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Abstract
When populations of a rare species are small, isolated and declining under climate 
change, some populations may become locally maladapted. Detecting this malad-
aptation may allow effective rapid conservation interventions, even if based on 
incomplete knowledge. Population maladaptation may be estimated by finding ge-
nome–environment associations (GEA) between allele frequencies and environmen-
tal variables across a local species range, and identifying populations whose allele 
frequencies do not fit with these trends. We can then design assisted gene flow strat-
egies for maladapted populations, to adjust their allele frequencies, entailing lower 
levels of intervention than with undirected conservation action. Here, we investigate 
this strategy in Scottish populations of the montane plant dwarf birch (Betula nana). 
In genome-wide restriction site-associated single nucleotide polymorphism (SNP) 
data, we found 267 significant associations between SNP loci and environmental 
variables. We ranked populations by maladaptation estimated using allele frequency 
deviation from the general trends at these loci; this gave a different prioritization for 
conservation action than the Shapely Index, which seeks to preserve rare neutral 
variation. Populations estimated to be maladapted in their allele frequencies at loci 
associated with annual mean temperature were found to have reduced catkin pro-
duction. Using an environmental niche modelling (ENM) approach, we found annual 
mean temperature (35%), and mean diurnal range (15%), to be important predictors 
of the dwarf birch distribution. Intriguingly, there was a significant correlation be-
tween the number of loci associated with each environmental variable in the GEA 
and the importance of that variable in the ENM. Together, these results suggest that 
the same environmental variables determine both adaptive genetic variation and 
species range in Scottish dwarf birch. We suggest an assisted gene flow strategy 
that aims to maximize the local adaptation of dwarf birch populations under climate 
change by matching allele frequencies to current and future environments.

K E Y W O R D S

adaptive potential, assisted gene flow, climate change, conservation genetics, environmental 
association analysis, evolutionary conservation, landscape genomics, provenance matching

www.wileyonlinelibrary.com/journal/eva
https://orcid.org/0000-0001-9902-7681
http://orcid.org/0000-0001-7673-2783
http://orcid.org/0000-0002-4801-9312
mailto:﻿
https://orcid.org/0000-0003-4495-3738
http://creativecommons.org/licenses/by/4.0/
mailto:r.buggs@qmul.ac.uk


162  |     BORRELL et al.

1  | INTRODUC TION

Climate change is predicted to become a major driver of global bio-
diversity loss (Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 
2012; Urban, 2015). Species that lack relevant phenotypic plasticity 
(Gratani, 2014; Nicotra et al., 2010) may survive environmental 
changes by dispersing to new locations, consequently tracking condi-
tions they are currently adapted to (Aitken, Yeaman, Holliday, Wang, 
& Curtis-McLane, 2008; Meier, Lischke, Schmatz, & Zimmermann, 
2012), or remaining in the same location and rapidly evolving ad-
aptation to their new environments from standing genetic variation 
or gene flow (Aitken et al., 2008; Alberto et al., 2013). Migration 
in response to rapid climate change may be particularly difficult 
for plants (Corlett & Westcott, 2013; Hampe & Petit, 2005; Zhu, 
Woodall, & Clark, 2012). In some cases, plants lack the dispersal abil-
ity to keep pace with accelerated climate shifts (Loarie et al., 2009). 
For example, there may be an absence of potential habitat at higher 
latitudes (McKenney, Pedlar, Lawrance, Campbell, & Hutchinson, 
2007) or altitudes (Engler et al., 2011), suitable new habitats may 
be separated by too large distances (Meier et al., 2012) or dispersal 
may be impossible due to anthropogenic habitat fragmentation. In 
these cases, conservation managers aiming to prevent extinction of 
species or populations face a choice between relying on in situ evo-
lution to track the environmental change or attempting conservation 
interventions such as assisted migration or assisted gene flow (AGF) 
that seeks to enable, facilitate or accelerate adaptation.

To evaluate whether interventions are appropriate, a first step 
is understanding current local adaptation and the potential for ad-
aptation to future environments (Davis, Shaw, & Ettersonm, 2005; 
Funk, Forester, Converse, Darst, & Morey, 2019; Hoffmann, Sgrò, & 
Kristensen, 2017). The classical way to identify local adaptation is via 
reciprocal transplant experiments (Kawecki & Ebert, 2004; Leimu & 
Fischer, 2008; Pardo-Diaz, Salazar, & Jiggins, 2015). However, this 
approach is often unfeasible for wild organisms with long generation 
times in need of urgent conservation, meaning that more rapid ap-
proaches using genomics are desirable (Williams et al., 2008).

Genotype–environment association (GEA; also referred to as 
environmental association analysis, EAA) methods are increasingly 
used to identify loci involved in local adaptation (Abebe, Naz, & 
Léon, 2015; Ahrens et al., 2018; Bay, Rose, Logan, & Palumbi, 2017; 
Coop, Witonsky, Rienzo, & Pritchard, 2010; Flanagan, Forester, 
Latch, Aitken, & Hoban, 2018; Funk et al., 2019; Godbout, Gros-
Louis, Lamothe, & Isabel, 2019; Günther & Coop, 2013; Ingvarsson & 
Bernhardsson, 2019; Mahony et al., 2019; Rellstab, Gugerli, Eckert, 
Hancock, & Holderegger, 2015). These approaches detect replicated 
signatures of selection (single nucleotide polymorphisms [SNPs] that 
deviate strongly from estimated neutral population structure) across 
many independent populations. Thus far, the majority of studies to 
apply GEA in tree species have been targeted at candidate genes 
and surveyed fewer than 350 loci (Keller, Levsen, Olson, & Tiffin, 
2012; Nadeau, Meirmans, Aitken, Ritland, & Isabel, 2016; Rellstab 
et al., 2016; Wang, Wang, Xia, & Su, 2016) though three other stud-
ies using larger numbers of loci are presented in this journal issue 

(Godbout et al., 2019; Ingvarsson & Bernhardsson, 2019; Mahony 
et al., 2019).

