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Abstract

Objectives: Cardiac arrhythmia is one of the most severe cardiovascular diseases that can be fatal. Therefore, its early detection is
critical. However, detecting types of arrhythmia by physicians based on visual identification is time-consuming and subjective. Deep
learning can develop effective approaches to classify arrhythmias accurately and quickly. This study proposed a deep learning
approach developed based on a Chapman–Shaoxing electrocardiogram (ECG) dataset signal to detect seven types of arrhythmias.

Method: Our DNN model is a hybrid CNN-BILSTM-BiGRU algorithm assisted by a multi-head self-attention mechanism
regarding the challenging problem of classifying various arrhythmias of ECG signals. Additionally, the synthetic minority
oversampling technique (SMOTE)–Tomek technique was utilized to address the data imbalance problem to detect and clas-
sify cardiac arrhythmias.

Result: The proposed model, trained with a single lead, was tested using a dataset containing 10,466 participants. The per-
formance of the algorithm was evaluated using a random split validation approach. The proposed algorithm achieved an
accuracy of 98.57% by lead II and 98.34% by lead aVF for the classification of arrhythmias.

Conclusion: We conducted an analysis of single-lead ECG signals to evaluate the effectiveness of our proposed hybrid model
in diagnosing and classifying different types of arrhythmias. We trained separate classification models using each individual signal
lead. Additionally, we implemented the SMOTE–Tomek technique along with cross-entropy loss as a cost function to address the
class imbalance problem. Furthermore, we utilized a multi-headed self-attention mechanism to adjust the network structure and
classify the seven arrhythmia classes. Our model achieved high accuracy and demonstrated good generalization ability in detecting
ECG arrhythmias. However, further testing of the model with diverse datasets is crucial to validate its performance.
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Introduction
Cardiovascular diseases (CVDs), which impose a signifi-
cant burden on individuals and societies, are among the

leading causes of mortality and morbidity worldwide.1

Among the various CVDs, arrhythmia is one of the most

severe and can be fatal.2 Arrhythmia refers to irregularities

in the rate or rhythm, such as too fast (tachycardia), too

slow (bradycardia) or irregular heartbeat patterns.3 Cardiac
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arrhythmias vary from benign rhythms to potentially life-
threatening rhythm types.4 Therefore, early detection of
arrhythmia is critical for clinical practitioners to save
human lives.5

The electrocardiogram (ECG) is a well-known visual
time-series diagnostic method for arrhythmias that records
the electrical activity generated by each cardiac cycle in
real-time and is now widely used in heart rate detection.6,7

The standard clinical format of the ECG is a 12-lead ECG,
including bipolar leads I, II and III; enhanced unipolar leads
aVR, aVL and aVF; and unipolar leads V1 through V6.8

The ECG signals are captured from a different angle activ-
ity in both horizontal and vertical planes when the electro-
des of an electrocardiograph device are attached to the
patient’s skin. Ten electrodes are needed to capture 12
leads (signals) and provide an accurate representation of
the heart’s rhythm.8,9

Correctly detecting the type of arrhythmia is crucial for
physicians before administering treatment because it not
only helps save a patient’s life but also alleviates sequelae,
thereby reducing the burden and cost of healthcare.10 The
current standard method for detecting arrhythmia types is
visual identification, which can lead to physicians’ subjective
biases. Due to the large morphological variances, it is not
simple to manually detect ECGs.11 Additionally, the diagnosis
and interpretation of a wide variety of CVDs by ECG mostly
rely on physicians’ knowledge and expertise.12 However, phy-
sicians’ diagnosis of cardiac disorders is always associated
with levels of imprecision.4 Therefore, specialists have tried
to develop effective approaches to the early diagnosis of
cardiac disorders through strong deep learning. Various
researchers have attempted to develop effective approaches
to accurately and quickly classify arrhythmias using strong
deep learning methodologies.9

Deep learning techniques overcome the constraints
imposed by traditional diagnosis methods, enhancing per-
formance and generalization by decreasing pre-processing
and feature extraction.13 Deep learning (DL) is a series of
representation layers14 involving the automated process of
detection and extraction of important features and self-
learning through training processes, which makes it a
very accurate approach.15,16 According to a study, arrhyth-
mia classification by deep learning techniques can achieve
higher efficiency and accuracy than expert manual detec-
tion.10,17 Among deep learning techniques, especially con-
volutional neural networks (CNN), recurrent neural
networks (RNN), which primarily contain long short-term
memory (LSTM), and gated recurrent unit (GRU) networks
have been particularly successful in ECG signal processing
and were significantly improved.18

CNNs are among the most widely used DL architectures
made to learn the spatial hierarchy of data adaptively by
extracting and remembering high-level and low-level patterns
to predict the output.19 One-dimensional convolutional neural
networks (1D CNN) were developed to use one-dimensional

signals, such as ECG records.20,21 Another deep learning algo-
rithm for ECG analysis is LSTM networks that can learn from
sequential data, known as sequence learning.5 LSTM is an
enhancement of the RNN memory performance. Many
studies have been conducted on the applicability of LSTM
to time-series problems.22,23

Bidirectional LSTM (BiLSTM) is an improvement of
LSTM, and the models offer better predictions than
LSTMs.24 Most researchers combined CNN with BiLSTM
and achieved satisfactory results in classifying arrhythmias
from ECG signals.10 The GRU network is another type of
recurrent neural network, which is similar to an LSTM
network but has fewer parameters and converges faster than
LSTM. GRU adaptively remembers and forgets its state
based on the input signal to the unit.25 A bidirectional gated
recurrent unit (BiGRU) consists of two GRU layers and can
process the data in both directions.25,26 In general, different
DL techniques based on varied datasets focusing on the auto-
matic detection of ECG arrhythmia classification have been
proposed in the past few years.27

There is usually some degree of imbalance between dif-
ferent classes in any ECG dataset, which is an additional
challenge to accurately classify ECG beats.28 Dataset
imbalance affects the model’s training. Generally, classes
with more samples can dominate the training and cause
the classifier to favor classes containing many labeled
samples.29 This leads to low training efficiency because
normal ECG beats occupying a large proportion of the
dataset are prone to negative effects and model degener-
ation.30 To address this problem, the model design must
use a loss function in which the cost of misclassifying the
minority class is much higher than that of misclassifying
the majority class, like the focal loss (FL) function.31 It is
still challenging to deal with an imbalanced dataset using
deep learning for classification of multiple types of
cardiac arrhythmias, which is highly dependent on data
quantity and quality. Furthermore, the high noise and com-
plexity of ECG place a substantial strain on computational
resources; therefore, more robust models with fewer para-
meters are greatly desired.10

