables, this study obtained a precise model for predicting 
CAP mortality by adopting deep learning techniques. Deep 
learning has been widely used in medicine because of its 
computational power and availability of massive new data-
sets. For the sheer volume of data being generated and the 

increasing proliferation of medical devices and digital 
record systems, deep learning is convenient for healthcare 
and medicine.15,16 Presently, only a few studies have 
reported the application of deep learning in pneumonia- 
related studies. Li et al used AI to detect coronavirus 
disease 2019 (COVID-19) and CAP based on pulmonary 
computed tomography and found that a deep learning 
model can accurately detect COVID-19 and differentiate 
it from CAP and other lung conditions.17 Wang et al aimed 
to develop and test an efficient and accurate deep learning 
scheme based on chest X-ray that assists radiologists in 
automatically recognizing and localizing COVID-19 and 
revealed that compared to the radiologists’ discrimination 
and localization results, the accuracy of COVID-19 dis-
crimination using the discrimination-DL yielded 98.71%, 
while the accuracy of localization using localization-DL 

Table 1 Comparison of Performances of Each Model and the Ensemble Model in Internal and External Test

Model AUC ACC PPV NPV SENS SPEC F1

FCN – Sampling 1 0.952 0.905 1 0.841 0.813 1 0.904
FCN – Sampling 2 0.945 0.916 0.941 0.874 0.852 0.953 0.903

FCN – Sampling 3 0.938 0.99 0.923 0.962 0.971 0.893 0.941

FCN – Sampling 4 0.945 0.901 0.974 0.863 0.804 0.983 0.904
FCN – Sampling 5 0.941 0.99 0.933 0.954 0.963 0.902 0.941

FCN – Sampling 6 0.921 0.869 0.892 0.854 0.824 0.911 0.878

FCN – Sampling 7 0.922 0.893 0.942 0.864 0.824 0.964 0.893
FCN – Sampling 8 0.915 0.882 0.974 0.824 0.794 0.982 0.884

FCN – Sampling 9 0.921 0.869 0.971 0.813 0.744 0.984 0.874
FCN – Sampling 10 0.939 0.918 0.933 0.874 0.864 0.933 0.894

FCN – Sampling 11 0.882 0.793 0.784 0.802 0.744 0.831 0.794

FCN – Sampling 12 0.989 0.941 0.911 0.974 0.982 0.903 0.944
Ensemble FCN (Based on 12 FCNs) 0.975 0.952 0.954 0.954 0.951 0.952 0.952

Abbreviations: AUC, area under the ROC curve; ACC, accuracy rate; PPV, positive predictive value; NPV, negative predictive value; SENS, sensitivity; SPEC, specificity; F1, 
accuracy score.

Table 2 Comparison of Performances of the Ensemble Model and Seven Classical Machine Learning Methods in Internal and External 
Test

Model AUC ACC PPV NPV SENS SPEC F1

Logistic Regression 0.801 0.847 0.862 0.764 0.724 0.881 0.804

Support Vector Machine 0.837 0.835 1.00 0.754 0.673 1.00 0.842
K Nearest Neighbor 0.778 0.776 0.854 0.734 0.671 0.882 0.785

Gaussian Naive Bayes 0.813 0.812 0.914 0.753 0.702 0.933 0.814

Decision Tree 0.835 0.835 0.824 0.851 0.862 0.811 0.843
Random Forest 0.824 0.824 0.851 0.803 0.794 0.862 0.822

Stacking Classifier 0.825 0.824 0.911 0.764 0.721 0.932 0.823

Ensemble FCN (Based on 12 FCNs) 0.975 0.952 0.954 0.954 0.951 0.952 0.952

Abbreviations: AUC, area under the ROC curve; ACC, accuracy rate; PPV, positive predictive value; NPV, negative predictive value; SENS, sensitivity; SPEC, specificity; F1, 
accuracy score.
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Figure 3 Weight of random forest features based on the ensemble FCNN model.
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was 93.03%.18 Another study compared CAP, secondary 
pulmonary tuberculosis, and healthy control images and 
found that the deep learning model was a good model for 
distinguishing COVID-19 from other lung infectious 
diseases.19 However, most previous studies used deep 
learning based on imaging data to distinguish pneumonia, 
while this study predicted the prognosis of pneumonia 
based on commonly used clinical test data, which was 
innovative noticeably. FCNN is a novel neural network 
with inherent features characterized by automatic feature 
extraction and classification steps.20 This study found that 
the best AUC of the 12 FCNN models was 0.989, with 
a perfect accuracy rate. PPV and NPV were satisfactory. 
To improve the prediction accuracy of the model, this 
study established an ensemble FCNN based on the 12 
selected models. The ensemble FCNN model predictions 
were good. It has been suggested that FCNN has similar 
advantages in predicting the death of patients with CAP 
and other diseases in other studies.21,22

