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Abstract: Biocompatible amphiphilic statistical copolymers P(MEA/MPCm) composed of
2-methoxyethyl acrylate (MEA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were prepared
with three different mol% of the hydrophilic unit MPC (m = 6, 12 and 46 mol%). The monomer reactivity
ratios of MEA (rMEA) and MPC (rMPC) were 0.53 and 2.21, respectively. The rMEA × rMPC value of 1.17
demonstrated that statistical copolymerization was successful. P(MEA/MPC12) and P(MEA/MPC46)
copolymers did not undergo aggregation in water, whereas the P(MEA/MPC6) copolymer formed
micelles in water with a hydrodynamic radius (Rh) of 96.9 nm and a critical aggregation concentration,
which was determined using pyrene fluorescence, at 0.0082 g/L. The restricted motion of the protons
in the hydrophobic MEA units in the micelles’ cores provided additional evidence of self-association
in P(MEA/MPC6).

Keywords: statistical copolymer; 2-methoxyethyl acrylate; 2-methacryloyloxyethyl phosphorylcholine;
self-association behavior

1. Introduction

The self-association of random copolymers has become increasingly important in drug delivery
systems [1–3], imaging techniques [4–7] and many other fields [8]. The self-association behavior of
amphiphilic random copolymers is more complicated than that of block polymers because of their
ill-defined, randomly arranged monomer sequence. As such, the association between the hydrophobic
units of a single polymer chain can form unimer micelles, and is independent of the polymer’s
concentration or the presence of interpolymer micelles, which are generated via the interaction of multiple
polymer chains above the critical aggregation concentration (CAC). Morishima et al. [9] investigated the
self-organization of random copolymers of sodium 2-(acrylamido)-2-methylpropanesylfonate (AMPS)
and methacrylamides bearing bulky hydrophobic groups, including n-dodecyl (LA), cyclododecyl
(CD) and 1-adamantyl (AD) groups. Here, the aggregates formed from these random copolymers
in aqueous solutions were due to intra and/or intermolecular self-association. The copolymers of
AMPS and CD or AD tended to form unimer micelles up to a concentration limit of ca. 7 wt.%;
conversely, the LA-containing copolymers self-associated to form unimers at concentrations below
0.2 wt.% and interpolymer aggregates at higher concentrations. These results showed that the chemical
structure of the hydrophobic monomer in random copolymers was a critical factor in the self-association
process. Additionally, the self-association of random copolymers depends on other factors, such
as the type of solvent, the hydrophobic content in the copolymer [10,11], the distribution of the
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hydrophobic groups along the polymer chains [12], and the prevailing protocol for micellization [13].
Recently, Terashima et al. [11] reported on amphiphilic random methacrylate copolymers composed of
poly(ethylene glycol) methacrylate and alkyl methacrylate (RMA) with linear alkyl chains that were 1–18
carbon units long. Here, copolymers with an RMA content of 20–40% tended to undergo single-chain
folding even at polymer concentrations of up to ~6 wt.%. Generally, the copolymers tended to exist
as unimer micelles in water when the concentration of dodecyl methacrylate (DMA) was less than 40
mol%, and as multi-chain aggregates when the concentration of DMA was over 50 mol%. Neal et al. [14]
showed that the copolymer’s composition was important to the mean nano-object size of the structures
formed from random copolymers. Here, a series of poly(n-butyl methacrylate-stat-methacrylic acid)
(P(BMA-stat-MAA) statistical copolymers with various BMA/MAA compositions (i.e., from 77:23 to
93:7) was synthesized. It was found that the radii of the nano-objects formed by the self-assembly of
the copolymers were independent of the copolymer’s molecular weight, but inversely proportional
to the hydrophilic methyl methacrylate (MMA) content. In other words, fewer MAA units in the
copolymer chain resulted in the formation of larger nano-objects. Since the polymer’s micelles were
formed with a hydrophobic core and a hydrophilic shell, molecules that exhibited poor water solubility,
such as pharmaceutical drugs, could be encapsulated, transported, and protected from the surrounding
environment. Moreover, this tactic minimized the associated side effects of the drug and extended its
circulation time [15].