In this study, we designed a deep learning model to classify
arrhythmia into seven classes: atrial flutter (AF), atrial fibrilla-
tion (AFIB), sinus irregularity (SI), sinus bradycardia (SB),
sinus rhythm (SR), sinus tachycardia (ST) and supraventricu-
lar tachycardia (SVT) by the 12-lead ECG arrhythmia data-
base collected by Shaoxing People’s Hospital (Shaoxing
Hospital Zhejiang University School of Medicine) and
Chapman University on severely imbalanced data.32

Our proposed model consists of designing a hybrid model
with a fusion of convolutional blocks, a bidirectional RNN
(BILSTM-BiGRU) block and an attention mechanism. The
second main contribution of this study was providing a solu-
tion for the imbalanced data problem by the hybrid synthetic
minority oversampling technique (SMOTE)–Tomek dataset
balancing algorithm and FL function to resolve the data
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imbalance problem for detecting seven types of arrhythmias
from ECG signals.

Related Literature

Different DL techniques based on varied datasets focusing
on the automatic detection of ECG arrhythmia classification
have been proposed in the past few years.27 Nevertheless,
the analysis of the findings from each deep learning tech-
nique depends on various factors, such as the hardware plat-
form, the model’s architecture and compiler optimization,
all of which can directly affect the model’s training.33

Deep learning models can extract more distinguishing fea-
tures automatically and without the need for hand-craft
feature extraction to facilitate the detection of the arrhyth-
mia pattern in ECG signals.21,27 In recent years, there has
been extensive research using deep learning methods for
ECG classification and arrhythmia detection based on
ECG datasets, such as the MIT-BIH, Chapman ECG,
PTB-XL and several other datasets.34 In this section, we
review the most important deep learning techniques pre-
sented for detecting arrhythmia based on ECG signals.
Various studies introduced CNN-based deep methods that
use 1D filters. Here, several CNN-based methods are
explained.

Romdhane et al. designed a CNN classifier using the FL
function. The model was trained and evaluated with the
MIT-BIH and INCART datasets to identify five arrhythmia
categories. The classifier used the dropout and batch nor-
malization mechanism in a coupled-convolution layer
structure, obtaining an overall accuracy of 98.41%.29 Wu
et al. proposed a robust and efficient one-dimensional
12-layer convolution neural network (CNN) network struc-
ture to classify the five sub-classes of cardiac arrhythmia.
The architecture of the CNN network included eight alter-
nating convolutions and average-pooling layers. They
were followed by a dropout layer and two fully connected
layers in the MIT-BIH arrhythmia database (MITDB),
and an overall performance accuracy of 97.2% was
achieved.35 Ahmed et al. developed a novel model consist-
ing of three convolution blocks for ECG arrhythmia classi-
fication. Each block contains two 1D-CNN layers, a
max-pooling layer, a dropout layer and a batch normaliza-
tion layer tested on the MITDB. The model achieved
overall performance accuracy of 1.00 and 0.99 in the train-
ing and testing datasets, respectively.36 Gao et al. designed
a classifier based on effective LSTM recurrence network
model with FL to achieve imbalanced ECG signal classifi-
cation. The model attained an overall accuracy of 99.26%
for the categorization of eight beat types in the MITDB,
demonstrating outstanding performance.30 Yildirim et al.
proposed a model which included both representation learn-
ing and sequence learning tasks. Convolutional layers and
sub-sampling layers were used in the representation learn-
ing phase. The sequence learning part involved a LSTM

unit after the representation of learning layers. They per-
formed two class scenarios, including reduced rhythms
(seven rhythm types) and merged rhythms (four rhythm
types) according to the records from the Chapman ECG
database. The dataset was randomly divided into training,
validation and test sets. The model consisting of six convo-
lution layers bearing one-dimensional filters, four max-
pooling layers, one LSTM and two fully connected layers
categorically used the cross-entropy loss function and
Adam optimizer for adjustment. The trained DNN model
achieved an accuracy of 92.24% and 96.13% for the
reduced and merged rhythm classes, respectively.5 Rai
et al. proposed two distinct deep learning models: CNN
and a hybrid model, CNN-LSTM, to detect six types of
cardiac arrhythmias. Two standard datasets MIT-BIH
arrhythmias database (MITDB) and PTB diagnostic data-
base (PTBDB) were combined, and 23,998 ECG beats
were extracted for the model validation. Imbalanced data-
sets were addressed by using a hybrid data resampling tech-
nique called SMOTE and Tomek. The highest overall
accuracy was 99.02% on the SMOTE–Tomek sampled
dataset by the ensemble technique.37

Most researchers combined CNN with BILSTM and
achieved satisfactory results in classifying arrhythmias
from ECG signals. Hassan et al. proposed a novel deep
learning model that combined CNN and bi-directional
LSTM to classify five classes: non-ectopic (N), supraventri-
cular ectopic (S), ventricular ectopic (V), fusion (F) and
unknown (Q) beats. The proposed model was trained, vali-
dated and tested using MIT-BIH and St Petersburg data sets
separately. This model achieved training, validation and
testing accuracies of 100%, 98% and 98%, respectively.6

Islam et al. proposed the CNN and bidirectional RNN
unit (BiGRU–BiLSTM) architecture to generate fusion fea-
tures. The signals were classified by the fully connected
layer and rectified linear unit (ReLU) activation function.
The model was measured by the categorical cross entropy
(CCE) loss. The experimental findings to detect five
classes showed that, for the MIT-BIH-provided ECG data
to identify arrhythmias, the proposed BRDC model outper-
forms the existing models with an accuracy of 99.90%.38

Islam et al. developed a novel hybrid hierarchical attention-
based bidirectional recurrent neural network with dilated
CNN (HARDC) to detect five types of arrhythmias from
ECG signals using 48 half-hour ECG records of patients
investigated at the BIH Arrhythmia. The method achieved
an accuracy of 99.60% during training, 99.40% during val-
idation and 99.01% during testing.39