To further prove that this model was superior to that 
established by traditional statistical methods, it was com-
pared with seven other classical machine learning methods 
based on the same training and test data. The results 
showed that the ensemble FCNN model had the best 
AUC of 0.975, with the best accuracy rate of 0.952. This 
was similar to a previous study, confirming the superiority 
of FCNN.23,24 Meanwhile, similar methods to proof have 
been used in other studies. Chandak et al used machine 
learning to improve ensemble docking for drug discovery 
and compared it with other classical machine learning.25 

The predicted outcome was poor prognosis if the 
ControlNet’s poor prognosis score was greater than the 
cutoff value of 0.50 in the current study. This made the 
ensemble FCNN model easier to use. It was convenient for 
medical institutions, especially grassroots medical and 
health institutions.

As clinicians, we believe there are many researchers, 
such as authors who are interested in the composition of 
the ensemble FCNN model, that is, about the weight of 
each parameter in the model. Would factors that were 
considered important predictors, such as treatment regi-
mens still play a key role in the ensemble FCNN model? 
What about previously overlooked factors? We found that 
each variable played a role from the weight of random 
forest features based on the ensemble FCNN model. The 
top five variables were β-lactam plus macrolide treatment, 
other antibiotics treatment, blood albumin level, fluoroqui-
nolone treatment alone, and blood urea nitrogen/albumin 

rate; β-lactam plus macrolide treatment is a common ther-
apeutic schedule for CAP. Horita et al reviewed and ana-
lyzed the published trials, and observational studies 
revealed that β-lactam plus macrolide treatment might 
decrease all-cause death CAP.26 Ceccato et al found that β- 
lactam plus macrolide treatment was helpful for patients 
with pneumococcal CAP and patients with a high systemic 
inflammatory response.4 In the current study, other anti-
biotic treatments were defined as carbapenems combined 
with vancomycin or linezolid. In other words, the patients 
in whom clinicians decided to use the other antibiotic 
treatment scheme may be very critical; therefore, the mor-
tality may be higher as the model showed that it was 
related to high mortality. This is understandable and 
acceptable There seem to be few studies on albumin levels 
and the prognosis of pneumonia. However, the albumin 
level is an important indicator of nutritional status and is 
related to the prognosis of many diseases. Low serum 
albumin levels are associated with an increased risk of 
death in patients with severe sepsis.27 Low serum albumin 
level is a powerful predictor of all-cause mortality in 
patients with acute coronary syndrome.28 

Fluoroquinolone treatment alone is also a common thera-
peutic strategy for CAP. It plays an important role in the 
prognosis of CAP. There was no difference in the 30-day 
readmissions between patients with CAP who received 
fluoroquinolone monotherapy and those who received β- 
lactam plus macrolide combination therapy.29 The blood 
urea nitrogen/albumin ratio is a simple parameter. Akyil 
et al found that the blood urea nitrogen/albumin rate was 
related to the prognosis of patients hospitalized with 
CAP.30 In summary, the top five variables of the model 
are consistent with mainstream research. This model has 
considerable reliability and applicability.

However, there were some limitations to the current 
study. First, as a retrospective study, there may be bias in 
the selection of medical records. Second, as a signal center 
study, the sample size was limited, and the study lacked 
external validation data. In the future, we plan to conduct 
a prospective multicenter large-sample study to further 
confirm the value of the model.

Conclusion
The present study used deep learning algorithms to clas-
sify prognosis based on available and common clinical- 
related feature variables in patients with CAP with high 
accuracy and good generalizability.
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Abbreviations
CAP, community-acquired pneumonia; AI, artificial intelli-
gence; FCNN, fully connected neural network; PPS, poor 
prognosis score; ROC, receiver operating characteristic; PPV, 
positive predictive value; NPV, negative predictive value; 
TPR, true positive rate; FPR, false positive rate; AUC, area 
under curve; COVID-19, coronavirus disease 2019.
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