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Abstract: Neurological disorders are diseases of the central and peripheral nervous system that affect
millions of people, and the numbers are rising gradually. In the pathogenesis of neurodegenerative
diseases, the roles of many signaling pathways were elucidated; however, the exact pathophysiology
of neurological disorders and possible effective therapeutics have not yet been precisely identified.
This necessitates developing multi-target treatments, which would simultaneously modulate neu-
roinflammation, apoptosis, and oxidative stress. The present review aims to explore the potential
therapeutic use of astaxanthin (ASX) in neurological and neuroinflammatory diseases. ASX, a mem-
ber of the xanthophyll group, was found to be a promising therapeutic anti-inflammatory agent for
many neurological disorders, including cerebral ischemia, Parkinson’s disease, Alzheimer’s disease,
autism, and neuropathic pain. An effective drug delivery system of ASX should be developed and
further tested by appropriate clinical trials.

Keywords: astaxanthin; neuroprotective agent; oxidative stress; neuroinflammation; neurological
diseases

1. Introduction

Marine carotenoids are highly antioxidant, reparative, antiproliferative, and anti-
inflammatory and can be applied as photo-protective skin to inhibit harmful ultraviolet ra-
diation effects [1,2]. Non-photosynthetic marine species are unable to produce carotenoids
de novo, except for marine autotrophic organisms [3]. Several studies have already reported
that marine animals may either accumulate carotenoids directly from food or partially
modify them through the metabolic pathways [4,5]. Consequently, carotenoids obtained
from several marine species act on various pathways, including the conversion of metal
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derivatives into harmless molecules, converting hydroperoxides into more stable com-
pounds, acting as quenchers of singlet molecular oxygen, and preventing the formation
of free radicals through the block of free radical oxidation reactions and inhibition of the
auto-oxidation chain reaction [3,6,7].

Astaxanthin (ASX) is one of the marine carotenoids, which was originally isolated by
Kuhn and Sorensen from a lobster [8]. ASX exists everywhere in nature; however, it partic-
ularly presents as a red-orange pigment in several marine animals, including salmonids,
shrimp, and crayfish [9,10]. While plants, microbes, and microalgae may also produce ASX,
the Haematococcus pluvialis chlorophyte algae are known to have the highest potential to
accumulate ASX [11–14]. Nowadays, there are many synthetics ASX; nevertheless, health
concerns have arisen concerning the use of synthetic ASX for medical purposes. ASX is
closely related to other carotenoids, including zeaxanthin, lutein, and β-carotene; therefore,
it shares many similar biological functions [3,15,16]. Previously, it has been reported that
ASX is biologically more active than the aforementioned carotenoids [17–19]. ASX has been
previously reported to have therapeutic anticancer, antidiabetic, anti-inflammatory, and
antioxidant activities, and neuro-, cardiovascular, ocular, and skin-protective effects [20].

In terms of neurological protective effects, many studies have mentioned the role
of ASX in neurological disorders, including cerebral ischemia, Parkinson’s disease (PD),
Alzheimer’s disease (AD), autism, and neuropathic pain, which we will discuss in the
following sections [21–23]. In this review, we aimed to explore the potential therapeutic
use of ASX in neurological and neuroinflammatory diseases.

2. Bioavailability and Pharmacokinetics of Astaxanthin

The administration of ASX with dietary oils, particularly fish oil, may promote the ab-
sorption of ASX and enhance the neutrophil’s phagocytic activity [19,24]. Studies showed
enhanced bioavailability and antioxidant effects of ASX when administered alongside olive
oil in rats [25,26]. Moreover, Otton and his colleagues [27] reported that ASX administration
with fish oil reduced the production of nitric oxide (NO) and increased the release of cal-
cium, superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx). Owing to
the lipophilic nature of ASX, it was thought that ASX transforms metabolically in the rats’
tissues before it is extracted [28].