Building on the assumption that GEA captures an important 
component of locally adaptive allelic variation, especially if based on 
genome-wide markers, we may extend it to rapidly assess local ad-
aptation and adaptive potential within populations. The principal be-
hind this approach is the detection of discordance between genotype 
and environment, in certain populations, as an indicator of reduced 
local adaptation and vulnerability to future demographic decline 
(Alberto et al., 2013). In a previous study, Rellstab et al. (2016) devel-
oped a model to estimate the average change in allele frequency at 
environmentally associated loci that would be required to respond to 
projected future environmental conditions. They based this estimate 
on the allele frequency changes that would maintain the present-day 
associations between genotype and environment and termed this 
mismatch, the risk of nonadaptedness (RONA). For clarity, we term 
this “future risk of nonadaptedness” (f-RONA) and comment that 
rather than a “risk” this is a forecast, but for consistency, we maintain 
the same terminology in this manuscript. This approach to estimating 
adaptation has many simplifying assumptions. Environmental varia-
tion in nature is complex, as are the mechanisms by which organisms 
adapt to them, but as Funk et al. (2019) argue, any available evidence 
may improve conservation decision-making.

Here, we extend the work of Rellstab et al. (2016) to explicitly 
define c-RONA, the “current risk of nonadaptedness,” that is the av-
erage change in allele frequency at climate-associated loci required 
to match our estimate of the optimum for current climatic conditions 
(for a given environmental factor). Current risks are likely to be par-
ticularly important for species that are already declining due to cli-
mate change and have small isolated populations. Furthermore, we 
extend the univariate RONA model to a multi-locus analysis of ge-
nome-wide markers and use best linear unbiased prediction (BLUP) 
to improve our estimate of the effect of each locus.

In populations where c-RONA is high, local genotypes would not 
match local environmental variables as expected. Therefore, a possible 
management intervention is to use AGF to introduce more appropriate 
alleles or adjust population allele frequencies. Here, AGF is defined as 
the managed movement of individuals or gametes between popula-
tions, from source populations that have been selected with the aim of 
accelerating adaptation, so that it is faster than would occur by passive 
natural dispersal alone (Aitken & Whitlock, 2013). This AGF strategy 
could be used to inform sourcing of seed stock for reforestation pro-
grammes (Boshier et al., 2015) and mitigate maladaptation to future 
climate (Aitken & Bemmels, 2016; Havens et al., 2015; Jin et al., 2016). 
Importantly, only modest translocation of genotypes may enhance ad-
aptation by introducing genetic variation upon which selection can act 
to further refine local allele frequencies (Bay et al., 2017; Pavlova et 
al., 2017). Conversely, such interventions could have negative effects 
(i.e., outbreeding depression) if they cause gene flow between popula-
tions with undetected adaptive differentiation (Frankham et al., 2011; 
Pavlova et al., 2017). We note that where target populations are small, 
maladapted and dominated by drift, AGF is equivalent to genetic res-
cue (see Aitken & Whitlock[, 2013] for a detailed review).
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If AGF is to be effective, there must be appropriate populations 
from which to source migrants. Such populations might be found to-
wards the species’ retreating range edge or other locations where 
environmental conditions are closer to those anticipated in the 
future (Olson et al., 2013). To design a sampling strategy that en-
compasses both environmental gradients and declining range edge 
populations threatened by environmental change, we can use envi-
ronmental niche models (ENMs; Maguire, Nieto-Lugilde, Fitzpatrick, 
Williams, & Blois, 2015). ENMs project the distribution of species’ 
ranges under current and future climate scenarios based on observa-
tion data and can guide effective sampling (Elith & Leathwick, 2009). 
ENMs are also an established tool for conservation practitioners 
seeking to understand major climatic selection pressures and pro-
jected range shifts for threatened species, but often lack integration 
and comparison with genomic assays of local adaptation (Hällfors et 
al., 2015; Razgour et al., 2019).

Here, we conduct GEA and ENM analysis of wild populations of 
dwarf birch (Betula nana), for which we have field observation and 
genome-wide population genetic data. In the UK, dwarf birch is a 
nationally scarce montane tree that has experienced an accelerated 
decline in recent decades, likely due to the combined impact of an-
thropogenic climate change and moorland management that permits 
over-browsing and burning (Aston, 1984; Borrell, Wang, Nichols, & 
Buggs, 2018; Wang et al., 2014; Zohren et al., 2016). Dwarf birch, like 
many tree species, is the focus of a conservation programme to re-
store populations, delimit management units and prioritize the protec-
tion of important genetic diversity (Koskela et al., 2013). Germplasm 
collection from central Scottish Highland populations is already un-
derway for reintroduction to other parts of the species former range 
(J Borrell pers. obs.). Previous research by our group has found that 
despite extensive fragmentation, most populations of dwarf birch in 
the UK contain diversity comparable to that of large, unfragmented 
Scandinavian populations (Borrell et al., 2018). Nevertheless, we con-
cluded that this diversity has become increasingly partitioned among 
populations. In other words, much of the adaptive diversity in dwarf 
birch is still extant in the UK, but due to restricted gene flow and 
dispersal, marginal populations may be maladapted due to a failure to 
track environmental change, or by drift of adaptive alleles away from 
their optimum frequency. There is limited potential for naturally oc-
curring gene flow to enhance future adaptation in many populations.

In species subject to conservation management such as dwarf 
birch, evolutionary processes have sometimes been overlooked, de-
spite the importance of adaptation to species persistence (Eizaguirre 
& Baltazar-Soares, 2014; Fitzpatrick & Keller, 2015). Therefore, 
the adaptive potential of populations may be underrepresented in 
conservation prioritization strategies (Funk et al., 2019; Harrisson, 
Pavlova, Telonis-Scott, & Sunnucks, 2014). For example, where ge-
netic diversity information is available to conservationists, metrics 
that score populations on neutral genetic distinctiveness, such as 
the Shapley index, are often used (Haake, Kashiwada, & Su, 2007; 
Isaac, Turvey, Collen, Waterman, & Baillie, 2007; Volkmann, Martyn, 
Moulton, Spillner, & Mooers, 2014). However, there is no guarantee 
that neutral and adaptive diversity will be correlated (Bonin, Nicole, 

Pompanon, Miaud, & Taberlet, 2007), and indeed, approaches de-
signed solely to promote or conserve neutral diversity may be harm-
ful (Reed & Frankham, 2003; Weeks, Stoklosa, & Hoffmann, 2016). 
Therefore, evaluating adaptive diversity, rather than using more es-
tablished metrics of genetic diversity, should improve the prioritiza-
tion decisions in species management, though see Kardos and Shafer 
(2018) for potential pitfalls.