A study by Rai et al. proposed an automated system for
detecting myocardial infarction (MI) using ECG signals.
Their approach involved a hybrid model combining CNN
and LSTM, along with an ensemble technique. The model
was trained and evaluated using the PTBDB and the
MITDB. The CNN achieved an impressive classification
accuracy of 99.82%, while the hybrid CNN-LSTM and
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ensemble techniques achieved even higher accuracies of
99.88% and 99.89%, respectively.40 In another study by
Rai et al., a hybrid CNN-LSTM deep learning model utiliz-
ing the PTBDB was proposed for the prognosis of MI. The
model leveraged ECG beat time intervals and their gradient
values as input features. To address the class imbalance, the
researchers employed the SMOTE–Tomek link data sam-
pling technique. The CNN-LSTM model achieved a
remarkable accuracy of 99.8%.41 Furthermore, in a study
conducted by Rai et al., a hybrid CNN-LSTM deep learning
model was proposed for the prediction of cardiac arrhyth-
mias. The model was trained and evaluated using the
PTBDB and the MITDB. The model achieved a high accur-
acy of 99.7%.42 Sadeghi et al. in 2023 introduced CNNs
with SE-Residual blocks and a self-attention mechanism
as important components for a more accurate diagnosis of
left bundle branch block. This model was evaluated on
the PhysioNet Challenge 2020 database, consisting of
10,344 samples of 12-lead ECGs, using a 10-fold cross-
validation approach. The model achieved an accuracy of
91.98%, a specificity of 28.99%, a precision of 73.09%, a
sensitivity of 82.83%, an F1 score of 77.99% and an area
under the curve (AUC) of 0.991.43

Methods

Study duration and place

The study was conducted at the Iran University of Medical
Sciences (IUMS) located in Tehran, the capital of I.R. Iran.
The research took place from August 2019 to May 2022.

Nature of the study

This was a developmental study, carried out quantitatively.
The study proposes a deep learning approach developed
based on a Chapman–Shaoxing ECG dataset signal to detect
seven types of arrhythmias. The basic steps of our proposed
methodology are presented using the flowchart in Figure 1.

Data processing

Dataset. This study used the Chapman–Shaoxing ECG
dataset. This dataset contains 12-lead ECG signals collected
from 10,646 people for 10 s with a frequency of higher than
500 Hz sampling rate under the supervision of Shaoxing
People’s Hospital (Shaoxing Hospital Zhejiang University
School of Medicine) and Chapman University. Each ECG
sample in this data set contains 5000 rows and 12
columns, labeled by experts in 11 types of heart rhythms.
Each column corresponds to a specific lead, including
Lead I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5 and
V6. With a sampling rate of higher than 500 Hz, each of
the 500 rows in a Microsoft Excel column represents the
data recorded for one second of the patient’s heart function.

The interesting point about this dataset is that the signals
are recorded from patients over several days and during dif-
ferent sessions.32,44 Table 1 demonstrates numerical infor-
mation about the ECG dataset.

The Chapman ECG dataset was a valuable resource for
our research on arrhythmia detection, primarily due to its
unique characteristics. With 12-lead ECG samples and a
sampling frequency of 500 Hz, the dataset is well-suited
to our research objectives. By utilizing this dataset, we
can effectively train algorithms and models for accurate
arrhythmia detection using real and reliable data. The selec-
tion of the Chapman ECG dataset aligns seamlessly with
the timeline of our research proposal, which was approved
in 2019, as it was the most suitable option among the avail-
able datasets at that time. Moreover, the public availability
of the Chapman ECG dataset ensures the reproducibility of
our research, facilitating further validation and comparison
of the findings. Considering these factors, we are confident
that our decision to employ the Chapman ECG dataset as
the primary dataset for our research is entirely justified.

Data denoising method. This study implemented the sequen-
tial denoising approach to the raw ECG data, according to
the approach proposed by Zheng.32 Initially, a Butterworth
low-pass filter was used to remove the signals with a frequency
of above 50 Hz.45 Then, the local polynomial regression
smoother (LOESS) was utilized to remove the effects of base-
line wandering.46 Finally, non-local means (NLM) were uti-
lized for residual noise reduction.47,48 These processes were
sequentially used to process the raw ECG samples. Figure 2
demonstrates an instance of an ECG signal. Figure 2(a) pre-
sents the raw sample of this ECG, Figure 2(b) displays the
noise reduction performance after the Butterworth low-pass
filter, Figure 2(c) displays the effectiveness of the LOESS
smoother and Figure 2(d) indicates this ECG sample after
NLM at the end of noise removal preprocessing operations.
Generally, the preprocessing operations help normalize
signals and reduce complexities. After noise removal prepro-
cessing operations, ECG signals with frequencies above
50 Hz and the baseline wandering effect were removed.
Since some ECG samples’ lead values were missing and
some contained only zeros, these samples were removed,
and a total of 10,618 samples from this dataset were used.

Data balancing. The Chapman–Shaoxing dataset used is an
imbalanced ECG dataset.32 Imbalanced datasets can result
in biased and poor performance of the model for minority
classes because the model’s training is heavily inclined
toward the majority class through the backpropagation of
the loss function.10 To prevent the loss function from
being disproportionately influenced by the larger sample
category in the imbalanced dataset, we implemented the
SMOTE–Tomek algorithm. First, SMOTE, which is an
oversampling method, increases minority class samples so
that the minority class samples are expanded. This
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synthesizes new plausible examples in the minority class,
but the new samples generated by SMOTE also have
some limitations.49,50 The newly generated samples have
distinct boundary limitations. The Tomek Links algorithm
was combined to achieve data balance50 to avoid this
problem caused by oversampling. The Tomek Links

algorithm is an under-sampling algorithm for identifying
pairs of nearest neighbors in a dataset that have different
classes. SMOTE–Tomek is a combined over- and under-
sampling using SMOTE and Tomek links.51 SMOTE–
Tomek has been shown to be effective in mitigating the
effects of class imbalance.37 After conducting a review, it
was found that none of the previous studies utilized the
SMOTE–Tomek technique on the Chapman ECG dataset.
However, due to the favorable results reported in using
this technique to reduce data imbalance in other studies,
we decided to adopt this method. The proven performance
of this technique in similar scenarios supports its selection
as a suitable approach to address the challenge of class
imbalance in the Chapman ECG dataset.