It was observed that a high-cholesterol diet might improve the absorption of ASX in
humans, which is transported into the liver via the lymphatic system. Matrix dissolution
and mixed micelles integration are two essential steps leading up to membrane absorp-
tion [24]. It should be incorporated with chylomicrons after absorbing it by intestinal
mucosal cells to be transported to the liver. After that, ASX is integrated and transferred to
the tissues by lipoproteins [29]. Okada et al. [30] reported that smoking could significantly
reduce the half-life of ASX, indicating that smoking enhances the metabolism and elimina-
tion of ASX. This finding was confirmed by many investigators who demonstrated that the
half-life of carotenoids is significantly affected by smoking [31,32]. The reported half-life of
plasma ASX ranged between 16 and 21 h [28,33]. In terms of tolerability, Odeberg et al. [34]
reported that a single dose of 40 mg for healthy volunteers was well-tolerated.

3. Astaxanthin for Neurological Disorders
3.1. Alzheimer’s Disease

AD is a chronic and serious neurodegenerative disease characterized by impairment
of memory and cognitive function. In recent decades, the prevalence of AD has risen
significantly [35,36]. It may have a huge effect and obstacles on the well-being and the
ability to lead a healthy life by the affected patients [37,38]. The excessive accumulation
of β-amyloid protein (Aβ) in the cerebral cortex and hippocampus is one of AD’s main
features [39]. Aβ contributes to oxidative stress production by forming reactive oxygen
and nitrogen species [40]. Many adverse effects are related to oxidative stress produc-
tion, including the formation of neurofibrillary tangles, inflammation, apoptosis, protein
oxidation, and lipid peroxidation [41,42]. As a result of these disturbances, a reduction
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in cognitive functions can be developed in response to the significant damage of neural
connections between the cerebral cortex and the hippocampus [43]. Many researchers
have proposed antioxidants supplementation to prevent oxidative stress’ adverse effects by
enhancing the endogenous oxidative defense [44–46]. Previous studies have demonstrated
the potential effective role that ASX might have in the management of AD. A previous
study by Taksima et al. [47], where the authors used ASX powder obtained from shrimp
shells (Litopenaeus vannamei), showed that Wistar rats with AD had significantly improved
levels of their cognitive abilities. ASX has significantly enhanced spatial and non-spatial
memory and reduced neurodegeneration, assessed by the object recognition test and Aβ

plaque level [47]. It was thought that ASX might improve GPx activity, which was observed
to be suppressed due to mitochondrial dysfunction and Aβ accumulation [47,48].

Moreover, ASX participates in reducing protein carbonyl and malondialdehyde (MDA)
levels, which result from the destruction of polyunsaturated fatty acids by the reactive oxygen
species (ROS) and act on inducing neuronal deterioration [49,50]. Likewise, the role of ASX in
the elimination of superoxide anion has been reported [51]. In AD, many reports have linked
the production of ROS and neuronal death due to the formation of senile plaques [52,53].
Compared to the vehicle-AD group, it has demonstrated a significant reduction in hippocam-
pal and cortical neuronal loss in the oral ASX group [47,54]. In the same context, Che et al. [55]
reported that after application of synthesized ASX, their double transgenic mice (APP/PS1)
showed improved cognitive abilities by reducing neuroinflammation and the related oxidative
distress, which is a major cause that can inaugurate the mechanism and impact the prognosis
of AD [56,57]. A study has shown that the number of references and working memory errors
has significantly reduced in APP/PS1 treated with ASX. Moreover, ASX has improved the
APP/PS1 behavior, reduced the hippocampal and cortical Aβ numbers, and decreased the
soluble and insoluble Aβ 40 and Aβ 42 levels [55]. These changes were accompanied by a
significant elevation in the level of superoxide dismutase (SOD) and a significant decline in
the nitric oxide (NO) and nitric oxide synthase (NOS) levels. Interestingly, it was reported that
ASX might induce a significant suppression of p-Tau expression; however, it did not affect the
regulation of p-GSK-3β expression [58]. ASX possesses a powerful anti-inflammatory activity
that abolishes the expression of inflammatory mediators, including TNF-α, PGE2, and IL-1β,
and inhibits the development of nitric oxide (NO) as well as the NF-κB-dependent signaling
pathway [36,59].