The formation of micelles in water was investigated for applications in biological environments.
Here, the hydrophobic domain of the polymer’s micelles encapsulated the hydrophobic drugs and
imaging moieties, while the outer hydrophilic shell exhibited biocompatibility with various biological
applications. Hydrophobic poly(2-methoxyethyl acrylate) (PMEA) showed excellent biological and
blood compatibility, and inhibited the adsorption of proteins [16–19]. Hoshiba et al. [16] reported that the
surface of PMEA underwent weak interactions with proteins and blood components due to the presence
of “intermediate water” molecules in the polymer that crystallized at elevated temperatures. However,
very little is known about the mechanism of expression of hemocompatibility in PMEA. Tanaka et al. [18]
reported that the MEA content in MEA/2-hydroxyethyl methacrylate copolymers was an important
parameter affecting the state of the water molecules in the polymer, ultimately influencing platelet
compatibility. The lowest values associated with the adhesion number and the morphological changes
in the platelets on the copolymer’s surface were observed in copolymers containing 80–100 mol% MEA.
Conversely, the copolymers with less than 60 mol% MEA exhibited poor biocompatibility. Furthermore,
PMEA has a glass transition temperature as low as −50 ◦C, is soluble in organic solvents, and
exhibits traits such as hydrophobicity, transparency and adhesiveness, thereby making this compound
a good coating material for various substrates. Reports have shown that PMEA is an effective
coating agent for artificial heart–lung systems [20,21]. Poly(2-methacryloyloxyethylphosphorylcholine)
(PMPC) has pendant phosphorylcholine groups and a structure that is identical to that of cell
membrane phospholipids, thereby making it a useful biocompatible material for suppressing protein
adsorption [22]. Copolymers containing 2-methacryloyloxyethyl phosphorylcholine (MPC) units with
different structures have also been utilized for long-term biomedical applications [23–32]. Inspired by
these results, we theorized that an MEA/MPC copolymer would exhibit excellent biocompatibility and
would be useful for numerous biomedical applications.

In this research, biocompatible amphiphilic copolymers like P(MEA/MPCm), which were composed
of hydrophobic 2-methoxyethyl acrylate (MEA) and hydrophilic MPC, were prepared via conventional
free-radical polymerization. Here, m was equivalent to 6, 12 and 46 mol%, and was indicative of the
number of hydrophilic MPC units present within the copolymer, as indicated via 1H NMR. In addition,
the self-association behavior of P(MEA/MPCm) was investigated in water. In this case, P(MEA/MPC12)
and P(MEA/MPC46) were dissolved in water as unimers, whereas P(MEA/MPC6) formed interpolymer
micelles containing a PMEA hydrophobic domain and a PMPC shell (Figure 1).
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2. Materials and Methods 

2.1. Materials 

2-Methoxyethyl acrylate (MEA, >98%), which had been obtained from Wako Pure Chemical 
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dimethylvaleronitrile) (V-70, >95%), which had been purchased from Wako Pure Chemical (Osaka, 
Japan), was used as received without any further purification. The pyrene (97%) purchased from 
Wako Pure Chemical was purified via recrystallization using methanol. Methanol was dried using 
4Å molecular sieves and purified via distillation. Water was purified with an ion-exchange column 
system. 
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an oil bath at 40 °C. Quenching procedures were conducted via rapid cooling in an ice bath when the 
monomer conversion, which was monitored via 1H NMR, was less than 20%. The reaction mixture 
was dialyzed (MWCO:500 ~ 1000) using pure water for one night. Next, the solvent was removed via 
evaporation, and then the residue obtained was subsequently dissolved in 300 µL of methanol-d4 
before 1H NMR analysis was conducted. The MEA and MPC contents in the copolymer were 
determined by comparing the 1H NMR integral intensities of the peaks attributed to the pendant 
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Figure 1. Synthesis and conceptual illustration of the self-assembly processes of the statistical copolymer,
P(MEA/MPCm), in water.