To explore potential management strategies for dwarf birch, 
that takes into account local adaptation and evolutionary potential, 
we first characterize the species’ range using ENMs under present 
and projected future climate scenarios. We evaluate these ENMs by 
assessing whether populations on the margins of the inferred dis-
tribution had lower scores for phenotypic and fitness proxies for 
local adaptation. Second, we use GEA to survey putative adaptive 
loci across the species’ range and estimate c-RONA to identify pop-
ulations with a discordance between genotype and environment. 
The combined ENM and GEA data present an opportunity to test 
the hypothesis that limiting environmental variables (which have 
higher discriminatory power in an ENM) have more genomic loci as-
sociated with them in GEA, perhaps as a result of stronger selection 
for adaptation (an alternative would be that certain variables limit 
species’ ranges precisely because they lack genetic adaptation). We 
provide preliminary evidence in support of this hypothesis in dwarf 
birch. Third, we evaluate our estimates of nonadaptedness (c-RONA) 
of dwarf birch populations against the Shapley index, an existing 
conservation prioritization most often applied to neutral markers. 
Finally, we illustrate a strategy of AGF to maximize adaptive genetic 
diversity and hence sustain the adaptive potential of British dwarf 
birch populations. We discuss the advantages and limitations of this 
approach in the context of managing dwarf birch and other plants 
exposed to rapid environmental change.

2  | METHODS

2.1 | Environmental niche modelling

To determine the environmental variables influencing the present 
and future distribution of dwarf birch in the UK, we developed an 
ENM based on 763 resampled fine-scale (≤1 km) records from the 
period 1960 to present. Records were sourced from national da-
tabases, conservation partners and fieldwork observations (see 
Borrell et al., 2018). Nineteen bioclimatic layers were obtained 
from the WorldClim database (www.world​clim.org) at 1km resolu-
tion (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), for the pe-
riod 1960–1990, including 11 temperature and eight precipitation 
derived variables reflecting annual trends, seasonality and limiting 
environmental factors. High-resolution elevation data were used to 
compute slope and aspect terrain characteristics using the Raster 
package (Hijmans & Etten, 2012) in R software (R Development 
Core Team, 2014). These variables are indicators of soil moisture, 
erosion, wind and solar radiation (Hoersch, Braun, & Schmidt, 
2002). To avoid overfitting, we removed multiple highly correlated 

http://www.worldclim.org
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variables (correlation coefficient >0.7), retaining 10 for analysis 
(preferring less derived, e.g., annual mean temperature, rather than 
monthly or quarterly values; Table 1; Figure S1). Elevation was ex-
cluded due to its high correlation with temperature (Parolo, Rossi, & 
Ferrarini, 2008). Temperature was retained because it captures the 
projected change in climate change models, whilst elevation does 
not. All retained variables were standardized to a mean of zero and 
unit variance. Eight further data sets consisting of the same retained 
variables were generated under four representative concentration 
pathways (RCP) defined by the Intergovernmental Panel on Climate 
Change Fifth Assessment (IPCC, 2014a) at each of two future time 
points (2045–2065 and 2081–2100). These projections allow esti-
mation of future temperature and precipitation values across the 
study area derived from the Community Climate System Model 
(Gent et al., 2011; Table S1).

The ENMs were generated using MaxEnt (Phillips, Anderson, & 
Schapire, 2006) within the dismo package (Hijmans, Philips, Leathwick, 
& Elith, 2011). We performed 50 randomly subsampled replicate runs 
with 25% of observations retained for cross-validation. Models were 
further evaluated using a binomial test of omission rate and area 
under the receiver operating characteristic curve (AUC). A species 
occurrence threshold to assess changes in occupied area was defined 
by “maximum training sensitivity plus specificity,” which optimizes 
the trade-off between commission and omission errors (Liu, Newell, 
& White, 2016). Rank and percentage contribution of environmental 
variables is reported here, as these have been demonstrated to cap-
ture biologically important factors (Searcy & Shaffer, 2016).

2.2 | Phenotypic data and habitat suitability 
projections

We identified 29 dwarf birch populations that encompass the ex-
tant UK range (Table 2; Figure S2). To test the performance of our 
ENM, we collected extensive phenotypic measurements of traits 
related to reproductive output and fitness in 20–30 individuals per 
population in June-August 2013. These included the following: the 
number of male and female catkins, plant area, plant height and di-
ameter of the largest stem. Cambial tissue samples were retained 
for genetic analysis. A subset of 18 populations was also tested for 
seed viability in germination experiments, a fitness proxy relevant 
to population persistence (Alsos, Spjelkavik, & Engelskjøn, 2003). 
Seed were collected in late summer, over-wintered at 4°C and then 
kept in moist conditions at 18–20°C with a 14-hr photoperiod for 
60 days the following spring. For nine of these populations, 100-day 
survival of seedlings during the following spring was measured (see 
Supplementary Materials for details).

To assess change in habitat quality across the study area, we first 
plotted the ENM-derived habitat suitability index (HSI) estimates for 
all populations under current and future conditions. Second, ENM 
performance was assessed using a generalized linear model with a 
quasipoisson error distribution to test for a relationship between 
present time HSI estimates and mean population catkin counts. We 

also tested for a relationship between HSI (explanatory variable) 
and mean germination rates (response variable) using a quasibino-
mial error distribution. Here, we are explicitly testing the hypothesis 
that plants displayed greater reproductive output in locations with a 
higher ENM-derived HSI.

