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Podocytes are a crucial cellular component in maintaining the glomerular filtration barrier,
and their injury is the major determinant in the development of albuminuria and diabetic
kidney disease (DKD). Podocytes are rich in mitochondria and heavily dependent on them
for energy to maintain normal functions. Emerging evidence suggests that mitochondrial
dysfunction is a key driver in the pathogenesis of podocyte injury in DKD. Impairment of
mitochondrial function results in an energy crisis, oxidative stress, inflammation, and cell
death. In this review, we summarize the recent advances in the molecular mechanisms that
cause mitochondrial damage and illustrate the impact of mitochondrial injury on
podocytes. The related mitochondrial pathways involved in podocyte injury in DKD
include mitochondrial dynamics and mitophagy, mitochondrial biogenesis,
mitochondrial oxidative phosphorylation and oxidative stress, and mitochondrial protein
quality control. Furthermore, we discuss the role of mitochondria-associated membranes
(MAMs) formation, which is intimately linked with mitochondrial function in podocytes.
Finally, we examine the experimental evidence exploring the targeting of podocyte
mitochondrial function for treating DKD and conclude with a discussion of potential
directions for future research in the field of mitochondrial dysfunction in podocytes in DKD.
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INTRODUCTION

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), and it affects
nearly 30–40% of patients with diabetes (Alicic et al., 2017). Although remarkable progress in drug
therapy has reduced the rate of diabetes-related cardiovascular complications, the incidence of DKD
and renal failure has continued to rise (Gregg et al., 2014). The principal feature of DKD is an
abnormality of the glomerular filtration barrier (GFB), leading to the leakage of protein (proteinuria),
metabolites and ions into the urine. Proteinuria simultaneously acts as a major, independent risk
factor for the progression of DKD to ESRD. Podocytes form the outer part and ensure the mechanical
stability of the GFB, therefore preventing protein loss into the urine. Podocyte dysfunction is one of
the earliest glomerular morphologic changes and it plays a key role in DKD progression (Wang et al.,
2012; Reidy et al., 2014; Qi et al., 2017).

Mitochondria, the main energy-producing organelles, play a central role in cell survival and
death signalling. Mitochondria respond to pathophysiologic cues by altering their content,
fusion, fission, mitophagy, and the unfolded protein response (UPR). Hyperglycemia is the most
predominant clinical abnormality in diabetes, and it has been viewed as one of the leading risk
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factors for the pathogenesis of DKD. High glucose (HG)
toxicity is mediated by many abnormal glucose metabolic
pathways or signalling pathways that can induce reactive
oxygen species (ROS) overproduction and mitochondrial
damage (Qi et al., 2017). These factors may in turn cause
oxidative stress, inflammation, and cell apoptosis. Indirect
evidence for mitochondrial dysfunction of podocytes
involved in DKD from diabetic models has been
accumulating (Susztak et al., 2006; Wang et al., 2012;
Ayanga et al., 2016; Qin et al., 2020; Wei et al., 2020), and
studies have directly observed mitochondrial dysfunction in
clinical samples from patients with DKD (Sharma et al., 2013;
Czajka et al., 2015). A variety of mitochondrial dysfunction
pathways have been identified as the main molecular causes of
podocyte injury, such as elevated mitochondrial ROS
production (Jha et al., 2016), imbalanced mitochondrial
dynamics (Ayanga et al., 2016) and decreased mitochondrial
biogenesis (Bhargava and Schnellmann 2017; Qin et al., 2020).
Notably, mitochondrial dysfunction induced by glucose

toxicity is usually considered to be an irreversible process
owing to the persistence of epigenetic reprogramming
(Reidy et al., 2014). For example, Chen et al. found
persistent differential methylation at several loci over more
than 16–17 years in a same cohort (Chen et al., 2016).

Podocytes are terminally differentiated with poor capacity to
re-enter the cell cycle and proliferate. Mitochondrial dysfunction
is the major contributor to podocyte injury and death, where an
abnormal energy supply may lead to irreversible cellular injury
(Carney 2015; Arif et al., 2019). Podocytes require a substantial
amount of energy to maintain the complex cellular morphology
of tertiary foot processes. Mitochondrial DNA mutations could
cause podocyte dysfunction and breakdown of the GFB
(Heeringa et al., 2011), and data from animal models support
this hypothesis (Baek et al., 2018; Widmeier et al., 2020). The
above findings support mitochondria involvement in the
pathogenesis of podocyte injury, and regulating podocyte
energy metabolism by targeting mitochondria may promote
podocyte recovery from injury.

FIGURE 1 |Mitochondrial damage of podocytes during diabetic kidney disease. Mitochondria are highly dynamic organelles that respond to pathophysiologic cues
by altering mitochondrial content, fusion, fission, mitophagy, and the unfolded protein response. Fission and fusion complement each other to maintain mitochondrial
morphology, whereas mitophagy selectively clears damaged mitochondria from the network (Nisoli et al., 2004). Excessive mitochondrial fission combined with
decreased mitochondrial fusion is a prototypical feature of podocytes in diabetic kidney disease (Wang et al., 2012; Ayanga et al., 2016; Qin et al., 2019;
Audzeyenka et al., 2021). In addition, the inhibition of mitophagy leads to the lack of a proper mitochondrial turnover in the diabetic kidney (Li et al., 2016; Li W. et al.,
2017). Another key feature of mitochondrial dysfunction of podocytes in diabetic kidney disease is the reduced efficiency of mitochondrial biogenesis (Sun et al., 2014; Li
S.-Y. et al., 2017; Zhang et al., 2018). Under high glucose condition, intracellular ROS production, mitochondrial DNA damage and protein and lipid peroxidation
were enhanced (Tan et al., 2010; Dugan et al., 2013; Coughlan et al., 2016). In addition, mitochondrial protein homeostasis is challenging because of the
continuous exposure of mitochondrial proteins to mitochondrial ROS. Mitochondria within a cell cannot exist in isolation. They interact with endoplasmic reticulum
via the formation of mitochondrial-associated membranes (MAMs). The disturbance of MAMs leads to abnormal intracellular Ca2+ influx, mitochondrial damage,
and apoptosis (Inoue et al., 2019). A combination of the above factors resulted in podocyte injury and the progression of diabetic kidney disease. The podocyte
mitochondria in diabetic condition is illustrated schematically with blue frame and text. DRP1, dynamin-1-like protein; MFNs, mitofusin proteins 1 and 2; ETC,
electron transport chain; HSPs, heat shock proteins; MAM, mitochondria associated ER membrane; NOXs, NADPH oxidases; OPA1, optic atrophy protein 1;
PGC-1α, peroxisome proliferator activated receptor γ coactivator-1α; PINK1, PTEN-induced putative kinase protein 1; ROS, reactive oxygen species; UPR,
unfolded protein response (Created with BioRender.com).
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The regulation of podocyte mitochondrial dysfunction in
patients with DKD has been extensively studied in the past
few years, but few reviews have thoroughly summarized the
progress in this area. In this review, we summarize the latest
research progress on the causes of acquired mitochondrial
dysfunction in podocytes in DKD (Figure 1). A
comprehensive investigation of mitochondrial damage and its
potential regulatory mechanisms could provide a deeper
understanding of podocyte injury and possible therapeutic
options that could have a positive impact on the treatment
of DKD.