Other studies have described similar anti-inflammatory effects of astaxanthin via using
different laboratory models. ASX, at a dose of 50 µM, declined the release of inflammatory
mediators in activated microglial (BV-2 cell line) cells via the regulation of NF-κB cascade
factors (e.g., p-IKKα, p-IκBα, and p-NF-κB p65, IL-6, and MAPK) [60].

In terms of cytokines, ASX sub-retinally reduced the level of TNF-α but not IL-
1β [55,61]. Furthermore, ASX has been reported to be effective in terms of apoptosis
suppression in APP/PS1 mice, as it suppresses the expression of caspase-9 and caspase-3
proteins [55]. The favorable effects of ASX in decreasing any potentially present oxidative
stress are owed to the capability to pass the blood–brain barrier, enabling it to perform its
favorable effects. The exact mechanism explaining the anti-inflammatory actions of ASX
is not well understood. However, many studies have reported some observations that
might help understand it. A previous investigation by Wang et al. [62] reported that ASX
significantly reduced oxidative stress and reduced the present ischemia, which occurred
secondary to brain injury. Via the ERK1/2 pathway, ASX also induced the expression of the
Ho-1 enzyme (which has antioxidant properties), reducing cell death and protecting neu-
roblastoma cells that were susceptible to injury [62]. The favorable effects of ASX were also
demonstrated by Wen et al. [63], that showed the neuroprotective role that this compound
plays in the hippocampal HT22 cells of their mice also by increasing the expression of Ho-1
antioxidant activities. Another mechanism for enhancing the cognitive ability in rats with
AD is the inhibition of glutathione-induced cell death, which has been previously reported
to take part in the prognosis and AD severity [64,65]. Moreover, ASX demonstrated the
protective effects on mitochondria’s double membrane system with boosting efficient en-
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ergy production [9,66]. Specifically, ASX protected the mitochondria of cultured nerve
cells from toxic attacks and increased mitochondrial activity through enhanced oxygen
consumption without increased reactive oxygen species production [66–68], indicating
its potential efficacy in the management and possible prevention of neurodegenerative
diseases and neuroinflammation [9,69].

Hongo et al. [58] used a new AD model, the AppNL-G-F mice model, which is associated
with mild memory decline, microglial formation, increased level of p-Tau, and accumulation
of Aβ42 in the hippocampus. Their findings indicated that ASX significantly reduced the
Aβ42 deposition, p-Tau, and Iba1 fraction. On the other hand, it increased the glutathione
biosynthesis, leading to an increase in the hippocampal parvalbumin-positive-positive neuron
density, which plays a significant role in gamma oscillation production [70]. According to
a recent study, gamma oscillations’ optogenetic or sensory activation led to the decline of
Aβ peptides in the hippocampus of the AD mouse model (5XFAD mouse) due to microglial
activation and the resulting increase in Aβ microglial uptake [71]. A reduction in the Iba1
fraction may be attributed to reducing Aβ42 precipitation in ASX-fed AppNL-G-F mice as
microglia accumulate around Aβ deposition [72]. Regarding the effect of ASX on p-Tau,
two pathways were suggested: the amyloid cascade theory and the autophagy-mediated
degradation [73]. The p-Tau fraction was positively correlated with the Aβ42 fraction, which
supports the amyloid cascade theory [58]. The promotion of nuclear factor erythroid 2-related
factor 2 (Nrf2)/antioxidant response element (ARE) by ASX, resulting in reducing p-Tau,
suggested the effect of ASX on the autophagy [74]. In AD-like model rats, which were induced
using hydrated aluminum chloride (AlCl3.6H2O) solution, Hafez and her colleagues showed
that ASX significantly reduced the disposition of Aβ1-42, the level of MDA, the activity of
acetylcholinesterase and monoamine oxidase, and the expression of β-site amyloid precursor
protein cleaving enzyme 1 (BACE1). Moreover, ASX significantly elevated the miRNA-124
expression, Nrf2 upregulation, and the content of serotonin and acetylcholine [75]. Figure 1
summarizes the aforementioned mechanisms of ASX in AD.
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Figure 1. Astaxanthin mechanism of action in Alzheimer’s disease. Aβ: Amyloid beta, APP: β-amyloid
precursor protein, ASX: Astaxanthin, NF-κB: Nuclear factor-kappa B, TNF-α: Tumor necrosis factor-
alpha, IL: Interleukin, Iba1: Ionized calcium-binding adaptor molecule 1, GFAP: Glial fibrillary acidic
protein, STAT3: Signal transducer and activator of transcription 3, JAK2: Janus Kinase 2, GSK3β:
Glycogen synthase kinase 3 beta, p-Tau: Phosphorylated tau, Bcl-2: B-cell lymphoma 2, Bax: Bcl-2-
associated X protein, Nrf2: Nuclear factor erythroid 2-related factor 2, GAS: Glyoxylate, anapleurotic
and succinyl CoA, OH: Hydroxide, Keap1: Kelch-like ECH-associated protein 1, Akt: Protein kinase B.
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3.2. Parkinson’s Disease