2. Materials and Methods

2.1. Materials

2-Methoxyethyl acrylate (MEA, >98%), which had been obtained from Wako Pure
Chemical (Osaka, Japan), was removed with a Sigma-Aldrich (St. Louis, MI, USA) inhibitor
remover column. 2-Methacryloyloxyethyl phosphorylcholine (MPC), which had been obtained
from NOF Corp. (Tokyo, Japan), was purified using a previously reported method [33].
2′-Azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70, >95%), which had been purchased from Wako
Pure Chemical (Osaka, Japan), was used as received without any further purification. The pyrene (97%)
purchased from Wako Pure Chemical was purified via recrystallization using methanol. Methanol was
dried using 4Å molecular sieves and purified via distillation. Water was purified with an ion-exchange
column system.

2.2. Monomer Reactivity Ratio and Polymerization Kinetics

The monomer reactivity ratio was determined using the Fineman–Ross method [34]. Here, MEA,
MPC and V-70 were dissolved in methanol with feed ratios of MPC ranging from 10% to 90% (([MEA]
+ [MPC])/[V-70] = 100/0.4). A small amount of methanol-d4 was added to the solution, which was
transferred to NMR tubes and purged with argon gas for 30 min. Polymerization was performed in an
oil bath at 40 ◦C. Quenching procedures were conducted via rapid cooling in an ice bath when the
monomer conversion, which was monitored via 1H NMR, was less than 20%. The reaction mixture
was dialyzed (MWCO:500 ~ 1000) using pure water for one night. Next, the solvent was removed via
evaporation, and then the residue obtained was subsequently dissolved in 300 µL of methanol-d4 before
1H NMR analysis was conducted. The MEA and MPC contents in the copolymer were determined by
comparing the 1H NMR integral intensities of the peaks attributed to the pendant methylene protons
in MEA (3.62 ppm) and MPC (3.72 ppm) (Figure S2 and Table S1).

The ratio (mMEA/mMPC = f ) of the MEA and MPC contents in the copolymer was determined
using the following equation:

mMEA

mMPC
=

[MMEA]0
[MMPC]0

×
rMEA[MMEA]0 + [MMPC]0
rMPC[MMPC]0 + [MMEA]0

(1)

where mMEA and mMPC are the molar contents of MEA and MPC in the copolymer, [MMEA]0 and
[MMPC]0 are the initial molar concentration of the MEA and MPC monomers before polymerization, and
rMEA and rMPC are the monomer reactivity ratios of MEA and MPC. Equation (1) can be rewritten as:

F( f − 1)
f

=
rMEAF2

f
− rMPC (2)
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where F is the ratio of the initial molar concentrations of MEA and MPC (=[MMEA]0/[MMPC]0). A plot
of F(f − 1)/f as the ordinate and (F2/f ) as the abscissa results in a straight line whose slope is represented
by rMEA, and the intercept is the negative rMPC value.

The relationship between the extent of the monomer conversion and the polymerization time
was also studied. Here, MEA (65.5 mg, 0.503 mmol), MPC (148.5 mg, 0.503 mmol) and V-70 (1.28 mg,
0.00412 mmol) were dissolved in 0.5 mL of methanol-d4 ([MEA]/[MPC]/[V-70] = 50/50/0.4) before the
solution was transferred to an NMR tube and purged with argon gas for 30 min. The polymerization
reaction was performed at 40 ◦C, and NMR analysis was used to monitor the process. The resulting
NMR spectra were recorded at different polymerization times to determine the extent of conversion of
the MEA and MPC monomers by comparing the integral intensity ratios of the vinyl protons observed
at 6.37 and 5.62 ppm, respectively, before and after polymerization.