MITOCHONDRIAL QUALITY CONTROL
AND PODOCYTES INJURY IN DKD

Mitochondrial Dynamics and Mitophagy
Mitochondria are dynamic organelles that frequently change
their content and distribution within the cell. Dynamic
remodelling of mitochondrial networks by fission, fusion and
mitophagy promotes the maintenance of cellular function and
survival under different physiological conditions. Mitochondrial
fission and fusion processes appear to be accompanied by
mitophagy. Fission and fusion complement each other to
maintain mitochondrial morphology, whereas mitophagy
selectively clears damaged mitochondria from the network
(Nisoli et al., 2004). Of note, mitochondrial fission is thought
to be a central process required for mitochondrial autophagy
whereas mitochondrial elongation through fusion inhibits
mitophagy. Accordingly, mutations in genes encoding fission
and fusion proteins are associated with genetic diseases,
highlighting the importance of sustaining mitochondrial
dynamics (Sheffer et al., 2016; Gerber et al., 2017).

Fission and Fusion
Fission is the division of mitochondria in two by cleavage of the
inner mitochondrial membrane (IMM) and outer mitochondrial
membrane (OMM) and fusion is the combination of two
mitochondria into one by the joining of the OMM and IMM.
Fission is necessary to facilitate the autophagic removal of
damaged mitochondria. Fission and fusion are complementary
processes. Rather than being phenomenological, mitochondrial
dynamics also influence mitochondrial functions and energy
metabolism in many ways.

Mitochondrial fusion is regulated by several proteins,
including mitofusin1 (MFN1) and mitofusin2 (MFN2) located
in the OMM and optic atrophy protein 1 (OPA1) located in the
IMM (Song et al., 2015). MFN1 is necessary for OMM fusion,
whereas OPA1 is important for IMM fusion. Mice deficient in
either MFN1 or MFN2 die in utero in midgestation (Chen et al.,
2003). The precise role of MFN2 in fusion is not yet clear and it
may be involved in the interaction between mitochondria and
other organelles [in particular with the endoplasmic reticulum
(ER)] (de Brito and Scorrano 2008). Fusion allows for content
mixing, thus buffering the effect of damagedmitochondrial DNA,
proteins, lipids and metabolites and maintaining normal
mitochondrial activity (Youle and van der Bliek 2012; Pickles

et al., 2018). MFN1 and MFN2 initiate the fusion process by
tethering OMMs of adjacent mitochondria, and external stimuli,
such as oxidative stress, can enhance OMM fusion (Shutt et al.,
2012). Then, OPA1 completes the fusion process at IMMs. IMM
fusion is more complicated than OMM fusion maintaining crista
structures of the IMM. Deletion of OPA1 induces mitochondrial
fragmentation and also results in decreased cristae density, in
which the IMM becomes vesicular (Meeusen et al., 2006).

Mitochondrial fission is primarily driven by dynamin-related
protein 1 (Drp1), a gtpase that dynamically associates with the ER
and mitochondria (Ji et al., 2017). Drp1 translocates from the
cytosol to the surface of the OMM, binding to its receptors in the
OMM, including mitochondrial fission factor (MFF) (Otera et al.,
2010; Sheng et al., 2019), mitochondrial dynamics proteins 49 and
51 (MID49/51) (Palmer et al., 2013) and mitochondrial fission 1
protein (Fis1) (James et al., 2003). Following this binding, Drp1
oligomerizes to form a constrictive ring around the
mitochondrion to physically constrict and sever the
mitochondrion (Kalia et al., 2018; Adachi et al., 2020). Drp1 is
essential for embryonic development, and genetic knockout of
Drp1 in mice is embryonically lethal at approximately embryonic
Days 11.5–12 (Wakabayashi et al., 2009). However, cultured
mammalian cells can survive without Drp1 and undergo
mitochondrial fission in vitro (Kraus et al., 2021). Therefore,
the functional role of mitochondrial fission is easier to detect in
vivo studies in which damaged mitochondrial networks impair a
variety of cellular biological activities, such as autophagy and
apoptosis. Mitochondrial fission is necessary to surveil and isolate
damaged mitochondria, which plays a key role in the quality
control of the mitochondrial network (Bhargava and
Schnellmann 2017). These daughter mitochondria with high
membrane potential may recover by fusion (Abrisch et al.,
2020) while unbalanced and depolarized daughter
mitochondria are degraded through mitophagy to sustain a
population of healthy mitochondria (Dikic and Elazar 2018;
Kraus et al., 2021).

Defective mitochondrial dynamics have harmful effects on
mitochondrial homeostasis and have been closely linked to the
pathogenesis of numerous diseases, including cancer,
cardiovascular diseases, and CKD (Galloway et al., 2012).
Recently, several studies have proposed that excessive
mitochondrial fission and enhanced fragmented mitochondria
in podocytes are characteristic features of kidney injury before the
obvious clinical manifestations of DKD (Wang et al., 2012;
Ayanga et al., 2016; Qin et al., 2019). Drp1-specific
knockdown in podocytes or pharmacologic inhibition of Drp1
by mitochondrial division inhibitor 1 (Mdivi-1) in diabetic mice
confers protection against DKD with decreased albuminuria and
improved morphology compared to diabetic control mice
(Ayanga et al., 2016). Accordingly, podocytes isolated from
Drp1 knockout mice demonstrated more elongated
mitochondria and ATP production was restored, unlike in
podocytes isolated from wild-type mice. Furthermore, the
herbal alkaloid berberine could significantly protect podocytes
via inhibiting Drp1-mediated mitochondrial fission and cell
apoptosis, suggesting its use as a new therapeutic drug to treat
DKD (Qin et al., 2019). Collectively, the data available indicate
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that mitochondrial fragmentation contributes critically to
podocyte injury in DKD. Research is, however, still in an
early stage.