Model architecture

In the proposed approach, we designed a novel hybrid
model for automatically detecting seven types of heart
arrhythmias, which helps improve overall performance.
The overall structure of the proposed deep learning model
is implemented by combining two neural networks, CNN
and bidirectional RNN (BILSTM-BiGRU). The choice to
integrate these two techniques was made with the under-
standing that their combination provides better outcomes.52

The model parameters’ settings were adjusted to provide
the optimal result. In addition, issues such as which layers
should be used and which parts of the model should be
placed were time-consuming and difficult processes
solved by trying many variations.

Convolutional neural network blocks. One-dimensional con-
volutional neural networks (1D CNN) are a variation of
two-dimensional CNNs (2D CNNs) developed for using
one-dimensional signals such as ECG records.20,21 CNN
may be capable of retrieving valuable data whenever the
input signal is noisy. The network structure is constructed

Figure 1. The methodology followed in this study.

Table 1. Numerical information about the ECG dataset.

Acronym Full Name
Frequency N
(%)

SB Sinus bradycardia 3889 (36.53)

SR Sinus rhythm 1826 (17.15

AFIB Atrial fibrillation 1780 (16.72)

ST Sinus tachycardia 1568 (14.73)

AF Atrial flutter 445 (4.18)

SI Sinus irregularity 399 (3.75)

SVT Supraventricular tachycardia 587 (5.51)

AT Atrial tachycardia 121 (1.14)

AVNRT Atrioventricular node reentrant
tachycardia

16(0.15)

AVRT Atrioventricular reentrant
tachycardia

8 (0.07)

SAAWR Sinus atrium to atrial wandering
rhythm

7 (0.07)

Total 10,646 (100)

Bold value represents the best performance.
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layer by layer to reflect these performance characteristics.
As the amount of network layers increases, features are
learned and expressed in a more abstract and concise
manner.6,53 The raw data of ECG signals of seven heartbeat
types after preprocessing in the training dataset are input
into the three convolutional blocks, each of them consisting
of two Conv1D layers.

Conv1D can learn to distinguish hierarchical features
from raw inputs.5 To determine the correct parameters,
such as the number of filters, kernel size and strides, we
used the experience of Yildirim’s study.5 A leaky rectified
linear unit (Leaky ReLU) activation function was used in
each Conv1D layer. Activation functions are crucial to
increasing the expressiveness of neural networks and
enhancing the approximation capability between the

network’s different layers.36,52 To boost the effectiveness
of feature extraction from the raw ECG signals, one can
add a 1D max-pooling layer of size 2 after each convolu-
tional block to reduce the computational cost. The
pooling layer is a significant step and is commonly the
next layer of convolution, which is also called the subsamp-
ling layer. The max pooling operation divides the input data
into rectangular regions and retrieves the maximum value
from each subregion, thereby reducing the number of
neurons and the dimensionality of the convolution layer
output data. This reduction in network complexity helps
prevent overfitting and enhance the network’s robust-
ness.35,54 A batch normalization layer was used to normal-
ize the data with a dropout layer rate of 40% placed at the
end of each block to avoid the over-fitting problem. The

Figure 2. An instance of ECG signals.
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dropout layer is used when training the CNNs to temporar-
ily disable some neurons from the network with a certain
probability. This reduces the interdependence between
neuron nodes, mitigates overfitting and improves the net-
work’s generalization capability.35

Adaptive max pooling. Adaptive pooling reduces the amount
of data needed in tuning the downstream portion of CNNs.
This technique is utilized to performmultiscale summarization
over convolutional feature maps while capturing the required
behavior of the feature map itself, decrease the convergence
time, and enhance generalization performance.55

Bidirectional RNN (BILSTM-BiGRU). After passing through
the 1D-CNN layers, the output characteristics are fed into
the bidirectional RNN (BILSTM-BiGRU) block consisting
of a BiLSTM and a BiGRU to analyze sequential ECG. It is
proven that bidirectional RNNs can learn sequential fea-
tures from ECG data in both forward and backward direc-
tions.56 BiLSTM is an improvement of LSTM that enables
additional training by traversing the input data twice, once
in the input data (forward) and once in the reverse input
data (backward). BiLSTM models offer better predictions
than LSTMs, although LSTMs reach equilibrium faster than
BiLSTMs.24 The application of convolutional operations to
the input matrix before applying the BiLSTM model is a
promising approach. Additional geographical and temporal
data properties may be incorporated, thereby increasing the
accuracy of predictions.57 The GRU (gated recurrent unit)
network is another type of recurrent neural network that
resembles an LSTM network but has fewer parameters and
converges faster. GRU remembers and forgets its state adap-
tively based on the input signal to the unit. In terms of per-
formance, the difference between the two is often small and
inconclusive, depending on the task and the dataset.58 A
BGRU consists of two GRU layers and can process data in
both directions: one processing the input sequence from left
to right and the other from right to left, with two separate
hidden layers. The outputs of the two GRU layers are conca-
tenated at each time step, forming a bidirectional representa-
tion of the input sequence. BIGRU can capture both the past
and future contexts of a sequence and can improve the per-
formance of tasks that require long-term dependencies or
complex structures.25,26 Each layer has 128 neuron units and
a dropout of 40%, which can alleviate the overfitting concern.

Multi-head self-attention mechanism. RNN compresses all
information over time, which can weaken the time differ-
ence between input features and affect prediction accuracy.
The attention mechanism is used to focus on specific parts
of the input sequence based on their importance.59 The
output of the BILSTM-BiGRU layer is transmitted into
the self-attention layer. The attention layer is primarily
used to focus on a particular network layer. The multi-head
self-attention mechanism allows the model to learn

relevant information in different subspaces of representa-
tion, and it becomes possible to capture a broader range
of discriminative features. The self-attention mechanism
can process the input data in parallel, reducing the com-
plexity of calculations.60,61

Fully connected layer. Finally, the predicted model consists
of a flattening layer and a dropout layer, whose extracted
features are used as the input for a dense layer with a
Relu activation function and 64 neurons. The dropout
layer is set to discard 40% of the input features to prevent
overfitting. The output of the dense layer is then fed to a
SoftMax layer, which predicts the probability of the ECG
heartbeat class.