PD is the second most common neurodegenerative disorder [76]. It is age-related
and is caused by oxidative stress and neuroinflammation [77]. The global prevalence of
PD is estimated to be 0.1–0.2%, which increases with age (>80 years old) up to 3% [78,79].
PD occurs mainly due to the motor and non-motor dysfunctional disorders, which are
attributable to loss of the dopaminergic neurons, the devastation of the non-dopaminergic
ones, and the accumulation of the alpha-synuclein, which is the major component of
Lewy bodies and plays a significant role in the development and progression of PD [80,81].
There are strong evidences that firstly, it affects the vagus nerve motor nucleus, the olfactory
bulbs, and the nucleus, then the locus coeruleus, and thus, finally, the substantia nigra.
Cortical regions of the brain at a later point are impaired. Damages to these particular neural
structures are the result of numerous pathophysiological alterations that not only affect the
engine system, but also neurological and neuropsychological systems [82]. Although many
treatment modalities are currently approved for PD management, many adverse events
have been associated, and therefore, many approaches have been made to discover novel
multi-targeting modalities to treat PD properly. In the last decade, numerous miRNAs
have been recognized and suggested as key gene expression regulators in human cells [83].

Almost all genes related to PD have been observed to be mediated by miRNAs, in-
cluding alpha-synuclein (SNCA), LRRK2, and several transcription and growth factors [84].
MiR-7 was found to influence the SNCA accumulation and engaged with the PD etiol-
ogy [85]. MiR-7 decreasing of the SN area was known as a therapeutic indicator of PD,
not only involving SNCA accumulation but also dopaminergic neuron loss and miR-7
replacement therapy [86]. This was indicated by Shen et al. [87], who reported that ASX
could decrease the previously induced stress in the endoplasmic reticulum by acting on
the miR-7/SNCA axis to reduce the potential nerve damage that may be caused by PD.
SNCA is the main gene that is usually responsible for the development and early initiation
of PD. During the initiation and development of multiple neurodegenerative disorders
like PD, miRNAs are presented spatially and temporally, suggesting that miRNAs play a
key role in PD pathogenesis. In vivo, they also found that ASX has a potential protective
effect against the neuron injury induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) via a miR-7/SNCA axis. On the other hand, the favorable events of ASX were
not reported in the animal study by Grimmig et al. [88] that reported that the compound’s
efficacy was limited in aged animals with PD as it was not able to counteract the toxicity
of MPTP. However, they found that in both young and aged mice, the neuronal damage
in the substantial nigra was prevented by ASX. Therefore, they suggested that any clini-
cal recommendations for PD should take aging as an important factor. Previous studies
have investigated the potential effects that modified ASX compounds might have on PD.
These compounds include the docosahexaenoic acid (DHA)-acylated ASX ester and ASX
in combination with the non-esterified ASX and DHA.