Mediators that increase the expression of Drp1 or promote
Drp1 translocation to the OMM both contribute to
mitochondrial fission (Ayanga et al., 2016; Deng et al., 2020).
Drp1 activity and translocation can be affected by
posttranslational modifications, such as phosphorylation
(Wang et al., 2012; Sabouny and Shutt 2020),
O-GlcNAcylation (Gawlowski et al., 2012), and sumoylation
(Zunino et al., 2007; Braschi et al., 2009). Among these post-
translational modifications, Drp1 phosphorylation seems to play
a central regulatory role, which can exert either activating or
inhibitory effect depending on the specific site modified. Several
phosphorylation sites have been identified in Drp1, including Ser-
579, Ser-40, Ser-585, Ser-44, Ser-592, Ser-656, Ser-616, Ser-637,
and Ser-693 (Qi et al., 2019). Among these sites, both Ser-616 and
Ser-637 have been extensively reported in various diseases, while
only Ser-637 was deeply examined in podocytes. Drp1 is a
cytosolic protein, and phosphorylation at Ser637 of Drp1
promotes Drp1 translocation to mitochondrion to induce
fission in response to HG conditions in podocytes (Ayanga
et al., 2016). Similarly, activated A-kinase anchoring protein 1
(AKAP1) promotes the phosphorylation of Drp1 at Ser637,
which promotes the transposition of Drp1 to the OMM and
results in mitochondrial dysfunction events in HG-induced
podocyte injury (Chen et al., 2020). However, another study,
inconsistent with these findings, found that Drp1
phosphorylation at Ser637 by phosphoprotein kinase A (PKA)
inhibits its gtpase activity and inhibits fission (Cribbs and Strack
2007). In contrast, Drp1 dephosphorylation at the same site by
the Ca2+-dependent phosphatase calcineurin activates Drp1 and
promotes fission (Cereghetti et al., 2008). A possible explanation
for these conflicting results could be that the effects of Drp1
phosphorylation at this residue are likely cellular context- and
external stimulus-dependent (Galvan et al., 2017). Because of the
complexity of the posttranslational modification, the external
stimuli that trigger this pathway remains largely unknown and
needs investigation.

Mitophagy
Mitophagy is the best-described form of selective autophagy. It
specifically degrades long-lived or damaged mitochondria via the
formation of intracellular organelles-mitophagosomes.
Mitophagosomes ultimately fuse with lysosomes, finally
resulting in content degradation. The half-life of mitochondria
is 10–25 days in the human body, and mitophagy serves as a
master regulator in the maintenance of the quality of the
mitochondrial pool in response to metabolic demand. If
mitochondria are damaged beyond repair, mitochondria are
eliminated through mitophagy to prevent ROS production,
provide raw materials for metabolic needs and contribute to
mitochondrial biogenesis. Abnormal or excessive mitophagy has
been implicated in numerous human disorders (Palikaras et al.,
2018).

Generally, mitophagy is divided into PTEN-induced putative
kinase protein 1 (PINK1)/Parkin-dependent or PINK1/Parkin-

independent (receptor-mediated) pathways. PINK1/Parkin-
dependent mitophagy can be initiated by a loss of
mitochondrial membrane potential (MMP), while the
activation of the PINK1/Parkin-independent pathway is
regulated through receptors that are anchored on the cytosolic
surface of the OMM such as BNIP3L, BCL2-L13, and FUNDC1
(Ng et al., 2021). Mitophagy in most cell types is induced by the
PINK1/Parkin-mediated pathway. Under physiological
conditions, the mitophagy signal protein PINK1 is
translocated from the cytosol to the IMM and then degraded
by mitochondrial proteasomes (Greene et al., 2012). As PINK1
import is dependent on an intact MMP,mitochondrial damage or
depolarization hampers its translocation and results in its
accumulation on the OMM (Choi 2020). Then PINK1 recruits
the E3 ubiquitin ligase Parkin to the mitochondria and prompts
its phosphorylation/activation, which ubiquitinates lysine
residues in the N-termini of OMM proteins, thereby targeting
the mitochondria for degradation by autophagosomes (Randow
and Youle 2014; Choi 2020). Meanwhile, simultaneous
phosphorylation of ubiquitin chains by PINK1 might further
facilitate Parkin activation and recruitment (Lazarou et al., 2015).

Autophagy is well known to be exacerbated in podocytes in
DKD (Liu et al., 2019), and relatively few studies have explored
the effect of mitophagy on podocytes in DKD. Mitophagy is
considered as a defense mechanism under pathological
conditions. Thus, we can infer that mitophagy is induced to
ensure mitochondrial quality control by clearing damaged
mitochondria during the initial stage of DKD. However, as the
disease progresses, the increased number of damaged
mitochondria might exceed the eliminated capacity of
mitophagy, or mitophagy might also become impaired, then
the apoptotic pathway is activated to minimize tissue damage.
It has been demonstrated that HG accelerates mitochondrial
dysfunction and podocyte apoptosis by inhibiting mitophagy
activity (Li et al., 2016; Li W. et al., 2017). Overexpression of
forkhead-box class O1 (FOXO1) in podocytes activates PINK1/
parkin-dependent mitophagy, which degrades dysfunctional
mitochondria and alleviates podocyte injury in diabetic mice
and cultured podocytes, supporting the hypothesis of an
important role of FOXO1 in the regulation of mitophagy in
podocytes (Li W. et al., 2017). Progranulin (PGRN), an autocrine
growth factor, has been known to be involved in the development
and/or progression of various inflammatory diseases including
renal ischemia/reperfusion injury and diabetic complications (Xu
et al., 2015; Zhou et al., 2015; Choi et al., 2020). In diabetic mice,
knockout of PGRN, which is significantly reduced in DKD,
aggravated mitochondrial dysfunction in podocytes (Zhou
et al., 2019). Treatment with recombinant human PGRN
promoted mitophagy and mitochondrial biogenesis, thereby
alleviating mitochondrial dysfunction and podocyte injury. A
potential mechanism by which PGRN protects mitochondria is
mediated via PGRN–SIRT1–PGC1α regulation of FOXO1 (Zhou
et al., 2019).