Model compile. This study utilized FL cross entropy with
alpha= 0.25 and gamma= 2 to calculate the loss in the
model’s training and validation. FL is a modification of
cross-entropy (CE) loss where the scaling factor decays to
zero as the confidence of the classification increases; as a
result, the loss assigned to well-classified examples is
down-weighted.30,62 The FL approach reduces the impact
of imbalanced heartbeat classes by focusing the loss on
minority classes. This technique has been shown to
improve the performance of deep learning models on imbal-
anced datasets.29

Model checkpoint. The model checkpoint option, provided by
Keras, automatically saves the weights of the best suitable
model in terms of a specified metric.7,63 We choose to
monitor the loss value evaluated on the validation data to
keep the model’s weights with the monitor. The schematic illus-
tration of the proposed model to classify the ECG signals of this
study is illustrated in Figure 3. This diagram depicts in detail the
fundamentals of each layer, from the source term to the accurate
prediction layer. The arrhythmia goal category is predicted at
the end of the process. The structure of the constructed
CNN-BILSTM-BiGRU model is depicted in Table 2.

Results
A comprehensive experimental analysis is described in this
section.

Experimental setup

We have designed a hybrid architecture model to effectively
classify imbalanced arrhythmia signals. The experimental ana-
lysis was conducted on the Chapman–Shaoxing ECG dataset.
We excluded certain classes from the initially published
dataset due to an insufficient number of cases. Specifically,
the classes atrial tachycardia (121 samples), atrioventricular
node reentrant tachycardia (16 samples), atrioventricular
reentrant tachycardia (8 samples) and sinus atrium to atrial
wandering rhythm (7 samples) were removed from the
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dataset. Table 3 gives the used dataset, including seven
rhythms, in detail.

To train the proposed model and check the validation, we
randomly divided the dataset into three parts: 80% for training,
10% for validation and 10% for testing the model’s effective-
ness. Training data were balanced by the SMOTE–Tomek
method. The model was trained with 200 epochs. The Adam
optimizer with a learning rate of 0.001 and the categorical accur-
acy and F1Score evaluated the training in our proposed system.

ECG signals were classified by the Hybrid CNN-
BILSTM-BiGRU Model, and then, the model was trained by
using FL. We did not use the early stop criteria to compare the
leads’ performances during the same epochs. Subsequently,
this model was evaluated only once on the test dataset. The
goalwas to prevent information leaks into themodel due tomul-
tiple validation processes, which reduces the reliability of the
model even though the model is not directly trained on the val-
idation data.10 Only a single efficient model was used for all
the experiments. The hyperparameters of the model were not
altered during training. The total parameters of the proposed

model were 3,605,384; there were 3,603,720 trainable para-
meters and 1664 non-trainable parameters introduced by the
batch-normalization layer. Table 4 shows the settings of the
model parameters to obtain the best classification accuracy.
We verified the effectiveness of the proposed model structure
by comparing it with state-of-the-art methods.

Hardware and software

The constructed deep learning models were trained on a com-
puter with AMD Ryzen 7 5800H with Radeon Graphics
running at 3.20 GHz, an NVIDIA GeForce GTX 1650 GPU
and 16 GB of memory. The DNN model was constructed
using the Keras (v. 2.11.0) deep learning library and the
TensorFlow (v. 2.11) framework.

Performance matrices

Our model classified seven classes of arrhythmia. To
measure the overall performance of the proposed algorithm,

Figure 3. Schematic illustration of the proposed model to classify ECG signals.
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we calculated accuracy, recall, precision and F1-score.
These performance metrics are described below:

Accuracy (acc) expresses the percentage of the correctly
predicted number in the total dataset and can be used to
judge how often the model is correct. True positives (TP)
refer to the number of correctly identified positive
instances; true negatives (TN) represent the number of cor-
rectly identified negative instances and false positives (FP)
and false negatives (FN) denote the number of incorrectly
identified positive and negative instances, respectively.
However, the Chapman–Shaoxing ECG dataset is imbal-
anced, so accuracy cannot be used as a good performance
metric. Therefore, recall or sensitivity is utilized to
measure the probability that the model correctly predicts
the class as positive. In addition to recall, precision is a
useful metric for evaluating the performance of classifica-
tion models. It measures the frequency at which a model
predicts a class as positive relative to the total number of
positive instances across all classes. It provides a measure
of the model’s ability to make accurate positive predictions.
The F1-score is a weighted average of recall and precision,
offering an overall measure of a model’s performance; it
considers its ability to correctly identify positive instances
and minimize false positives. The formulas for each per-
formance metric are shown in Equations (1)-(4), respect-
ively.

Accuracy = TP+ TN

TP+ TN + FP+ FN
(1)

Recall = TP

TP+ FN
(2)

Precision = TP

TP+ FP
(3)

Table 2. The structure of the constructed CNN-BILSTM-BiGRU
model.

Layer (Type) Output Shape Param #

Conv1D (None, 453, 64) 1408

Conv1D (None, 447, 64) 28,736

MaxPooling1D (None, 223, 64) 0

Batch normalization (None, 223, 64) 256

Dropout (None, 223, 64 0

Conv1D (None, 219, 128) 41,088

Conv1D (None, 213, 512) 459,264

MaxPooling1D (None, 106, 512) 0

Batch normalization (None, 106, 512) 2048

Dropout (None, 106, 512) 0

Conv1D (None, 94, 256) 1,704,192

Conv1D (None, 86, 256) 590,080

MaxPooling1D (None, 43, 256) 0

Batch normalization (None, 43, 256) 1024

Adaptive MaxPooling1D (None, 1, 256) 0

Dropout (None, 1, 256) 0

Bidirectional LSTM (None, 1, 256) 394,240

Bidirectional GRU None, 1, 256) 296,448

Attention (None, 1, 256) 65,537

Flatten (None, 256) 0

Dense (None, 64) 16,448

Dropout (None, 64) 0

Dense (None, 64) 4160

Dropout (None, 64) 0

Dense (None, 7) 455

Total params: 3,605,384.
Trainable params: 3,603,720.
Non-trainable params: 1664.

Table 3. The used dataset includes seven rhythms

Acronym Name Number of Total Samples N (%) Frequency

AF Atrial flutter 437

SB Sinus bradycardia 3884

SVT Supraventricular tachycardia 582

ST Sinus tachycardia 1563

SR Sinus rhythm 1825

AFIB Atrial fibrillation 1778

SI Sinus irregularity 397

Total 10,466

Bold value represents the best performance.
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F1− score = 2 recall precision

recall+ precision
(4)

Model performance

Figure 4 depicts the training and validation graphs obtained
from the training process.