2.3 | RAD sequencing

The genetic samples used in this study are a subset of those de-
scribed in Borrell et al. (2018). Briefly, DNA was extracted from 130 
individuals (Table 2) and submitted to Floragenex (Oregon, USA) for 
100 bp single-end RAD sequencing with the enzyme PstI. Raw reads 
were filtered using Stacks v1.35 (Catchen, Hohenlohe, Bassham, 
Amores, & Cresko, 2013) and aligned to the dwarf birch genome, 
retaining only reads that align uniquely (Wang et al.., 2013) using 
Bowtie2 (Langmead & Salzberg, 2012) and the ref_map.pl  pipeline. 
SNPs were called with a minimum depth of 5, the bounded model 
and a minimum log likelihood of −20, with corrections made using 
rxstacks. Finally, we filtered for loci present in ≥8 populations and a 
minor allele frequency >0.05.

2.4 | Genomic signatures of local adaptation

We first used BayeScan (Foll & Gaggiotti, 2008) to compare allele 
frequency differences among populations and identify FST outlier 
loci, so that these could be excluded for generating a null covariance 
matrix for Bayenv2. Analysis was performed with 50,000 iterations 
thinned every 10, with 20 pilot runs, a burn-in of 50,000 iterations 
and other parameters at default. Whilst FST outliers are candidate 
loci of adaptation, they can also emerge because of selection due to 
deleterious alleles, hybrid zones and historical demography (Bierne, 
Roze, & Welch, 2013). Thus, relaxed BayeScan parameters allowed 
us to screen outlier loci prior to GEA analysis in Bayenv2 (Günther 
& Coop, 2013).

Bayenv2 incorporates neutral genetic structure using a covariance 
matrix based on neutral markers and attempts to identify correlations 
between outliers and environmental gradients, potentially reducing 
false positives (De Mita et al., 2013). Based on recommendations in 
François, Martins, Caye, and Schoville (2016), to further minimize false 
positives, we initially excluded loci detected in BayeScan to compute 
a null covariance matrix of relatedness between populations, over 
100,000 iterations and five independent runs. We then tested all loci 
(including those initially identified by BayeScan) under an alternative 
model where allele frequencies are determined by a combination of 
the covariance matrix and an environmental variable. We performed 
our analysis independently across all environmental variables, with 
the expectation that correlated predictors would return subsets of the 
same markers. The posterior probability that a locus is under selection 
across each independent environmental variable was assessed using 
Bayes factors (BF), with log10 posterior odds ratio values >1 defined 
as strong support (Jeffery, 1961). We averaged BFs over independent 
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runs as recommended by Blair, Granka, and Feldman (2014), and fol-
lowing Günther and Coop (2013), we retained loci as good candidates 
if, in addition to a high BF, they also fell in the top 10% of Spearman 
correlation coefficient values, to further reduce false positives. For 
comparison, we also independently tested for signatures of local ad-
aptation using redundancy analysis (RDA; Forester, Lasky, Wagner, 
& Urban, 2018; Rellstab et al., 2015), (see Supplementary Materials) 
though we consider only the candidates identified using Bayenv2 in 
subsequent analyses.

2.5 | Neutral and adaptive population structure

To evaluate population structure, pairwise population FST was 
computed in Arlequin v3.5.2 (Excoffier & Lischer, 2010), and per-
formed separately for putative neutral and adaptive loci identified 
through GEA analysis using a method similar to that of Candy et al. 
(2015).

2.6 | Gene expression

To provide an additional line of evidence on the activity of our candi-
date adaptive loci, we extracted up to 10,000 bp flanking each side of 
the candidate locus from the B. nana reference genome and searched 
for these sequences in an RNA expression database using dwarf birch 
tissues derived from our genome reference plant under glasshouse 

conditions (Wang et al., 2013). Briefly, RNA was extracted from fresh 
dwarf birch leaves and flowers using a modified RNAeasy Plant Mini 
Kit (Qiagen), incorporating additional CTAB and phenol–chloroform 
steps to generate 100 bp paired-end reads with an average insert size 
of 280 bp (for full methods see Zohren, 2016). These were mapped to 
the reference genome using Trinity software (Grabherr et al., 2013).

2.7 | Maladaptation under present and 
future conditions

We carried out RONA analysis on the nine standardized environ-
mental variables that were associated with six or more candidate 
loci, allocating each locus to the single environmental variable with 
the largest Bayes factor (thereby avoiding double-counting a locus 
in the c/f-RONA calculations below). We estimated the vector of 
effect sizes, β, in which each value corresponds to a locus, using R 
package rrBLUP (Endelman 2011). In this analysis, the vector of al-
lele frequencies f for each population was used as the predictor of 
the environment in that location. The sum of fβ gives an estimate of 
the environment (the value of the environmental variable) to which 
the population would be best adapted. The residual deviation of the 
observed value from this expectation is a measure of the deviation 
from the optimum environment for that population (c-RONA) and 
is proportional to the change in allele frequency that would be re-
quired to match the population to its local environment (weighted 
by β). This measure is therefore analogous to those employed by 

TA B L E  1   Contribution of retained environmental variables to the dwarf birch environmental niche model (ENM) and the number of 
environmentally associated loci detected