2.3. Preparation of the MEA Homopolymer

PMEA was synthesized via the conventional free-radical polymerization reaction using the
following procedure. First, MEA (0.260 g, 2.0 mmol) and V-70 (2.45 mg, 0.008 mmol) were dissolved
in methanol (2.0 mL), and the mixture was purged with Ar gas in 30 min before polymerization
was conducted at 40 ◦C for 18 h. We noted that MEA conversion was 66.7%. After polymerization,
the solution was dialyzed using methanol for one day and pure water for an additional 24 h. Mild
precipitation was observed after dialysis. The solution was transferred to a 20-mL glass bottle
(Figure S3a) and was subjected to dynamic light scattering (DLS) as a means of monitoring the
formation of PMEA polymer micelles. After a portion of the aqueous solution was evaporated under
vacuum, the residue obtained was dissolved in methanol-d4 or the mobile phase to prepare samples
for 1H NMR analysis or size exclusion chromatography (SEC), respectively.

2.4. Preparation of the P(MEA/MPCm) Copolymer

Statistical copolymers (i.e., P(MEA/MPCm)) were synthesized via conventional free-radical
polymerization in methanol using three MPC feed mol% values, namely, 5, 10 and 40 mol% (Figure 1).
A typical procedure for the synthesis of P(MEA/MPCm), with m in the feed of 10 mol%, was as follows:
first, MEA (0.240 g, 1.84 mmol), MPC (0.0594 g, 0.201 mmol) and V-70 (25.2 mg, 0.082 mmol) were
dissolved in methanol (2.0 mL). The mixture was then purged with Ar gas for 30 min and subsequently
stirred at 40 ◦C for 18 h. After polymerization, the reaction mixture was dialyzed using methanol for
one day and then pure water for an additional 24 h. After dialysis, the P(MEA/MPC6) solution obtained
was cloudy, indicating the formation of polymer micelles. Clear liquids were obtained in other cases,
i.e., for P(MEA/MPC12) and P(MEA/MPC46) (Figure S3). The polymer solutions after dialysis were
used for experiments focused on determining the association behavior of the copolymers in water. 1H
NMR spectroscopy was conducted after purification to estimate the MEA and MPC contents of the
copolymers obtained. A portion of the solution was freeze-dried, and the residue was dissolved in
methanol or methanol-d4 to prepare a solution for further experimentation.

2.5. Measurements

1H NMR spectroscopy was performed on a JNM-ECZ 400 MHz spectrometer (JEOL, Tokyo,
Japan) using D2O or methanol-d4 as the deuterated solvents. Spin–spin relaxation times (T2) were
measured using the Car–Purcell–Meiboom–Gill method. Echoes were observed at the 180◦ pulse, and
the amplitude of the successive echoes decayed exponentially with a time constant equal to T2 [35].
Array parameters of the delay list, which included 16 points, were set for conducting the measurements.
The data were analyzed via the Weight Linear Spin Lock method using Delta v5.3.1 software (JEOL,
Tokyo, Japan). SEC was performed using an instrument equipped with a 7.0-µm bead GF-7M HQ
column from Shodex (Tokyo, Japan) and a Shodex RI-101 refractive index (RI) detector operating at
40 ◦C. The elution phase was methanol containing 0.1 M lithium perchlorate at a flow rate of 0.6 mL/min.
Poly(ethylene oxide) was used to prepare the universal standard curve to determine the number-average
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molecular weight (Mn) and the molecular weight distribution (Ð). Sample solutions were filtered
using a 0.2-µm pore size membrane conducting the relevant measurements. The hydrodynamic radius
(Rh) and light scattering intensity (LSI) of P(MEA/MPCm) in water were obtained using a Malvern
(Worcestershire, UK) Zetasizer 7.11 equipped with a 4-mW He–Ne laser at 25 ◦C. The wavelength of
the light source was 632.8 nm. The data obtained were analyzed using a Malvern (Worcestershire, UK)
Zetasizer 7.11. The polymer concentration (Cp) of P(MEA/MPCm) in aqueous solution was fixed at
1.0 g/L. The sample solutions were filtered with a 0.45-µm pore size membrane before conducting the
analysis. Transmission electron microscopy (TEM) was performed using a JEOL JEM-2100F (Tokyo,
Japan) with an acceleration voltage of 160 kV. The samples were prepared by adding the respective
aqueous polymer solution dropwise onto a JEOL (Tokyo, Japan) 150-mesh copper TEM grid, and
subsequently staining it with 0.1 wt.% phosphotungstic acid aqueous solution. Next, the samples were
dried under vacuum conditions at room temperature. Static light scattering (SLS) measurements were
conducted using a DLS-7000 Otsuka Electronics PhotalTM (Osaka, Japan) at 25 ◦C, with a He–Ne laser
(10.0 mW at 632.8 nm) as the light source. The weight-average molecular weight (Mw), the radius of
gyration (Rg) and the second virial coefficient (A2) of the P(MEA/MPC6) polymer micelles in water were
estimated from Zimm plots constructed using data derived from aqueous polymer solutions at two
different concentrations (i.e., 0.25 and 0.5 g/L). The Mw and Rg values of all copolymers in methanol in
the random-coil state were calculated from the Zimm plot at 10 g/L. The RI increment (dn/dCp) values
were determined using a DRM-3000 differential refractometer (Otsuka Electronics Co., Osaka, Japan)
at 25 ◦C. The dn/dCp values were 0.0619, 0.0768 and 0.104 mL/g for P(MEA/MPCm) in methanol, with
m values of 5, 10 and 40 mol%, respectively, in the feed. These values were used for conducting SLS
analysis of the corresponding samples. The CAC of the polymer aqueous solution was determined
using pyrene as the fluorescent probe. The fluorescence spectra of the pyrene/polymer aqueous
solutions were recorded with an F-2500 fluorescence spectrophotometer from Hitachi (Tokyo, Japan).