Evidence shows that the first compound’s efficacy was significantly better than the
latter one in reducing the development of MPTP-induced PD in mice [89]. Wang et al. [89]
also proved that DHA-ASX could significantly reduce the progression of PD by reducing
the apoptotic phenomena of the dopamine neurons by acting through the P38 MAPK and
JNK pathway (Figure 2). Although the three ASX-derived compounds showed favorable
events in reducing oxidative stress, DHA-ASX was the only significant compound that can
limit PD progression by reducing cell apoptosis. A previous study also indicated ASX’s
ability to inhibit the activities of the mitogen-activated protein kinase and P13K/AKT,
which might favor its actions on many neurological diseases, such as PD [90]. Moreover, it
has been indicated that ASX also has anti-oxidative stress that is attributable to MPP mech-
anisms in PC12 cells by acting through the NOX2/HO-1 and NR1/SP1 pathways [91,92].
Previous studies indicated the favorable events of ASX that showed that ASX administra-
tion is associated with decreased reactive oxygen species synthesis, reduced mitochondrial
dysfunction, and reduced cellular apoptosis [93,94].
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TNF-α: Tumor necrosis factor-alpha, Akt: Protein kinase B, ASX: Astaxanthin, ROS: Reactive oxygen
species, RTK: Receptor tyrosine kinase, PIP3: Phosphatidylinositol-3,4,5-triphosphate, PI3K: Phos-
phatidylinositol 3-kinase, JNK: c-Jun N-terminal kinase, CREB: cAMP Response Element-Binding
Protein, PTEN: Phosphatase and tensin homolog deleted on chromosome 10, MPTP: 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine, VMAT: Vesicular monoamine transporter, DAT: Dopamine
transporter, SNCA: Alpha-synuclein.

3.3. Neuropathic Pain and Central Nervous System Injuries

Neuropathic pain develops when a disorder or an injury occurs within the somatosen-
sory pathway, stimulating the underlying affected neurons [95]. Neuropathic pain devel-
opment was previously explained by many mechanisms and pathways, mainly dependent
on the effector mediator. Many inflammatory mediators, such as prostaglandins, cytokines,
and reactive oxygen species, in addition to the neuromodulators, which mainly include
glutamate, have been frequently observed in such painful events [96–99]. These factors can
cause pain through apoptosis, neuron firing, and impacting many structures and processes,
such as microglia, astrocytes, and ion currents [100]. Although many treatment modalities
can be used to manage neuropathic pain, approaching to obtain favorable modalities that
may have more advantages is essential to enhance the quality of care. One of the treatment
modalities that has shown successful results recently is counteracting the neuroinflam-
matory process. Gugliandolo et al. [101] found that reversing the neuroinflammation
was protective against peripheral nerve injury and neuropathic pain in an experimental
study. In terms of experimental studies on ASX, Keudo et al. [51] reported that favorable
effects of reducing pain in carrageenan-induced pain and edema in mice were significantly
associated with ASX that was also obtained from Litopenaeus vannamei and was efficacious
in reducing the painful sensations and inflammation. Sharma et al. [102] supported this by
concluding that ASX reduced the oxidative stress that resulted in behavioral and chemical
alternations in vivo and in vitro experiments, where the objects suffered from induced
neuropathic pain.

Moreover, the effective anti-inflammatory effects of ASX were further proven by its
ability to reduce chronic pain by reducing the potential thermal hyperalgesia and the
possible presence of depressive symptoms in the affected mice [103]. Another report by
Fakhri et al. [104] showed that ASX is able to significantly inhibit ERK1/2 and activate
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protein kinase B (AKT), which, in turn, are responsible for initiating chemical and thermal
painful sensations. Another potential mechanism of ASX actions is that it blocks the
inflammatory signaling and reduces the associated mediators as glutamatergic-phospo-p38-
mitogen-activated protein kinase (p-p38MAPK) and NR2B [105]. Long-standing exposure
of neurons to glutamate contributes to cell death [106]. There are many adverse effects
attributed to the neuronal exposure to glutamate, including neuronal damage triggered
by L-glutamate, retinal ganglion cells death due to glutamate stress, and cytotoxicity of
HT22 cells, which is mediated by mitochondrial dysfunction, inactivation of caspase, and
dysregulation of the AKT/GSK-3b signaling pathway [107–110]. Fortunately, ASX provides
neuroprotective effects against all of these adverse effects. In cases of spinal cord injury (SCI),
it is known that NMDARs subunits like NMDARs 2B (NR2B) and glutamate participate in
the neuropathy pain pathway [99,111]. NR2B is a cation channel that is essential for many
forms of synaptic plasticity and mediates the neurotransmission of glutamate and many
other aspects of development and synaptic transmission in neuropathy pain [112].