Variable Description Correlated variablesa
ENM per cent 
contributionb GEA loci

GEA loci (inc. 
cor.)c

AMTemp Annual mean temperature MTColdQ, MTColdM 34.9 17 64

MTWarmM Max temperature of warm-
est month

MTWarmQ 22.1 2 6

MDR Mean diurnal range — 14.8 71 71

ISO Isothermality — 14.6 11 11

APrec Annual precipitation PColdQ, PWetM, PSeason, PWetQ, 
PWarmQ, PDryM, PDryQ

7.3 2 21

Slope Slope — 2.8 7 7

MTDryQ Mean temperature of driest 
quarter

— 1.6 7 7

TS Temperature seasonality ATempR 1.4 1 3

MTWetQ Mean temperature of wet-
test quarter

— 0.3 7 7

Aspect Aspect — 0.2 4 4

aCorrelated variables include mean temperature of the coldest quarter (MTColdQ); minimum temperature of the coldest month (MTColdQ); mean 
temperature of warmest quarter (MTWarmQ); precipitation of coldest quarter (PColdQ); precipitation of wettest month (PWetM); precipitation 
seasonality (Pseason); precipitation of wettest quarter (PWetQ); precipitation of the warmest quarter (PWarmQ); precipitation of driest month 
(PDryM); precipitation of driest quarter (PDryQ); and annual temperature range (ATempR). 
bPercentage contribution is calculated as the increase in regularized gain added to the contribution of the corresponding variable over each iteration 
of the model. 
cTotal number of SNPs associated with both the retained variable and related highly correlated variables that were excluded from the ENM analysis. 
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Rellstab et al. (2016) and Pina-Martins, Baptista, Pappas, and Paulo 
(2018), which quantify the mismatch between genotypes and envi-
ronment in terms of allele frequencies. We combined information 
across variables by calculating the mean of the absolute residuals. 
Similarly, we could calculate the difference from the projected val-
ues of the environmental values under each climate change scenario 
to estimate f-RONA (Figure 1).

2.8 | Conservation prioritization

We compared the magnitude of c-RONA across dwarf birch popula-
tions with the Shapley index (Haake et al., 2007). The Shapley index 
prioritizes populations based on evolutionary isolation and contribu-
tion to overall diversity based on pairwise differentiation. Several 

similar metrics are widely used for conservation management 
(Collen et al., 2011; Gumbs, Gray, Wearn, & Owen, 2018; Jetz et al., 
2014). Here, we used the method outlined in Volkmann et al. (2014), 
which maximizes within-species genetic diversity using a network 
approach implemented in NeighborNet (Bryant & Moulton, 2004; 
Huson & Bryant, 2006). We used linear regression to test for a rela-
tionship between absolute c-RONA values and the Shapley index for 
neutral and adaptive loci.

2.9 | Simulated assisted gene flow

For each environmental variable, and for each population in the 
study, we identified the population most appropriate for AGF based 
on the match between the local environment and the sum of fβ. 

TA B L E  2   Summary information for 29 dwarf birch populations, including the number of genotyped and phenotyped individuals, habitat 
suitability (HSI)

Location Pop. Lat. Long. Elev. (m) Genotyped Phenotyped HSI c-RONA ShapleyNEUTRAL

Ben Loyal BL 58.4 −4.4 300 6 30 0.38 0.194 0.011

Meall Odhar MO 58.16 −4.42 404 6 29 0.45 0.168 0.006

Beinn Enaiglair BE 57.79 −5.01 480 5 27 0.37 0.479 0.01

Luichart LH 57.72 −4.9 268 6 29 0.54 0.131 0.008

Ben Wyvis W BW 57.65 −4.6 482 5 30 0.77 0.149 0.01

Ben Wyvis Ea DG 57.65 −4.56 472 - 21 0.75 — —

Loch Meig ME 57.53 −4.8 450 6 26 0.57 0.128 0.005

Glen Cannich GC 57.34 −4.86 455 6 31 0.51 0.045 0.027

Faskanylea FS 57.33 −4.85 486 - 17 0.66 — —

Dundreggan Excl. DE 57.23 −4.75 448 6 30 0.81 0.174 0.009

An Suidhe AS 57.22 −4.81 661 2 17 0.77 0.219 0.119

Beinn Bhreac BB 57.21 −4.82 500 6 33 0.66 0.366 0.008

Portclair PC 57.2 −4.64 478 6 38 0.54 0.081 0.008

River Avon AV 57.14 −3.49 549 6 28 0.59 0.306 0.01

Monadhliaths MD 57.06 −4.31 712 6 6 0.49 0.222 0.01

Meall an tslugain SL 57.05 −3.45 633 6 31 0.59 0.085 0.035

Loch Muick E MU1 56.92 −3.2 492 6 31 0.17 0.223 0.006

Loch Muick W MU2 56.92 −3.21 517 6 16 0.1 0.218 0.008

Loch Laggan LG 56.89 −4.54 364 6 33 0.35 0.064 0.007

Loch Loch LL 56.85 −3.65 673 6 32 0.57 0.106 0.005

Ben Gullabin BG 56.84 −3.47 594 1 7b 0.58 0.194 0.422

Loch Rannoch LR 56.76 −4.42 499 6 28 0.23 0.097 0.008

Rannoch West RW 56.65 −4.79 306 6 32 0.61 0.218 0.007

Rannoch Moor B RB 56.6 −4.74 304 6 10 0.51 0.169 0.008

Rannoch Moor Aa RA 56.6 −4.74 295 - 27 0.51 — —

Lennox LX 55.97 −4.28 164 2 10 0 0.241 0.102

Emblehopeb EM 55.24 −2.48 448 1 1b 0.06 0.254 0.155

Spadeadamb SA 55.05 −2.57 275 1 1b 0.01 0.321 0.35

Teesdaleb TD 54.65 −2.28 499 2 2b 0.06 0.291 0.133

aPopulations not submitted for genetic analysis, but are considered in the comparison of HSI and reproductive output. 
bPopulations were exhaustively sampled. 
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Where several suitable populations were identified within the confi-
dence interval of our regression, we selected the location geographi-
cally closest to the recipient population, since there could be local 
adaptation to undetected environmental variables (cf. Boshier et al., 
2015).

2.10 | Method validation and ENM-GEA comparison

To validate our model, we tested the hypothesis that higher c-
RONA values would be associated with the reduced performance 
of fitness proxies. Therefore, we tested for a correlation between 
population c-RONA values for each environmental variable, or their 
interactions, and (a) square root transformed catkin counts and (b) 
germination rate across study populations. Finally, we tested for a 
correlation between the relative importance of environmental vari-
ables identified in our ENM and the number of GEA loci associated 
with each variable.