3. Results and Discussion

3.1. Determination of the Monomer Reactivity Ratio

Conventional free-radical polymerizations of equimolar concentrations of MEA and MPC were
conducted in the presence of the V-70 initiator at 40 ◦C. Here, the monomer concentration was estimated
based on the observed decrease in the integral intensity of the vinyl protons in the 1H NMR spectra,
at 6.37 and 5.62 ppm for MEA and MPC, respectively. The time conversion plots (Figure S1a) indicated
that MPC conversion rapidly reached 90% after 120 min and continued to increase to 99% after
300 min. Conversely, the MEA reaction was notably slower, as MEA conversion after 300 min was
82%. These results were consistent with the reported monomer reactivity findings obtained using the
Fineman–Ross method (Figure 2b). The first-order kinetic plots showed that both plots were linearly
related to the polymerization time during the early stages of the polymerization reaction until the
100-min time mark, indicating that the propagating radical concentration was constant (Figure S1b).
The late stages of the polymerization reaction (i.e., after 100 min) produced plots with a downward
curvature, suggesting that the propagating radical concentration had decreased. Thus, a straight fitted
line was obtained from the Fineman–Ross plots, in which the slope and intercept represented the
monomer reactivity ratios of MEA and MPC, respectively. The monomer reactivity ratios of MEA
and MPC were 0.53 and 2.21, respectively. Since the reactivity of MPC was almost four times higher
than that of MEA, the probability of MPC being incorporated into the copolymer was much higher.
Figure 2a also showed that the MPC mol% in the copolymer was always higher than the percentage of
MPC in the feed ratio. The reactivity ratios of MEA and MPC were in good agreement with the values
observed during the copolymerization of methyl acrylate (MA) and MMA, both of which possessed
similar structures. Grassie et al. [36] reported that the reactivity ratios of MA and MMA were 0.35 and
1.8, respectively, during copolymerization at 65 ◦C. For MA and MMA, these values were 0.47 and
2.3, respectively, during copolymerization at 130 ◦C, indicating that the reactivity ratio of MMA was
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almost four to five times higher than MA, and was temperature-independent. From the results, rMEA ×

rMPC was 1.17, which demonstrated that an almost random monomer sequence was the main feature
of the copolymerization process in these compounds. Note, however, that the repeating units in the
copolymer were composed of more MPC, since MPC was significantly more active than MEA.
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3.2. Preparation of PMEA and P(MEA/MPCm)