Mitochondrial Biogenesis
Mitochondrial biogenesis replicates mtDNA, generates new and
functional mitochondria, and increases ATP production by the
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proliferation of pre-existing organelles (Jiang et al., 2020).
Mitochondrial biogenesis and its concomitant cellular
processes enhance metabolic pathways and antioxidant defense
mechanisms that mitigate injury from tissue hypoxia, excess
production of ROS, and glucose or fatty acid overload, all of
which contribute to the pathogenesis of kidney disease, including
DKD. The process of mitochondrial biogenesis is largely
regulated by networks of transcription factors that link
external cues to cell energy demand and adaptive responses
(Galvan et al., 2017).

Peroxisome proliferator-activated receptor γ coactivator-1α
(PGC-1α) is a prominent transcriptional coactivator that
interacts with other transcription factors to regulate
mitochondrial biogenesis in a variety of cells including
podocytes (Svensson et al., 2016; Li S.-Y. et al., 2017). PGC-1α
acts as the “master regulator” in stimulating the expression of
mitochondrial genes as well as nuclear genes in response to
extracellular signals, energetic demand, or mitochondrial
dysfunction. Several experimental models of DKD exhibit
reduced efficiency of mitochondrial biogenesis, decreased
PGC-1α levels, and defective mitochondrial function (Sun
et al., 2014; Li S.-Y. et al., 2017; Zhang et al., 2018). The
downregulation of PGC-1α and its downstream signalling
cascades has been proposed to be the key contributor to renal
lipid overload, mitochondrial loss and dysfunction, eventually
leading to podocyte injury and destruction of the GFB (Long
et al., 2016; Li S.-Y. et al., 2017; Li and Susztak 2018). Endogenous
expression of PGC-1α in podocytes exhibited protective effects
against kidney fibrosis in mice with DKD (Zhang et al., 2018).
Furthermore, PGC-1α is negatively regulated by upstream open
reading frames (uORFs) (Dumesic et al., 2019), Smad3, and NF-
κB (Dai et al., 2021). PGC-1α expression is positively regulated by
AMPK (Dugan et al., 2013), sirtuins (Yacoub et al., 2014), Ewing
sarcoma breakpoint region 1 (EWSR1) (Park et al., 2015), PGRN
(Zhou et al., 2019), G protein-coupled bile acid receptor TGR5
(Wang et al., 2016), and induced-by-high-glucose 1 (IHG-1)
(Hickey et al., 2011), which subsequently activates nuclear
respiratory factors (NRFs), improving mitochondrial DNA
expression and protein translation and thus promoting
mitochondrial biogenesis. For example, it has been
demonstrated the activation of TGR5 with its agonist INT-777
can induce mitochondrial biogenesis and attenuate renal
oxidative stress in db/db mice and human podocyte cell line
(Wang et al., 2016).

The activation of peroxisome proliferator-activated receptors
(PPARs) and oestrogen-related receptors (ERRs) is also involved
in the regulation of mitochondrial biogenesis, sometimes by these
receptors co-operating with PGC-1α (Fan and Evans 2015). ERRs
upregulate the entire gene network necessary for biogenesis, but
in contrast to ERRs, PPARs are not sufficient by themselves to
fully induce biogenesis (Weinberg 2011). Numerous studies have
demonstrated that the activity of PPARγ, the third member of
the PPARs (PPARα, PPARβ/δ and PPARγ), is pivotal in
protecting podocytes (Agrawal et al., 2021). PPARγ
attenuates the renal effects of aging and generally promotes
mitochondrial biogenesis by inducing PGC-1α (Hondares et al.,
2006; Weinberg 2011). PGC-1α can directly bind to nuclear

receptors PPARs and ERRs and coactivate the transcription of
genes. PPARγ agonists (such as thiazolidinediones) have been
shown to delay DKD progression in patients with type 2
diabetes mellitus and in various animal models of diabetes
(Yang et al., 2012).

Furthermore, multiple other factors act directly or indirectly to
regulate mitochondrial biogenesis in podocytes. Mitochondrial
glycerol 3-phosphate dehydrogenase (mGPDH) is defined as a
component in the respiratory chain, which guarantees the
appropriate production of energy in a cell. Recently, Qu et al.
verified that podocyte-dominated expression of mGPDH was
downregulated in DKD, and activation of mGPDH induced
mitochondrial biogenesis and reinforced mitochondrial
function (Qu et al., 2021). The role of transcription factor EB
(TFEB) as a key regulator of the autophagy-lysosome pathway has
been widely investigated (Sardiello et al., 2009; Settembre et al.,
2011). TFEB can regulate mitochondrial biogenesis in PGC-1α-
dependent or PGC-1α-independent pathways (Kang et al., 2019;
Wang S. et al., 2020). Adenosine is significantly increased in
response to various cellular damages. Treatment of db/db mice
with the adenosine receptor A3AR antagonist LJ-2698 has a
renoprotective effect by modulating PGC-1α (Dorotea et al.,
2018).

PGC-1α interacts with many transcription factors and is
implicated in complex biological functions. Currently, there
are no drugs that specifically target PGC-1α in clinical trials. It
is reasonable to assume that a strategy targeting upstream or
downstream molecules of PGC-1α pathway is possible. It
should be noted, however, that podocytes may have a
narrow PGC-1α tolerance and that excessive PGC-1α may
alter mitochondrial properties. It has been proven that
transgenic overexpression of PGC-1α in podocytes causes
uncontrolled mitochondrial proliferation and
glomerulopathy in mice (Li S.-Y. et al., 2017).

Oxidative Phosphorylation and ROS
Production
The term ROS encompasses a wide range of highly reactive,
oxygen-containing molecules, including free radical species, such
as hydroxyl radicals and superoxide radicals, and non-radical
species, such as hydrogen peroxide. ROS are well known for their
role in mitochondrial dysfunction and the development of
diabetic microvascular complications, including DKD. ROS are
historically considered toxic by-products of pathological cellular
metabolism, but the current consensus is that ROS have
physiological functions at low levels and take part in
promoting the proliferation and survival of cells in response to
stress. However, if ROS generation is not balanced through
appropriate regulation of synthesis and degradation, oxidative
stress may occur. ROS levels that exceed the antioxidant capacity
are a sign of mitochondrial dysfunction and a risk factor for DKD
(Dugan et al., 2013; Coughlan et al., 2016).