3  | RESULTS

3.1 | Environmental niche models

The dwarf birch ENM was well parameterized with high mean 
test AUC (0.946 ± 0.008) and a low mean test omission rate (0.09, 
p  <  .001) at a logistic threshold of occurrence of 0.193. Four 

variables together contributed >85% to the predictive model per-
formance including annual mean temperature (34.9%) and maxi-
mum temperature of the warmest month (22.1%) (Table 1). The 
resulting model is highly concordant with qualitative field observa-
tions and inspection of variable curves showed biologically plau-
sible responses (Figure S3). Future projections show significant 
declines across the species’ range with persistent populations re-
stricted to areas of higher elevation (Figures 2 and S4). Excluding 
other anthropogenic pressures, under the most severe scenario 
(RCP8.5, 2081–2100), suitable habitat may be reduced to ~1% of 
the current extent (Table S2).

3.2 | Phenotypic data and habitat suitability

Phenotypic data means are reported in Table S3. Germination suc-
cess was assayed in 190 individuals and averaged 7.6% for both years 
with 6.1% 100-day survival (i.e., 80% of those that germinated) with 
substantial variation among populations (Table S4). A single large 
outlier individual (Emblehope) produced an exceptionally large num-
ber of catkins strongly biasing results, thus was excluded from sub-
sequent analysis. Present time HSI estimates for dwarf birch ranged 
from 0.0006 to 0.81 (Table 2), with substantial declines under all 
future scenarios (Figure S4). We found a significant nonlinear posi-
tive relationship between HSI and mean population catkin count 
(F1,26 = 7.50, p = .011) as well as HSI and the proportion of seeds that 
germinated (F1,16 = 9.52, p = .007; Figure 2).

F I G U R E  1   Schematic diagram of current and future risk of nonadaptedness (c-RONA and f-RONA), presented on a genotype–
environment association (GEA) plot, where genotypes are BLUP estimates of population polygenic allele frequency for 17 loci and the 
environmental predictor is annual mean temperature. c/f-RONA is the average change in allele frequency required to match our estimated 
optimum for current environmental conditions. Where RONA is large, we show two possible adaptation strategies; (a) assisted migration 
indicates the change in environmental conditions required for a population to match a genotype–environment optimum. This could take 
the form of a translocation of individuals to a location with a more suitable climate (e.g., a higher elevation). (b) Assisted gene flow (which in 
small populations is equivalent to genetic rescue) proposes movement of genetic material from a donor population with allele frequencies 
predicted to be better suited to the environmental conditions at the focal population. We show that the allele frequency change is likely to 
be larger under an example future climate scenario of 1°C warming. Blue and red bands indicate suitable candidate donor populations for 
assisted gene flow under current and future scenarios, respectively
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3.3 | RAD sequencing and genotype–environment 
associations

After quality control, RAD sequencing produced 173,460,998 reads, 
of which 79.1% aligned to the B. nana genome. Subsequently, 73.2% 
of aligned reads mapped to a single unique position. Three sam-
ples were excluded due to low coverage. After filtering, we retained 
14,889 SNPs over 8,727 contigs. These contigs together cover ap-
proximately a third of the dwarf birch genome assembly. BayeScan 
identified 382 putative outlier SNPs at a conservative false discov-
ery rate of 0.2, meant that we were more likely to remove false 
positives than leave false negatives. These were excluded during 
the generation of the Bayenv2 null covariance matrix. Subsequent 
GEA analysis detected 267 highly significant locus–environment 

associations, encompassing 303 SNPs (Table S5), with a single 
SNP from each locus retained for subsequent analysis. The most 
frequent associations were between mean diurnal range and 71 
loci, and annual mean temperature and 64 loci, whereas variables 
such as temperature seasonality and mean temperature of driest 
or wettest quarters had comparatively few associated loci. Just six 
loci were in common between BayeScan and Bayenv2 detection 
methods, and BayeScan candidate loci did not report significantly 
higher BF scores compared to the data set as a whole. A compari-
son between Bayenv2 and RDA found highly significant correlation 
(Pearson's r(6) = 0.84, p =  .008) between methods, in the number 
of genotype–environment associations identified for each environ-
mental variable (Table S6; Figure S5) suggesting that both methods 
are identifying a similar genomic pattern of adaptation.

F I G U R E  2   (a) Environmental niche 
model of dwarf birch habitat suitability 
(HSI) under current environmental 
conditions, black points indicate species 
distribution records and red points 
indicate sampled locations included in 
this study. (b) Regression of phenotypic 
fitness traits against the derived habitat 
suitability index. (c) Dwarf birch habitat 
suitability index projections under future 
climate scenarios
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3.4 | Neutral and adaptive population structure

Pairwise FST values between populations ranged from 0.000 to 0.701 
for putative neutral markers (mean = 0.100, n = 14,889) and 0.000–
0.260 for putative adaptive markers (mean  =  0.079, n  =  303). We 
found more significant pairwise FST values for adaptive markers (92 of 
312 pairwise comparisons) than for neutral markers (49 of 312 pair-
wise comparisons; Table S7). We note particularly that neutral pair-
wise FST was upwardly biased by very small range edge populations 
(LX, EM, SA, BG and TD). If these populations are excluded, mean 
pairwise neutral FST is 0.069 and mean pairwise adaptive FST is 0.076.

3.5 | Expression of putative adaptive loci

The 267 loci mapped to 185 unique scaffolds in our reference genome. 
Based on RNAseq data, 35 candidate regions showed evidence of gene 
expression in flower tissue (19%), 15 showed gene expression in leaf 
tissue (8%) and 13 showed gene expression in both (7%). In compari-
son to the overall SNP data set, we found that both flower (X2 = 23.14, 
p < .001) and leaf (X2 = 8.59, p = .003) expressed sequences are signifi-
cantly over-represented among putatively adaptive loci.