However, NR2B activation can be toxic for the spinal cord. It has been proposed
that ASX participates in reducing neuropathic pain by inhibiting the glutamate-initiated
signaling pathway through decreasing the expression of NR2B and p-p38MAPK [2,105,113].
Moreover, ASX inhibits the MIF, p-p38MAPK, p-ERK, and AKT pathways and stimulates
the p-AKT and ERK pathways [114]. MIF upregulates NR2B; therefore, it can be consid-
ered a major mediator of neuropathic pain, and it has been shown by several cell lines
in the peripheral and central nervous system, especially within cells located in sensory
transmission regions [115]. Furthermore, in response to tissue damage and stress, it is
dramatically elevated, often reaching concentrations about 1000 times higher than other
cytokines causing pain [116]. In general, in view of its antioxidant, anti-inflammation, and
anti-apoptotic mechanisms, ASX may be considered a new prospect for lowering neuro-
pathic pain in animal models. The reduction of NR2B and MIF, which are very significant
in the occurrence of neuropathic pain after SCI, may be partly involved (Figure 3).
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3.4. Autism

The prevalence of autism has recently increased, with many social, behavioral, and com-
municational burdens over the affected patients and the surrounding individuals [117–119].
In addition to having many neurodegenerative events being involved in its mechanism [120–122],
autism is also associated with increased levels and frequencies of synthesis and release of various
proinflammatory mediators [123]. Gastrointestinal (GI) symptoms are common among autism
patients. The gut microbiota regulates neuropsychological functions, intestinal homeostasis,
and functional GI disturbances through the microbiota-gut-brain axis [124]. Moreover, previous
studies have suggested that patients with autism might have an underlying degree of oxidative
stress [125–128]. Consequently, previous studies have demonstrated that ASX might have a
potential role in reducing the inflammatory state and oxidative stress that might be present in
autistic patients [129,130]. Furthermore, it was believed that ASX could significantly reduce
bacterial loads and attenuate gastric inflammation in mice infected with H. pylori, and increase
the production of IgA antibody-secreting cells in the small intestine of mice. Therefore, ASX
could have a potential in the prevention or treatment of dysbiosis and its associated diseases like
autism, AD, and PD [131].

Fernández et al. [132] previously suggested the administration of carotenoids as rou-
tine food in patients with autism to reduce the potential oxidative stress and inflammatory
state. Al-Amin et al. [133] also reported that ASX reduced the actions of catalase activities,
restricted lipid peroxidation, and reduced the levels of nitric oxide, which are involved
in developing oxidative stress. This has led to a significant enhancement in the assessed
behavioral parameters and a significant increase in the assessed paw withdrawal latency
in the studied mice that suffered from autism, secondary to valproic-acid induction [133].

3.5. Cerebral Ischemia

Prolonged cerebral ischemia can lead to the development of irreversible adverse events.
Previous investigations demonstrated a potential impact of ASX carotenoid for reducing
the severity of cerebral ischemia and potentiating the chances of brain tissue recovery.
Xue et al. [134] reported that ASX was significantly able to reduce ischemia and improve
the cognitive and learning abilities in their model of mice that were subjected to repeated
cerebral ischemia by reducing apoptosis and hippocampal damage. Some mechanisms can
explain the prevention of brain disorders by ASX by enhancing reperfusion rates following
ischemia. These include activation of the Nrf2–ARE pathway, reducing the reactive oxygen
species levels, reducing apoptosis, and enhancing nerve regeneration [135].