PMEA was prepared via conventional free-radical polymerization reactions. The conversion of
MEA, which was estimated from the corresponding NMR data, was 66.7%. The Mn and Ð values
were 1.32 × 104 g/mol and 2.54, respectively. The P(MEA/MPCm) copolymers were prepared with
three different compositions (i.e., m = 6, 12 and 46 mol%) via conventional free-radical polymerization
reactions. The conversions of the MEA and MPC monomers were in the ranges of 72–89% and 98–100%,
respectively. The MPC content in the copolymer was estimated from 1H NMR spectra obtained
in methanol-d4, using the integral intensity ratio of the peaks attributed to the pendant methylene
protons in the MEA and MPC units; these peaks were observed at 3.62 and 3.72 ppm for MEA and
MPC, respectively (Figure 3 and Table S2). SEC measurements were conducted for all polymers,
and unimodal curves were observed for all samples with Ð values between 2.0 and 2.6 (Figure S4).
We theorized that this was due to the occurrence of uncontrolled polymerization. The SEC charts
indicated that P(MEA/MPC46) had the longest retention time (Figure S4), which was possibly due
to unexpected interactions between the SEC column and the copolymer. The Mw values of a single
polymer chain were determined using SLS measurements in methanol. Unimodal distribution was
observed in the DLS results for the methanolic solutions of the copolymer, with small Rh values between
9 and 10 nm (Figure S5). The Rg and Mw values of the copolymers were estimated via conducting SLS
measurements in methanol (Figure S6). Here, we noted that the Rg/Rh values for all the copolymers
were less than or equal to 1.6, indicating that the polymers were dissolved in methanol as with a
large polydispersity index (PDI) [37]. In particular, the Rg/Rh value for P(MEA/MPC46) was associated
with a large degree of error due to the bimodal Rh distribution (Figure S5). These features made it
possible to determine the molecular weight of the individual polymer chains using SLS measurements
in methanol. The characteristics of all samples are summarized in Table 1.
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a m indicates the MPC content (mol%) in the copolymer, as estimated using NMR data obtained in methanol-d4.
b The number-average molecular weight (Mn) and molecular weight distribution (Ð) were estimated via SEC
analysis. c The apparent weight-average molecular weight (Mw) and the radius of gyration (Rg) were estimated
from SLS measurements in methanol. d The hydrodynamic radius (Rh) was obtained from DLS measurements in
the methanolic solutions of the copolymers.

3.3. Self-Association Behavior of P(MEA/MPCm) in Water

NMR measurements were recorded for all copolymers in D2O (Figure 4). Here, the pendant
methylene proton signals of the MEA units were observed at 3.68 ppm in D2O, which was shifted
downfield from their position at 3.62 ppm in methanol-d4. As a result, the signals of the MEA and
MPC units overlapped at 3.72 ppm.

The dynamic motion of individual molecular segments could be estimated by measuring the 1H
NMR spin–spin relaxation time (T2) [38,39]. We noted that when the polymer micelles were formed,
the motion of the protons relative to the hydrophobic MEA unit was restricted to the hydrophobic
domain of the polymer micelle. As a result, restrictions in the motion of the MEA units decreased
the T2 values. Here, the T2 values were estimated for the methyl protons at 3.39 and 3.23 ppm in
the MEA and MPC units of the copolymers, respectively, in D2O (Figure 5). We noted that the T2