3.6 | Potential for adaptation and conservation 
prioritization

Mean population c-RONA based on environmentally associated SNPs 
under present climate was 0.22 (±0.10), ranging from 0.07 (SE ± 0.06) 
at Glen Cannich to 0.39 (±0.24) at Beinn Enaiglair on the Western pe-
riphery of the species range (Tables 2 and S8). BLUP estimates for all 
variables are presented in Figure S6. Under future climate scenarios, 
mean population f-RONA was greater than c-RONA, which increased 
from 0.22 (±0.10) to a maximum of 0.27 (±0.11) under scenario RCP8.5 
(Table S9), with substantial variation across populations and projec-
tions. We found positive correlation between c-RONA and the Shapley 
index for neutral genetic diversity (Pearson's r(24) = 0.44, p = .023), de-
spite a number of outliers as shown by the low correlation coefficient, 
but no such pattern for putative adaptive genetic diversity (Pearson's 
r(24)  =  0.004, p  =  .983; Figure 3). The Shapley index for neutral di-
versity also strongly favoured a small number of relict and range edge 
populations dominated by drift (e.g., BG, SA, see Borrell et al., 2018), 
whereas for adaptive diversity, the range of values was narrower sug-
gested more even support across populations. Therefore, the Shapley 
index and our metric for maladaptation (c-RONA) provide very differ-
ent ranking for conservation value (Table 2). A consensus ranking of 
populations is provided in Table S10.

3.7 | Simulating assisted gene flow

For each population across each environmental variable, we iden-
tified the geographically closest “donor” population with an allele 

frequency that would reduce c-RONA (within confidence limits) at 
the “recipient” site (Figures 4 and S7). This strategy proposes a pat-
tern of dispersal from the centre of the distribution towards the pe-
riphery, particularly at the southern range edge, though there are 
exceptions such as transfer from the northern to southern range 
edge (e.g., MTColdQ, Figure S7). In some cases, the analysis does not 
indicate the need for AGF in particular populations, such as those 
at the centre of the species distribution which appear to be well 
matched to their environment (i.e., locally adapted).

3.8 | Method validation and ENM-GEA comparison

If c-RONA values do indeed quantify the degree of maladaptation, 
they should be negatively correlated with independent meas-
urements of population fitness. The c-RONA values for annual 
mean temperature (AMTemp) were significantly negatively corre-
lated with mean population catkin counts (F1,23 = 5.84, p =  .025; 
Figure 5a) (we found a similar relationship for c-RONA averaged 
across all environmental variables, data not shown). The interac-
tion of c-RONA for annual mean temperature and mean diurnal 
range correlated with germination rate (F11,14  =  8.07, p  =  .004). 
Finally, in a comparison of ENM and GEA methods, we found a 
significant correlation between the number of genotype–environ-
ment associations and the percentage contribution of environ-
mental variables defining species range in our ENM (r(8)  =  0.69, 
p = .027; Figure 5b).

4  | DISCUSSION

Environmental niche modelling projects that the decline of dwarf 
birch across the UK is likely to continue and become increasingly se-
vere, with almost total range loss possible by the end of the century 
under the highest emission scenarios. We found that catkin pro-
duction and seed germination are positively correlated with ENM 
projections of habitat suitability. This suggests lower reproductive 
fitness of plants in populations with lower HSI. We cannot fully 
exclude the possibility that low seed germination rates are partly 
due to high dormancy, but it is not obvious in this context that dor-
mancy would increase fitness. Temperature was particularly impor-
tant to our ENM projections, and previous work has shown reduced 
production of germinable seeds by dwarf birch in warmer climates 
(Alsos et al., 2003). In future, an overall decline in habitat suitability 
across the species’ British range is likely to further reduce repro-
ductive fitness and subsequent population persistence.

Genome-wide analysis identified 267 significant genotype–envi-
ronment associations (0.018 of loci surveyed) across 24 environmen-
tal variables, which is consistent with the number of associations 
identified in similar studies (Abebe et al., 2015; Manthey & Moyle, 
2015; reviewed in Ahrens et al., 2018). These loci were significantly 
more commonly found within 10 kb of a gene annotated on our ref-
erence genome sequence with cDNA evidence for expression than 



170  |     BORRELL et al.

were SNP loci that were not identified as candidates, increasing our 
confidence that candidate loci could be involved in phenotypic traits.

We observe that of the four environmental variables that con-
tribute substantially to the dwarf birch ENM (Table 1), three of these 
also account for the largest number of associated loci in the gen-
otype–environment analysis (GEA; Tables 1 and S5). Therefore, in 
a comparison of the two methods, we find significant agreement 

between ENM and GEA results in identifying important environ-
mental variables (Figure 5b). It is not a logical necessity for environ-
mental variables with the largest effects on species range limits to 
show the strongest correlation with allele frequencies. However, it 
is an interesting finding that suggests that we have identified biolog-
ically relevant environmental variables that influence both distribu-
tion and local adaptation of dwarf birch. It would be valuable to test 

F I G U R E  4   Hypothetical plots of 
assisted gene flow (AGF) for dwarf birch 
in the UK. Arrows denote movement 
from donor to recipient populations (red 
circles). Blue populations report an allele 
frequency close to predicted optimums, 
and thus, introduction of novel diversity 
does not decrease c-RONA and is not 
required. Base maps show (a) annual 
mean temperature (AMTemp) and (b) 
mean diurnal range (MDR) environmental 
variables

F I G U R E  3   (a) Barplot of Shapley index for neutral and adaptive loci across UK Betula nana populations, ordered by latitude with 
northernmost populations to the left. Inset plots show (b) the relationship between the log-transformed Shapley index and (c) the current 
risk of nonadaptedness (c-RONA) for neutral and adaptive loci, respectively
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for this pattern in other species, in the context of genetic models of 
species range limits (Polechová, 2018; Polechová & Barton, 2015).