There are several sources of ROS in human cells, but the main
endogenous ROS are generated from mitochondria via the
respiratory chain (Scialo et al., 2016). Hyperglycemia is a
representative hallmark of diabetes and is closely linked to
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excessive ROS, which is an important pathway contributing to the
pathogenesis of diabetes associated complications. Under diabetic
conditions, excessive glucose enters into the tricarboxylic acid
cycle (TAC), which results in more NADH or FADH2 entering
the mitochondrial electron transport chain. Under this condition,
electron transfer is obstructed, and some of them escape to
generate superoxide in both the intermembrane space and
matrix, which results in excessive production of ROS
(Brownlee 2005). It has been firmly established that HG
exposure of glomerular podocytes results in an increased ROS
level. Overproduction of ROS in the presence of HG induces
mtDNA damage and protein and lipid peroxidation,
subsequently resulting in mitochondrial dysfunction and
podocyte injury. Notably, glucose-induced excessive ROS
production plays a central role in initiating podocyte apoptosis
and podocyte depletion followed by progression to renal damage
(Susztak et al., 2006; Fakhruddin et al., 2017). Pyruvate kinase
isoform M2 (PKM2) is a rate-limiting glycolytic enzyme. Qi et al.
shows that podocyte-specific Pkm2-knockout in mice aggravates
albuminuria and pathological severity of DKD (Qi et al., 2017).
PKM2 activator (TEPP-46) can significantly ameliorate
mitochondrial dysfunction by increasing glucose metabolic
flux, preventing the elevation of ROS production, inducing
mitochondrial biogenesis (Qi et al., 2017). In addition,
treatment with antioxidants, such as Grape seed
proanthocyanidin extracts (Bao et al., 2014), INO-1001 or PJ-
34 (Szabo et al., 2006), has been shown to restore mitochondrial
dysfunction and attenuate kidney injury in animal models
of DKD.

The NADPH oxidase (Nox) family is another important
endogenous source of ROS production. The mammalian Nox
has seven isoforms: Nox1 to Nox5, Duox1, and Duox2. Nox4 is
the predominant form within the kidney, whereas Nox1, Nox2
and Nox5 are also expressed in the kidney (Holterman et al.,
2015). NOXs, particularly NOX4, have been reported to be
pathologically relevant sources of ROS in HG-induced
podocytes leading to mitochondrial damage and podocyte
apoptosis. Furthermore, in vivo studies, genetic deletion of
NOX4 in podocytes or treatment with a novel NOX1/4
inhibitor (GKT137831) reduced oxidative stress, podocyte
injury and the development of DKD (Jha et al., 2014; Jha
et al., 2016; Gray et al., 2017). Similar results were obtained
using salvianolate, a prescribed Chinese medicine derived from
Danshen, through regulation of NOX4 activity in db/db mice
(Liang et al., 2021).

As described above, PGC-1α is considered to be a master,
upstream transcriptional regulator of oxidative phosphorylation
and mitochondrial biogenesis (Galvan et al., 2017) and PGC-1α
levels were reduced in DKD (Sun et al., 2014; Zhang et al., 2018).
Endogenous PGC-1α also exhibited protective effects against
renal fibrosis in diabetic mice through an anti-oxidative
mechanism (Zhang et al., 2018). Recently, a study highlighted
that PGC-1α-mediated mitochondrial bioenergetics could play a
pivotal role in lipid disorder-induced podocyte injury and the
development of DKD, whereas restoring PGC-1α activity and a
balanced energy supply via berberine may be a novel therapeutic
strategy for the treatment of DKD (Qin et al., 2020).

The family of NAD+-dependent deacetylases known as
sirtuins (SIRT1-7) has an essential role in the regulation of
mitochondrial function of podocytes in DKD (Hershberger
et al., 2017; Fan et al., 2019; Zhang et al., 2019). It has been
reported that Sirt6 alleviates HG-induced mitochondrial damage
and oxidative stress in podocytes through AMPK activation (Fan
et al., 2019). Importantly, SIRT1-mediated deacetylation of PGC-
1α could ameliorate HG-induced podocyte damage (Cai et al.,
2016; Zhang et al., 2019) and resveratrol, an activator of SIRT1,
demonstrated significant protection of mitochondrial function in
diabetic mice with DKD through SIRT1/PGC-1α-regulated
attenuation of mitochondrial oxidative stress (Zhang et al.,
2019; Wang F. et al., 2020). Furthermore, one other group
found that salidroside, an active component from Rhodiola
rosea L., ameliorates diabetic nephropathy by stimulating the
Sirt1/PGC-1α axis in diabetic mice (Liang et al., 2021). The above
results revealed the protective role of PGC-1α in regulating
mitochondrial homeostasis in podocytes and identified
potential targets for the treatment of DKD.

ROS act as a master switch for activating inflammatory
responses by activating multiple downstream pathways,
including nucleotide leukin-rich polypeptide 3 (NLRP3), NF-
κB, and Toll-like receptor (TLR). Upon stimulation, NLRP3 can
form a NLRP3 inflammasome to act as a cytosolic multiprotein
caspase-activating complex platform and subsequently lead to the
activation of Caspase-1. Activation of Caspase-1 can lead to the
maturation and release of interleukin (IL)-1β and IL-18 (Davis
et al., 2011). In a type 2 diabetic model, excessive activation of
NLRP3 was associated with chronic inflammation, cell death, and
fibrosis. Accumulating data suggest that mitochondrial ROS
could activate the NLRP3 inflammasome in glucose or
advanced glycation end product stressed podocytes (Shahzad
et al., 2015; Yu et al., 2019; Wu et al., 2021). Treatment of db/
db mice with the NLRP3 inflammasome inhibitor (MCC950)
could attenuate podocyte damage and improve kidney function
by inhibiting lipid accumulation in DKD (Wu et al., 2021).
Another study reported that luteolin, a natural flavonoid
found in various fruits and vegetables, attenuated HG-induced
podocyte damage by suppressing the NLRP3 inflammasome
pathway (Yu et al., 2019).