The Chapman ECG dataset consists of a 12-lead ECG
sample with a sampling frequency rate of 500 Hz for a duration
of 10 s. As shown in Figure 4, the models were trained separ-
ately for each lead, resulting in a total of 12 models, each dedi-
cated to a specific lead. The dataset distribution ensures an
equal number of samples and 5000 data points per sample
for each lead. This approach enables individual analysis of
the unique features associated with each lead, facilitating the
examination and optimization of the model’s performance in
detecting specific patterns and characteristics within each
lead. We present the performance of each lead separately.

The developed model performed well in examining lead
epoch classification. After 200 epochs of training, the cat-
egorization accuracy values for the dataset were almost
100%, with a relatively flat curve. It is evident from these
graphs that the proposed model exhibited promising
results for all lead ECG signals during training. Figure 5
depicts the training, validation and testing performance
for arrhythmia classification, respectively. This experimen-
tal analysis was accurately calculated. Each evaluation
metric is labeled with a different color in these figures,
and each bar on each figure represents the accuracy of
each ECG lead. The best validation and testing accuracy
performance was archived by lead II (0.9845 validation
accuracy and 0.9857 testing accuracy). The proposed
model achieved a lower performance on lead V4 (0.9662
validation accuracy and 0.9599 testing accuracy).

After the training process, the performance of the pro-
posed model was tested on the test sets. The trained
model was applied to the test records and yielded promising
results on unseen data and confusion matrices obtained
during the test process. The confusion matrix plays an
essential role in evaluating a model’s performance. The
testing-based confusion matrix for arrhythmia categoriza-
tion using the dataset is displayed in Figures 6 and 7,
which indicate the number of correctly predicted samples
against incorrectly predicted samples. In these figures, the
model achieved 0.9857 accuracy on lead II and 0.9599
accuracy on lead V4 signals.

In general, this table shows that the proposed method had
an appropriate distribution regarding all classes with no
emphasis on a specific class with overfitting and no bad

performance concerning a specific arrhythmia class. In this
matrix, most wrong states occurred between AF and AFIB
arrhythmia classes, as well as SR and SI classes. As far as
medical science is concerned, this miscalculation between
two rhythm classes is not crucial because the diagnosis of
these two arrhythmias can be reached simultaneously.

According to the confusion matrices, we calculated
several performance metrics for each lead, including preci-
sion, recall and F1-score. The precision performance of
each class based on each lead is presented in Table 5.

The highest precision values were obtained using lead
aVF to detect SB (100%). The proposed model achieved the
lowest precision performance on lead V4 (0.9084) to detect
AF. The recall performance of each class based on each
lead is given in Table 6. The highest recall performance
values were obtained using lead II and lead aVF to detect
SVT (100%). The proposed model achieved the lowest
recall performance on lead V3 (0.9252) to detect AFIB.
Table 7 shows the F1-score performance of each class based
on each lead. The highest F1-score performance values were
obtained using lead aVF to detect SVT (99.61%). The pro-
posed model achieved the lowest recall performance on lead
V4 (0.9237) to detect AF. It is interesting to know that lead
II and lead aVF depicted a better performance in all of these
tables. The results are given in Tables 5–7.

Discussion
This paper introduced a new Hybrid CNN-BILSTM-
BiGRU algorithm that utilizes FL cross entropy and a
multi-head self-attention mechanism to address the challen-
ging problem of classifying various cardiac arrhythmias
based on the Chapman–Shaoxing dataset. The SMOTE–
Tomek technique was also employed to mitigate the
effects of imbalanced data and detect and classify seven
types of cardiac arrhythmia based on 12-lead ECG
signals. Several studies have proposed models for diagnos-
ing arrhythmias using this public dataset; thus, the advan-
tage is that our results are comparable with those of
previous studies on this database.

Numerous hybrid and non-hybrid deep learning models
have been proposed in the literature; the distinction of our
novel approach lies in the fact that no previous study devel-
oped a hybrid CNN-BILSTM-BiGRU algorithm by using
FL cross entropy and a multi-head self-attention mechanism
based on the Chapman–Shaoxing dataset.

In a comprehensive analysis of studies presented in
Table 8, the performance of deep learning models for

Table 4. Settings of the model parameters.

Network Layers Optimizer Learning Rate Dropout Epoch Batch Size Cost Function

25 Adam 0.001 0.4 200 128 Focal loss
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cardiac arrhythmia detection across various databases was
reported. By comparing the performance of our proposed
model with the models presented in several other articles,
we have demonstrated the effectiveness and competitive-
ness of our approach in detecting cardiac arrhythmias.

For instance, a study5 based on the Chapman dataset used
the CNNmodel to generate deep spatial features based on raw
ECG signals of separate single leads. Then, the output of the
CNNmodel was allocated to the LSTMmodel to generate the
deep temporal features. This model, based on 10,436 patients,
achieved a 92.24% accuracy for detecting seven classes, and

based on 10,588 patients, it revealed an accuracy of 96.13%
for detecting four classes. The algorithm proposed herein
yielded a higher accuracy of 6.33% compared to the method
proposed in5 for detecting seven classes.

Another method is based on raw ECG signals of separate
single leads. The Detrending-ResNet model was introduced
to detect AFIB, atrial flutter (AFL), SVT, ST and SB
arrhythmias based on RR interval signals relying on
Chapman ECG samples. Its results for the classification
of five rhythms manifested an accuracy of 98.55% in the
evaluation section.64 Compared to the method introduced

Figure 4. The training and validation graphs obtained from the training process of each lead separately.
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in,64 our proposed algorithm detected one more class (SI) and
yielded a higher accuracy. SR and SI classes are very similar,
and, in most models, most wrong states occur between them,
which reduces the model’s accuracy. Evidence suggests that
the proposed model based on raw ECG signals of separately
single leads effectively amalgamated the beneficial features
of CNN and BILSTM-BIGRU, culminating in superior accur-
acy, which was further enhanced by an attention mechanism.