Moreover, evidence shows that ASX possesses an essential role in providing the
necessary oxygenation for the apoptotic brain tissue through the GSK3β/PI3K/Nrf2/Akt
pathways [136]. Wang et al. [135] confirmed this by indicating that ASX was able to enhance
the prognosis and motor functions through the cAMP/protein kinase A (PKA)/cAMP
response element-binding protein (CREB). Previous studies also showed that ASX has
protective roles in acute cerebral infarctions and brain injury [137,138].

4. Potential of Astaxanthin in Counteracting Neuroinflammation

A huge body of literature supports the role of ASX in preventing neuroinflammation,
which makes it a potential candidate for further testing in various neurological disorders,
where neuroinflammation plays a key role in disease pathology and progression, including
AD, PD, nerve injury, cerebral ischemia, and autism.

For example, Che et al. [55] reported improved cognitive abilities in AD transgenic
mice by reducing neuroinflammation and the related oxidative distress [56,57], and Kidd
et al. [9] reported similar favorable results on the mitochondria and microcirculation [69].
Gugliandolo et al. [101] also reported that reversing the neuroinflammation was effective
in protecting against peripheral nerve injury and neuropathic pain. Similarly, counteract-
ing the neuroinflammation has recently been shown to improve recovery in Parkinson’s
disease experimental models [139]. Impellizzeri et al. also reported that reversing the
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neuroinflammation was an alternative strategy for the treatment of cerebral ischemia and
particularly for vascular dementia.

Based on the aforementioned ASX mechanisms of actions, the promising findings in
experimental studies, and the fact that neuroinflammation plays a key role in AD, PD, nerve
injury, cerebral ischemia, and autism, we support the advancement of this neurotherapeutic
candidate to further testing in clinical trials.

5. Safety of Astaxanthin

Many studies reported that ASX is safe and has no side effects or toxic effects when
accumulating in animal or human tissues [26]. However, excessive consumption of ASX
may lead to altering the pigmentation of the skin of animals [24]. The accumulation of
ASX was also observed in the eyes of the rats [140]. Administration of ASX was associated
with increased antioxidant enzymes and reduced blood pressure in hypertensive rats [141].
As a feed additive, the United States Food and Drug Administration (FDA) approved ASX
at up to 80 mg/kg, while the European Food Safety Authority (EFSA) approved up to
100 mg/kg [142].

In terms of daily intake, it was reported that 0.034 mg/kg/day of natural ASX is the
acceptable daily intake in humans [143]. However, recent clinical trials reported favorable
outcomes with higher doses up to 8 mg per day or even higher [144,145]. In a safety report,
the investigators have assessed more than 80 clinical trials to detect the side effects and
safety concerns of ASX [146]. Their findings highlighted that there were no serious adverse
effects reported in any one of the evaluated studies, even in the studies that administrated
high doses of ASX (up to 45 mg) [147]. Some mild adverse events such as increased
frequency of bowel movements were reported [148]. Moreover, there was no detectable
change in the liver parameters [149].

6. Conclusions

ASX, a ketocarotenoid extracted from marine carotenoids, provides various health
benefits in a wide variety of diseases. As a multi-target neuroprotective agent, ASX tackles
neurodegenerative diseases’ pathophysiology through antioxidant, anti-inflammatory, and
anti-apoptotic mechanisms. Moreover, through its fat-soluble properties, ASX would be
able to effectively pass through the blood–brain barrier. Therefore, ASX seems to be an
excellent candidate for more evaluation of the neuroprotective properties, which would
eventually result in ASX becoming a novel neurotherapeutic agent. Although the current
evidence supports the neuroprotective pharmacological effects of ASX, there is a lack of
an effective drug delivery system in the previous studies. Therefore, future clinical trials
should be conducted to examine the possible delivery methods. Moreover, there is a need to
further investigate the precise pathophysiological pathways involved in neurodegeneration
and the possible neuroprotective mechanisms of ASX in humans.
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