We surveyed the allele frequencies of these GEA loci across pop-
ulations to estimate c-RONA. As expected, we find the populations 
which we have identified as having a poor match between genotype 
and environment (high c-RONA) are particularly small or isolated, 
and those on the margins of the species’ distribution. This result is 
consistent with reconstruction of demographic history and genetic 
differentiation by Borrell et al. (2018), where we showed that pop-
ulations with a census size of less than 10 (LX, EM, SA, BG and TD) 
had unusually high levels of FST. In this previous study, we estimated 
the maximum likelihood value of local FST relative to the regional 
mean, using the multinomial Dirichlet likelihood function proposed 
by Balding and Nichols (1995) and evaluated the influence of sam-
ple size by estimating ML-FST across all loci from a single individual 
drawn from each population (Borrell et al., 2018). From this, we con-
cluded that these small populations were suffering from severe ge-
netic drift. Mean pairwise FST for these small populations is 0.331 for 
neutral markers and 0.116 for putative adaptive markers, whereas 
for the remaining 21 populations, mean pairwise FST is 0.069 for neu-
tral markers and 0.076 for adaptive markers. This suggests that in 
healthy populations, there is more differentiation at loci under selec-
tion, as expected. We also found that c-RONA estimates for annual 
mean temperature were negatively correlated with mean population 
catkin counts and the interaction of c-RONA for annual mean tem-
perature and mean diurnal range correlated with germination rate. 
This suggests lower fitness due to maladaptation. Though we cannot 
exclude the possibility that reduced reproductive output could be an 
adaptive response to a poorer environment, given the short times-
cales involving a handful of generations, this seems unlikely.

Based on our inference that populations with low c-RONA are 
more locally adapted, we then performed a comparison between 
c-RONA and the Shapley index based on neutral diversity. We find 
that populations with the highest inferred conservation value (high-
est Shapley score for neutral loci) were also those with the greatest 
deviation from optimum allele frequencies (highest c-RONA; Table 2; 
Figure 3). This implies that it may be inappropriate to use the Shapley 

index (and by extension, other similar metrics) based solely on neu-
tral diversity for conservation prioritization, since this strategy 
would inadvertently favour poorly adapted populations that display 
a high degree of unique variation—in the case of dwarf birch, this is 
most likely due to genetic drift. Instead, we propose a conservation 
framework where populations with a low c-RONA and high Shapley 
index based instead on adaptive diversity are prioritized. This would 
maximize both local adaptation and adaptive diversity, supporting 
future adaptive potential (Table S9).

To illustrate a possible application for this prioritization frame-
work, we sought to identify putative dwarf birch donor populations 
that possess adaptive alleles at frequencies that would display reduced 
c-RONA in a recipient population (Figures 4 and S7). We chose to 
demonstrate our approach using a current climate reference, as it could 
be considered more conservative, though we note that planning for 
future climate may have a better chance of long-term success. In this 
example, our hypothetical AGF strategy involves a substantial translo-
cation of genotypes, particularly from the centre of the range towards 
the periphery. Whilst controversial, AGF may be advantageous, as it 
can introduce or increase the frequency of preadapted alleles to allow 
more rapid adaptation to track changing climate, alleviate inbreeding 
depression or increase adaptive potential (Frankham, 2015; Prober et 
al., 2015); and in the process provide a demographic safeguard by aug-
menting population size (Hodgins & Moore, 2016). In practice, imple-
mentation of AGF is likely to take the form of composite provenancing, 
whereby genetic material from a combination of source populations 
is used (Breed, Stead, Ottewell, Gardner, & Lowe, 2013; Hodgins & 
Moore, 2016). This may seek to target adaptive diversity across multi-
ple important environmental variables from across the species range, 
sometimes irrespective of the distance to the source population and 
the “local is best” paradigm (Boshier et al., 2015; Havens et al., 2015; 
Jones, 2013).

Our suggested approach has some limitations: RADseq only iden-
tifies variation in a subset of the genome (Lowry et al., 2016) possibly 
missing important adaptive loci (Harrisson et al., 2014). This concern 
may be addressed in future by whole-genome population sequencing 
and a better understanding of the limiting returns from typing more 

F I G U R E  5   (a) The relationship 
between c-RONA (for AMTemp) and mean 
population catkin count. (b) Correlation 
between the number of loci identified 
in genotype–environment analyses, for 
each environmental variable, and the 
corresponding percentage contribution of 
that variable to the environmental niche 
model
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adaptive loci (e.g., Ahrens et al., 2018). Second, our approach does not 
explicitly account for phenotypic plasticity or the adaptive input from 
new mutations (Chevin & Lande, 2011). More generally, we caution 
against interpreting the statistical association between the allele fre-
quency and the bioclimatic variates (e.g., MDR) as a demonstration that 
the allele in question is linked to a quantitative trait locus with adaptive 
variation for that variable. Rather, the causal environmental variable 
may be unmeasured, but closely correlated with MDR. Finally, we 
highlight that, in our study area, the climate has been changing, albeit 
slowly, for several millennia, with the rate of climate change increas-
ing more recently (Wang et al., 2014). Therefore, the clines identified 
here could represent adaptation to the environment of the recent past, 
rather than the present, and therefore may underestimate the current 
ecological risk. Negative density dependence could also obscure the 
effects of abiotic gradients. In the future, methods to accommodate 
change in the relative importance of environmental variables through 
time (Clark, Gelfand, Woodall, & Zhu, 2014) and nonlinear associations 
(Fitzpatrick & Keller, 2015) are likely to advance our understanding and 
improve estimates of local adaptation in wild populations.

5  | CONCLUSIONS

Estimating the degree of maladaptation in populations as a criterion to 
inform selection of plant material for genetic rescue, composite prov-
enancing or species reintroductions is currently the subject of consid-
erable interest (Gibson, Espeland, Wagner, & Nelson, 2016; Leroy et 
al., 2018), and this is likely to increase in the context of environmental 
change (Aitken & Bemmels, 2016). Here we present an approach to 
permit rapid assessment of local adaptation and future adaptive poten-
tial in wild populations. Importantly, the estimation of maladaptation 
presents a testable hypothesis; specifically, that if an AGF programme 
translocated individuals to a site where they are expected to display 
reduced c-RONA, the response of measurable fitness proxies such as 
catkin production should be positive. In dwarf birch, AGF would have 
to be combined with other management interventions focused on miti-
gating grazing pressure and burning to support natural regeneration, 
with the aim that larger populations eventually support “natural” gene 
flow. Similarly, AGF need not entail translocation of genetic material to 
an existing recipient population in the first instance. Initially, individuals 
of different provenance (and known allele frequencies) could be trans-
located to trial locations and subsequent fitness assessments would 
enable validation of the predicted adaptive potential. Conservationists 
and practitioners would then be in a better position to manage and, 
where appropriate, facilitate adaptation.
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