Our model processed each lead individually and was
trained with single-lead ECG records, but recently, fusion
algorithms have been used in the literature to diagnose arrhyth-
mia by fusing 12-lead data. This method has been proposed
in.65–68 In a study,65 after fusing the 12-lead data, CNN
models were coded by genetic programming. CNN trees
were responsible for learning deep structural features from
functional data extracted from 12 leads. According to the
evaluation results, the proposed method yielded 97.60%
accuracy based on the Chapman dataset. In another study,
interpretable meta-structural learning was proposed in com-
bination with CNN models encoded as the evolutionary
trees of genetic programming (GP) algorithms. The perform-
ance of the proposed classification model constructed for
lead III ECG had 96.92% accuracy and, for the fusing of
12-lead ECG, exhibited 98.29% accuracy for the classification
of seven types of arrhythmias based on the Chapman dataset
recorded from 10,646 patients. We did not combine the per-
formance of all leads, and our proposed model was trained
with single-lead ECG records but yielded higher accuracy
than the methods proposed in.65,66

The teacher and student models were trained in another
recently introduced method. The teacher model was trained
with 12-lead ECG records, whereas the student model was

trained with single-lead ECG records; the student’s accur-
acy was 98.13%, and the teacher model constructed with
the Chapman12-lead ECG dataset yielded a 98.96% accuracy
for seven rhythm classes. Regardless of the lead selected from
the 12 leads, the student model performed almost similarly to
its teacher and exhibited only a small drop of 0.83% in accur-
acy. Our proposed model yielded a higher accuracy of 0.44%
compared to the student method proposed in Sepahvand and
Abdali-Mohammadi,67 regardless of the lead selected from
the 12 leads. According to the results displayed in the learning
curve graph, the model converged when the number of epochs
reached 150, whereas the proposed model in67 converged
when the number of epochs reached 400. In another
method, the relationships of 12 ECG leads were measured
using mutual information (MI) indices extracted from the
ECG leads as an adjacency matrix, illustrated by the devel-
oped graph convolutional network (GCN) and included in
the ECG-based diagnostic method. The GCNMI structure
with 15 layers achieved 99.71% accuracy.68

In another study, Sadeghi et al. introduced CNNs with
SE-Residual blocks and a self-attention mechanism to
detect left-bundle branch blocks on the PhysioNet 2020
Challenge database with 10,344 samples from 12-ECGs.
This model yielded an accuracy of 98.91%.69 However,
in the present study, we employed a combination model
to detect seven types of arrhythmias.

In studies utilizing the MIT-BIH database, only data
from lead II are used for the analysis and classification of
cardiac rhythms. Gosia Bigam et al. developed a model
that includes a CNN in combination with bilateral long-
term and short-term memory to detect five types of arrhyth-
mias. This model achieved 99.51% accuracy.70 In other

Figure 5. Training, validation and testing acc performance for all classes.
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Figure 6. Testing-based confusion matrix for arrhythmia categorization using leads (I-aVF).
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Figure 7. Testing-based confusion matrix for arrhythmia categorization using leads (V1–V6).
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studies, within the dataset, Islam et al. employed a combin-
ation of a dual-structured RNN network with a hierarchical
attention mechanism based on dilated CNN to detect five
types of arrhythmias. In this study, an adversarial genera-
tive network was utilized to address the data imbalance
issue, resulting in an accuracy of 99.60%.38 Another
study by Islam et al. introduced the same model architecture
without employing the attention mechanism, achieving an
accuracy of 99.99%.39 Besides, Khan et al. utilized CNNs
to classify five types of arrhythmias. To address the data
imbalance, they employed the SMOTE–Tomek technique
and achieved 92.86% accuracy.71 Rai et al. introduced a
combined CNN-LSTM model to detect six types of
cardiac arrhythmias based on samples from the MIT-BIH
and PTB Diagnostic datasets. The data imbalance issue
was addressed using the SMOTE–Tomek technique with
an accuracy of 99.2%.42

Although our proposed model was trained with a single
lead and we did not combine the performance of all leads, all
lead signals were analyzed; the distinction lies in that, in the
present study, themodel was trained using all 12 ECG leads sep-
arately, whereas these studies solely utilized data from lead II.
Although Chapman–Shaoxing is an imbalanced ECG dataset,
none of the reviewed studies conducted based on Chapman–
Shaoxing reported a suitable method to avoid the effects of
class imbalance. For the first time, this study implemented the
SMOTE–Tomek technique while also employing cross-entropy

loss as a cost function to address the imbalance issue. The
results demonstrated that these methods were effective in
mitigating the effects of class imbalance in Chapman–
Shaoxing. Furthermore, the present study utilized a multi-
headed self-attention mechanism for adjusting the network
structure and classifying seven arrhythmia classes.
Overall, there are several justifications to improve the pro-
posed method compared to previous methods. The accur-
acy of our model is high (98.57%), and it has a good
generalization ability for detecting ECG arrhythmias.

Conclusion
This paper introduced a new Hybrid CNN-BILSTM-BiGRU
algorithm that utilizes FL cross entropy and a multi-head self-
attention mechanism to address the challenging problem of
classifying various cardiac arrhythmias based on ECG data.
The SMOTE–Tomek technique was also employed to miti-
gate the effects of imbalanced data and detect and classify
cardiac arrhythmias. The experimental results suggested that
the proposed classification model trained with a single lead
achieved an accuracy of 98.57% for classifying seven types
of arrhythmias in the Chapman ECG dataset using the lead
II and samples of 10,466 patients. Furthermore, the model’s
performance was compared to that of state-of-the-art
methods based on deep learning models, and the results
demonstrated that it is highly competitive.

Table 5. The precision performance of each class based on each lead.

AF SB SVT ST SR AFIB SI

Lead I 0.95.6 0.9919 0.9921 0.9843 0.9948 0.9395 0.9681

Lead II 0.9792 0.9973 0.9895 0.9974 0.9896 0.9704 0.9781

Lead III 0.9262 0.9761 0.9544 0.9213 0.9716 0.9426 0.9821

Lead aVR 0.9401 0.9738 0.9819 0.9740 0.9792 0.9547 0.9750

Lead aVL 0.9736 0.9918 0.9868 0.9793 0.9869 0.9653 0.9617

Lead aVF 0.9765 1 0.9921 0.9948 0.9795 0.9607 0.9826

Lead V1 0.9462 0.9867 0.9472 0.9888 0.9792 0.6577 0.9586

Lead V2 0.9496 0.9760 0.9692 0.9945 0.9947 0.9358 0.9197

Lead V3 0.9570 0.9893 0.9614 0.9398 0.9973 0.9513 0.9544

Lead V4 0.9084 0.9761 0.9634 0.9735 0.9819 0.9517 0.9658

Lead V5 0.9578 0.9512 0.9644 0.9865 0.9947 0.9556 0.9753

Lead V6 0.9375 0.9787 0.9842 0.9689 0.9841 0.9386 0.9761

Bold values represent the best performance.
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Table 6. The recall performance of each class based on each lead.