Mitochondrial Protein Quality Control
The mitochondrial proteome comprises approximately 1,200
proteins in humans (Rath et al., 2021). Mitochondrial function
strongly relies on protein homeostasis within organelles.
Mitochondria are comprised of proteins encoded by two
genomes, mitochondrial and nuclear, but approximately 99%
of mitochondrial proteins are encoded by the nuclear genome,
and they are synthesized in the cytosol (Song et al., 2021). Hence,
the synchronization of gene expression between the nucleus and
mitochondria and efficient import of the encoded mitochondrial
proteins into the specific locations in the mitochondria from the
cytosol are essential for mitochondrial protein homeostasis. To
repair or degrade misfolded and damaged proteins, mitochondria
rely on several quality control pathways, including mitochondrial
molecular chaperones promoting folding of misfolded proteins
and ATP-dependent proteases degrading misfolded or damaged
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mitochondrial proteins (Vazquez-Calvo et al., 2020).
Disturbances in mitochondrial protein homeostasis lead to
proteotoxic insults and cell injury (Cybulsky 2017). Notably,
mitochondrial protein homeostasis is challenging under HG
conditions. As described above, HG exposure of podocytes
leads to elevated ROS, whereas continuous intracellular ROS
elevation can impair protein function and induce
inflammatory responses, leading to cellular death.

Most mitochondrial proteins are synthesized in the cytosol,
and then precursor proteins are bound to molecular chaperones
and imported into mitochondria. Molecular chaperones are
enzymes whose functions are responsible for stabilizing,
folding, and unfolding precursor proteins. Heat shock proteins
(HSPs) are highly conserved proteins that act as molecular
chaperones and play a vital role in protein homeostasis
(Young et al., 2003; Song et al., 2021). Increased levels of
HSP25, HSP60, and HSP70 are observed in the diabetic outer
medulla, but no differences were detected in the glomeruli in
response to diabetes (Barutta et al., 2008). Only the
phosphorylated form of HSP27 is increased in the podocytes
of diabetic animals (Barutta et al., 2008).

The major response to excessive amounts of unfolded or
misfolded proteins is activation of UPR pathway. There are
two distinct UPRs—the endoplasmic reticulum unfolded
protein response (UPRER) and the mitochondrial unfolded
protein response (UPRmt)—that stabilize, renature, and
degrade unfolded proteins in the mitochondria and the ER,
respectively. However, prolonged and severe UPR can lead to
an excessive ER stress and result in pro-apoptotic cell death.
Although the UPRER and UPRmt involve chaperones and
proteases specific to each organelle, both pathways interact
and influence each other upon activation in response to
extrinsic stimuli (Senft and Ronai 2015; Tang et al., 2021).
Notably, the sustained UPRER pathway has been implicated in
the pathogenesis of podocyte injury and DKD (Cybulsky 2017;
Kang et al., 2017; Wang et al., 2021). Therefore, activation of the
UPRmt might have also occurred in DKD. One study in a rat
model of streptozotocin-induced diabetes showed that exposure
to HG activated the UPRER pathway in renal podocytes, whereas
treatment with an endogenous peptide (intermedin), which has
anti-inflammatory and antioxidant properties, blocked such ER

stress responses and alleviated podocyte apoptosis (Wang et al.,
2021). The regulation of mitochondrial protein quality control in
polypeptide sorting, folding, transportation and subsequent
assembly into multiprotein complexes during mitochondrial
biogenesis is essential for mitochondrial function and cellular
survival. However, the functional association between the
mitochondrial protein quality control system, podocyte injury
and DKD remains poorly understood.

MITOCHONDRIA-ASSOCIATED
ENDOPLASMIC RETICULUMMEMBRANES

To maintain homeostasis, organelles work cooperatively (Inoue
et al., 2019). Certainly, mitochondria within a cell cannot exist in
isolation. They interact with other subcellular organelles,
particularly with the ERs. Recently, an emerging concept is
that the ER and mitochondria are organized as a complex
network through direct interactions at membrane contact sites
called MAMs (mitochondria associated ER membranes)
(Kornmann et al., 2009). At the MAMs, the membrane of the
juxtaposed ER and mitochondria are separated by only
10–25 nm. This proximity not only allows direct contact of
proteins and lipids but also exchanges of Ca2+ in the ER with
those in the OMM (Csordas et al., 2006). Perturbations in MAMs
and increased ER-mitochondria contacts have been reported in
various neurodegenerative disorders (Parakh and Atkin 2021)
and metabolic disorders (Yang et al., 2020), as well as DKD (Yang
et al., 2021). The disturbance of MAMs leads to abnormal
intracellular Ca2+ levels, mitochondrial damage, ER stress,
autophagy, and apoptosis (Inoue et al., 2019).

Calcium signalling plays a vital role in many cellular
physiological pathways. In pathological states, calcium signals
can precipitate mitochondrial damage and trigger cell death,
particularly when accompanied by energetic deprivation and
oxidative stress (Bhosale et al., 2015). Therefore, the role of
mitochondria as sensors and modulators of calcium signalling
is extremely important. An increase in the inflow of Ca2+ into
mitochondria from the juxtaposed ER takes place through this
specialized proximity during various common stresses. An
appropriate elevation in Ca2+ concentration activates TAC

TABLE 1 | Potential approaches to target podocyte mitochondrial dysfunction in clinical studies.

Agent Mechanism of action In vivo and clinical
studies

References

Coenzyme Q10 Antioxidant 1) Decreases albuminuria and prevents detrimental changes in
mitochondrial function rodent models with DKD

Sourris et al. (2012), Stanczyk et al.
(2018), Feng et al. (2017)

2) Reduces albuminuria in paediatric patients with COQ6
glomerulopathy or ADCK4 mutation

Lademirsen Inhibits microRNA-21 1) Down-regulation of miR-21 inhibits the progression of DKD in
streptozotocin- induced diabetic nephropathy rats

Gomez et al. (2015); Chen et al.
2018)

2) Phase II study (NCT02855268) in patients with Alport syndrome
Bardoxolone
methyl

Activates of Nrf2 and inhibits the expression
of Drp1 and mitochondrial fission

1) Decreased albuminuria and has a renoprotective role for
podocytes and diabetic glomerulopathy in diabetic nephropathy
mice

Fang et al. (2021), Zhou et al. (2020)

2) Phase III study (NCT03550443) in patients with diabetic kidney
disease
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dehydrogenase to promote ATP production. However, an
excessive elevation in Ca2+ concentration opens the
mitochondrial permeability transition pore and releases
cytochrome c simultaneously, leading to cellular apoptosis
(Inoue et al., 2019). In the unilateral ureteral obstruction
model, mitochondria and the ER form a pathological feedback
loop by Ca2+ dysregulation and ER stress pathways, resulting in
the impairment of both organelles (Martinez-Klimova et al.,
2020). Ca2+ channel transient receptor potential cation
channel subfamily V member 1 (TRPV1), a channel
modulating the intracellular Ca2+ concentration, can be
activated by multiple endogenous stimuli, including pressure,
force, and exogenous stimuli, such as capsaicin (Nieto-Posadas
et al., 2011). Activation of the TRPV1 channel by capsaicin can
play a robust therapeutic role in HG-induced mitochondrial
damage in podocytes, accompanied by decreased MAM
formation and reduced Ca2+ transport from the ER to
mitochondria (Wei et al., 2020).

As described above, mitophagy refers to a protective effect in
response to diverse stimuli, including hypoxia, ROS, and energy
stresses (Tang et al., 2020). ER-mitochondria contact sites are
essential for organelle quality control by involving in mitophagy
(Hamasaki et al., 2013). Researchers have demonstrated that
many proteins involved in mitophagy are recruited to MAMs
following mitophagic stimuli, in turn, recruited autophagy-
associated proteins promote the formation of MAMs and
autophagosomes (Yao et al., 2021). Currently, the FUNDC1-

mediated pathway is one of the well-studied pathways of the
PINK1/Parkin-independent mitophagy as described above.
FUNDC1 has been proven to accumulate at MAMs, which
can initiate mitochondrial division prior to mitophagy (Wu
et al., 2016). FUNDC1-dependent mitophagy plays a
protective role in acute reperfusion injury and chronic
metabolic syndrome via its sustaining mitochondrial
homeostasis activity. As shown in proximal tubule-specific
Fundc1 knockout mice, ischemic preconditioning activates
FUNDC1-dependent mitophagy, and FUNDC1 deficiency
abolishes the benefits of ischemic preconditioning against
renal ischemia reperfusion injury. Mechanistically, FUNDC1
deficiency provoked compromised mitochondrial quality
control, manifested by abnormal mitochondrial quality and
excessive Drp1-dependent mitochondrial fission (Wang
J. et al., 2020). Although more studies on the role of MAMs in
mitophagy in DKD are needed, the available evidence suggests
that MAMs provide a platform for autophagy-associated proteins
to perform their biological functions.

Mitochondria are highly plastic organelles that undergo fission
and fusion to optimize their function (Youle and van der Bliek
2012). Disturbances of mitochondrial dynamics, featuring
excessive mitochondrial fission, are noted in glomerular
podocytes in diabetic nephropathy (Ni et al., 2017; Ma et al.,
2019; Qin et al., 2019). As described previously, mitofusin 2
(Mfn2) is enriched at the ER-mitochondria interface and plays a
key role in the maintenance of mitochondrial fusion and fission

TABLE 2 | Potential approaches to target podocyte mitochondrial dysfunction in preclinical developments.

Agent Classification Mechanism of action DKD model References

Mitochondria-
targeted antioxidant

Salvianolate Modulates NOX4 activity and ameliorates oxidative
injury

Db/db mice and human podocyte cell
line

Liang et al. (2021)

MCC950 Inhibits NLRP3 inflammasome and suppresses
lipid accumulation, ROS generation and NF-κB
p65 activation

Db/db mice and mouse podocyte cell
line

Wu et al. (2021)

Berberine Activates the PGC-1α signalling pathway and
promotes mitochondrial fatty acid oxidation

Db/db mice and mouse podocyte cell
line

Qin et al. (2020)

Resveratrol Activates SIRT1 and suppresses oxidative stress Db/db mice and human podocyte cell
line

Wang et al. (2020a),
Zhang et al. (2019)

GKT137831 Inhibits Nox1/4 activity and suppresses ROS
generation

Streptozotocin-induced diabetic mice
and human podocyte cell line

Jha et al. (2014)

INO-1001 and PJ-34 Inhibits poly (ADP-ribose) polymerase activity and
blocks the ROS generation

Db/db mice and mouse podocyte cell
line

Szabo et al. (2006)

Grape seed
proanthocyanidin
extracts

Activates the AMPK-SIRT1-PGC-1a signaling
pathway and inhibits oxidative stress

Streptozotocin-induced diabetic mice Bao et al. (2014)

Inhibits mitochondrial
fission

Mdivi-1 Inhibits DRP1 activity and suppresses
mitochondrial fission

Db/db mice and primary mouse
podocyte

Ayanga et al. (2016)

Berberine Inhibits palmitic acid-induced activation of DRP1
activity and suppresses mitochondrial fission

Db/db mice and mouse podocyte cell
line

Qin et al. (2019)

Promotes
mitochondrial
biogenesis

LJ-2698 Inhibits adenosine receptor activity and promotes
mitochondrial biogenesis

Db/db mice Dorotea et al. (2018)

Salidroside Stimulates the Sirt1/PGC-1 axis and promotes
mitochondrial biogenesis

Streptozotocin-induced diabetic mice Xue et al. (2019)

TEPP-46 Activates pyruvate kinase M2 and induces
mitochondrial biogenesis

Streptozotocin-induced diabetic mice,
mouse and human podocyte cell lines

Qi et al. (2017)

INT-777 Activates G protein-coupled receptor TGR5 and
induces mitochondrial biogenesis

Db/db mice and human podocyte cell
line

Wang et al. (2016)
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(de Brito and Scorrano 2008). MAMs are involved in the early
steps of mitochondrial fission by marking the division sites
(Csordas et al., 1999). Despite these interesting findings, the
precise role and regulation of MAMs in the development and
progression of DKD await further investigation.

TARGETING MITOCHONDRIAL
DYSFUNCTION

Although the precise roles of mitochondrial function in podocyte
health and disease are not completely understood, targeting
mitochondria could be a very promising strategy to treat
podocyte dysfunction. Various therapeutic strategies that target
mitochondria are under investigation for the treatment of
podocyte dysfunction and/or DKD. Emerging data from
preclinical and preliminary clinical data suggest that targeting
mitochondrial dysfunction is a sound rationale. Several
investigational drugs are in different stages of clinical
evaluation. Although some of these drugs are currently used in
clinical trials for the treatment of other CKDs, preclinical data
suggest that these therapies are also promising agents for the
treatment of DKD by targeting the mitochondrial function of
podocytes.