AF SB SVT ST SR AFIB SI

Lead I 0.9584 0.9812 0.9947 0.9766 0.9571 0.9676 0.9826

Lead II 0.99 0.99 1 0.98 0.97 0.9801 0.9975

Lead III 0.9554 0.9813 0.9947 0.9534 0.9519 0.9403 0.9577

Lead aVR 0.9500 0.9947 0.9974 0.9715 0.9544 0.9428 0.9701

Lead aVL 0.9685 0.9759 0.9921 0.9844 0.9544 0.9701 0.9975

Lead aVF 0.9842 0.9866 1 0.9897 0.9696 0.9751 0.9801

Lead V1 0.9685 0.9920 0.9974 0.9145 0.9496 0.9625 0.9801

Lead V2 0.9396 0.9786 0.9974 0.9326 0.9370 0.9475 0.9975

Lead V3 0.9368 0.9893 0.9868 0.9517 0.9519 0.9252 0.9876

Lead V4 0.9395 0.9840 0.9735 0.9508 0.9620 0.9303 0.9801

Lead V5 0.9553 0.9893 0.9974 0.9482 0.9470 0.9675 0.9801

Lead V6 0.9424 0.9840 0.9894 0.9714 0.9369 0.9526 0.9851

Bold values represent the best performance.

Table 7. F1-score performance of each class based on each lead.

AF SB SVT ST SR AFIB SI

Lead I 0.9544 0.9865 0.9934 0.9804 0.9755 0.9533 0.9753

Lead II 0.9843 0.9919 0.9947 0.9882 0.9782 0.9752 0.9877

Lead III 0.9406 0.9787 0.9742 0.9671 0.9616 0.9415 0.9698

Lead aVR 0.9450 0.9841 0.9896 0.9728 0.9667 0.9487 0.9726

Lead aVL 0.9711 0.9838 0.9894 0.9819 0.9704 0.9677 0.9793

Lead aVF 0.9803 0.9933 0.9961 0.9922 0.9746 0.9678 0.9814

Lead V1 0.9572 0.9893 0.9704 0.9502 0.9642 0.9601 0.9692

Lead V2 0.9446 0.9773 0.9831 0.9626 0.9650 0.9416 0.9570

Lead V3 0.9468 0.9893 0.9740 0.9554 0.9741 0.9381 0.9707

Lead V4 0.9237 0.9800 0.9684 0.9620 0.9719 0.9409 0.9729

Lead V5 0.9565 0.9699 0.9806 0.9670 0.9702 0.9615 0.9777

Lead V6 0.9399 0.9813 0.9868 0.9702 0.9599 0.9455 0.9778

Bold values represent the best performance.
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We conducted an analysis of all lead signals separately
to evaluate the model’s effectiveness in diagnosing and
classifying different types of arrhythmias. Although we
did not combine all the leads, the results indicated that
the proposed model’s performance can be generalized to
12-lead signals. Our hybrid approach proved to be a signifi-
cant and accurate method.

The future scope of the research team involves investigating
the proposed model’s performance on another dataset collected
in Isfahan, Iran. This dataset contains 2047 ECG signals col-
lected for 10 or more seconds with a sampling frequency
rate higher than 500 Hz, labeled for 11 rhythms, including
the same 7 rhythms plus 4 other rhythms, collected from
2020 to 2022. This endeavor aims to provide further insights
into the model’s performance on diverse datasets and enable

a comprehensive comparison with existing approaches. By
exploring these additional datasets, we aim to enhance the
understanding of our model’s effectiveness and potential in
various diagnostic scenarios. Furthermore, the research team
aims to develop a new deep learning method for detecting
arrhythmias by combining the information of 12 leads.

Overall, the hybrid CNN-BILSTM-BiGRU algorithm,
assisted by a multi-head self-attention mechanism and the
SMOTE–Tomek technique, proved to be a highly effective
approach for diagnosing and classifying different types of
arrhythmias, representing a significant improvement over
current methods. The experimental results showed that the pro-
posed model combined the advantages of CNN and BILSTM-
BIGRU and achieved better accuracy with the attention mech-
anism, which proves the effectiveness of this mechanism.

Table 8. A comparison of the proposed model and some other state-of-the-art methods that used different leads.

Ref. Study Dataset
Number of ECG
Records Rhythm Method

Performance
(Accuracy %)

64 Faust et al. Chapman 10,093 5 Detrending, ResNet 98.55

5 Yildirim et al. Chapman 10,588
10,436

7
4

CNN-LSTM Lead II: 92.24
Lead II: 96.13

65 Meqdad et al. Chapman 10,646 7 Meta CNN Trees lead III: 96.92
12-lead fusion:98.29

66 Meqdad et al. Chapman 10,646 7 CNN Trees 12-lead fusion:97.60

67 Sepahvand
et al.

Chapman 10,436 7 Teacher model
Student model

12-lead: 98.96
98.13

68 Andayeshgar
et al.

Chapman 10,494 7 GCN-MI 12-lead:99.71%

69 Sadeghi et al. PhysioNet
2020

10,344 1 SE-Residual blocks and a self-attention
mechanism

91.98

70 Gosia Bigam
et al.

MIT-BIH 48 samples
half-hour

5 CNN-BILSTM Lead II: 99.51

38 Islam et al. MIT-BIH 48 samples
half-hour

5 CNN-BILSTM-BiGRU-CCE Lead II: 99.90

71 Khan MIT-BIH 48 samples
half-hour

5 CNN Lead II: 92.86

42 RAI MIT-BIH and
PTB

48 samples
half-hour

6 CNN-LSTM Lead II: 99.2

The proposed model Chapman 10,466 7 CNN-BILSTM-BiGRU-Attention, FL Lead II: 98.57
Lead aVF= 98.34
Lead III: 97.17

Bold values represent the best performance.
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