Antioxidants are the oldest class of drugs used to counteract
ROS generation and treat mitochondrial dysfunction. Currently,
the majority of ongoing clinical trials for the treatment of
mitochondrial diseases are still based on the use of
antioxidants (Forbes and Thorburn 2018). In mitochondria,
Coenzyme Q10 (CoQ10; ubiquinone) is a pivotal component
of the mitochondrial respiratory chain with powerful antioxidant
capacity, as it shuttles electrons from both complexes I and II to
complex III of the electron transport chain. Knockout of genes
involved in coding the CoQ10 biosynthesis pathway enzymes in
glomerular podocytes is sufficient to induce the typical
phenotypes of nephrotic syndrome and focal segmental
glomerular sclerosis (Widmeier et al., 2019; Widmeier et al.,
2020). CoQ10 therapy of rodent models with DKD could
significantly decrease albuminuria and prevent detrimental
changes in mitochondrial function, indicating its potent
protective effect on the GFB and podocytes (Sourris et al.,
2012). Case reports and case series have reported the
treatment with CoQ10 or its synthetic analogue idebenone
significantly reduced albuminuria in paediatric patients with
COQ6 glomerulopathy or ADCK4 mutation (Feng et al., 2017;
Stanczyk et al., 2018). CoQ10 is not water soluble, which limits its
transport to the IMM. More recently, more soluble and
hydrophilic 2,4-dihydroxybenzoic acid (2,4-diHB) has been
shown to have a strong effect in rescuing podocyte function
and preventing renal disease caused by primary dysfunction in
the CoQ10 biosynthesis pathway (Widmeier et al., 2019;
Widmeier et al., 2020). These findings warrant further
evaluation in prospective human studies in the near future.
MicroRNA-21 (miR-21) has been widely studied in kidney
disease because of its important antiapoptotic effects (Chen
et al., 2018; Wang et al., 2019). MiR-21 expression is
upregulated in kidney tissues of DKD patients and HG-treated

podocytes, and the down-regulation of miR-21 inhibited the
progression of DKD (Chen et al., 2018). Furthermore, miR-21
is involved in the regulation of mitochondrial dysfunction by
disrupting ROS homeostasis (La Sala et al., 2018). Lademirsen is
an antisense oligonucleotide that inhibits miR-21, and there is
some evidence that it can enhance mitochondrial function in
podocytes; it is currently under clinical evaluation in Alport
syndrome patients (NCT02855268) (Gomez et al., 2015).
Nuclear respiratory factor 2 (Nrf2), a master regulator of the
stress response, is relatively inactive under non-stressed
conditions. Activation of Nrf2 inhibits the expression of Drp1
and mitochondrial fission, leading to enhanced mitochondrial
fusion and survival (Zhu et al., 2019). Drp1 hyperactivation and
excessive/pathological mitochondrial fission occur in various
DKD models, and selective activation of Nrf2 is sufficient for
its anti-senescent and podocyte protective effects (Fang et al.,
2021). Due to this, its potential as a therapeutic target in DKD has
been increasingly discussed. Bardoxolone methyl is a novel,
small-molecule inhibitor of Nrf2 that improves kidney
function in several glomerular diseases and is under clinical
evaluation in patients with chronic kidney disease
(NCT03749447) or DKD (NCT03550443) (Zhou et al., 2020;
Daehn and Duffield 2021) (Table 1).

In addition, although several previous and current drugs to
treat DKD do not directly target mitochondrial function, they
play a protective role under conditions that affect mitochondria.
For example, the Study of Diabetic Nephropathy with
Antrasentan (SONAR) trial found that the endothelin A
receptor (EAR) antagonist atrasentan reduced the risk of renal
events by 35% in patients with DKD (Heerspink et al., 2019).
Analysis of urinary metabolites from DKD patients treated with
atrasentan revealed that it might prevent the progression of
mitochondrial dysfunction (Pena et al., 2017). Similar results
were obtained in DKD patients treated with sodium glucose
cotransporter 2 (SGLT2) inhibitors, such as dapagliflozin,
canagliflozin, and empagliflozin (Liu et al., 2020; Liu et al.,
2021). Currently, there are no studies investigating the effect
of EAR antagonists or SGLT2 inhibitors on the mitochondrial
function of podocytes. This may be worthy of further study.

Despite the fact that direct targeting of mitochondrial
function as a therapeutic approach is not satisfactory, the
development of specific molecules targeting mitochondria
and mitochondria-associated signalling pathways for
therapeutic gain is a rapidly evolving field. In recent years,
numerous specific molecules and treatment strategies targeting
various aspects of mitochondrial dysfunction have been
reported. The targets involve many genes controlling
mitochondrial biogenesis and energy homeostasis, including
PGC-1α, Drp1 and ROS. The molecular targets, mechanisms of
action and therapeutic effects of these preclinical drugs are
summarized in Table 2.

None of the existing drugs could be specifically targeted to
mitochondrial health of podocytes. Nevertheless, a success in
one of these ongoing clinical trials will provide important new
insights into the development of innovative regimens for
podocyte dysfunction. Therefore, there is a continuing need
to identify novel and more specific targets to target
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mitochondria to widen the scope of current treatments for
DKD. In addition to identifying effective therapeutic agents,
considering the optimal timing for these interventions is also
needed. Predictive biomarkers that can help guide decision-
making to target mitochondrial dysfunction to prevent DKD are
likewise lacking.

FUTURE DIRECTIONS

Although increasing amounts of evidence has demonstrated that
mitochondrial dysfunction of podocytes is involved in the
development and progression of DKD, our understanding of
the role of mitochondrial damage in DKD remains limited. There
are several unanswered questions in this area. First, it is clear that
mitochondrial dysfunction is a common pathological hallmark
and occurs early in DKD. Although much is known about
mitochondrial dynamics, mitophagy, ROS production and
biogenesis, the exact role and interaction of each process in
DKD remains unclear. Second, despite evidence that MAMs
play an important role during the development and
progression of DKD, their precise role remains largely unclear.
The relationship between the MAMs and mitochondrial
dysfunction has attracted increasing attention. A further
understanding of the role of the MAMs in mediating

mitochondrial dysfunction under hyperglycemic condition
might lead to new therapeutic options for DKD. Third, there
are currently no mitochondria-targeting therapeutic agents
approved for DKD. Modern small-molecule drug design,
advances in nucleic acid-based therapeutics, and novel nano-
drug delivery systems have greatly assisted in enhancing
bioavailablity and mitochondrial targeting during the
development of more effective therapeutic agents. We can
therefore expect many more innovations to occur in the near
future.
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