values of the pendant methyl protons in the MEA units decreased with decreasing m, as exemplified
by the smallest value of 332 ms, which was obtained when m was 6 mol%. For P(MEA/MPC12) and
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P(MEA/MPC46), the T2 values (namely, 528 and 561 ms, respectively) were greater than those observed
for P(MEA/MPC6). The T2 values did not significantly change when m increased from 12 to 46 mol%.
These observations indicated that the motion of the hydrophobic MEA units in P(MEA/MPC6) was
restricted due to the formation of the hydrophobic domain. In contrast, the motion of the MEA units
in P(MEA/MPC12) and P(MEA/MPC46) was free, since these copolymers were dissolved as unimers
in water. The T2 values of the pendant methyl protons in the MPC units were almost the same,
regardless of the m value; for P(MEA/MPC6), P(MEA/MPC12), and P(MEA/MPC46), these values were
393, 414, and 412 ms, respectively. As noted earlier, the hydrophilic MPC units were arranged on the
surface of the micelles when P(MEA/MPC6) formed polymer micelles, whereas P(MEA/MPC12) and
P(MEA/MPC46) were dissolved as unimers. Since the MPC units were always exposed to water, their
motion remained almost the same for all samples. The T2 values of the pendant methyl protons in the
MPC units of P(MEA/MPC6) decreased slightly as some of the MPC units may have been incorporated
into the hydrophobic domain due to the statistical sequence in the copolymer’s structure. These results
provided additional evidence of the formation of polymer micelles of P(MEA/MPC6) in water.Polymers 2020, 12, x FOR PEER REVIEW 8 of 14 
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The self-association behavior of P(MEA/MPCm) in water was studied by conducting DLS
measurements on the copolymer aqueous solutions at Cp = 1.0 g/L (Figure 6). Here, the Rh distribution
values for PMEA were established as a reference sample. Small amounts of precipitate were obtained
after the purification of PMEA via dialysis, which contained high molecular weight chains (i.e., large
aggregates) that were removed via filtration. The PMEA chains with lower molecular weight values
did not precipitate, as they were dispersed in water during dialysis. For the aqueous solution of
P(MEA/MPC46), unimodal distribution was observed with a small Rh value of 9.0 nm, suggesting that
P(MEA/MPC46) was dissolved in water as the unimer. Interestingly, bimodal distribution was observed
in P(MEA/MPC12), which contained one peak with the same Rh value (i.e., 9.0 nm) as P(MEA/MPC46) in
water and another peak with a higher Rh (i.e., 222 nm) value. In this case, the formation of interpolymer
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associates composed of some of the hydrophobic MEA units in the copolymer was identified as the
reason for these observations.Polymers 2020, 12, x FOR PEER REVIEW 9 of 14 
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and (d) P(MEA/MPC46) in pure water at Cp = 1.0 g/L at 25 ◦C.

Generally, weak hydrophobic interactions were noted when the hydrophobic content in the
polymer was insufficient, resulting in the formation of only a few micelles. For PMEA and
P(MEA/MPC6), unimodal distribution was noted with Rh values of 290 and 96.9 nm, respectively,
indicating that P(MEA/MPC6), with its 94 mol% of the hydrophobic MEA unit, easily formed
interpolymer aggregates in water. The radius of the polymer aggregates increased when PMEA
was employed, resulting in self-association to generate larger aggregates in water. All of the above
mentioned findings were supported by the results obtained via LSI analysis of these samples. Here,
the precipitation observed after dialysis using pure water was evidence that PMEA could form very
large aggregates. Only the supernatant was used for DLS analysis, and the estimated concentration
of the PMEA aqueous solution was believed to be lower than the true value. This was proposed as
the possible reason for the lower LSI values observed for PMEA relative to P(MEA/MPC6) in water at
the same concentration. By extension, the LSI values of both PMEA and P(MEA/MPC6) were greater
than those obtained for P(MEA/MPC12) and P(MEA/MPC46) due to the formation of polymer micelles.
Since P(MEA/MPC46) was dissolved as random coils in water, the smallest recorded LSI value in our
study was 0.087 Mcps. As noted, the aqueous solution of PMEA became cloudier after a few days,
whereas the P(MEA/MPC6) aggregates exhibited increased stability over the same observation time.
The stability of the P(MEA/MPC6) aggregates during dilution was confirmed via DLS measurements.
Here, the Rh values of P(MEA/MPC6) were nearly constant and independent of Cp in the 0.05–5 g/L
region (Figure S7). Note, however, that lower concentrations were difficult to measure due to the low
LSI values associated.
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On another note, spherical objects were observed for PMEA and P(MEA/MPC6) copolymers using
TEM (Figure 7), with average radii of 240 and 103 nm for PMEA and P(MEA/MPC6), respectively.
Additional TEM observations for P(MEA/MPC6) are shown in Figure S8.
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Figure 7. Transmission electron microscopy (TEM) images for (a) PMEA and (b) P(MEA/MPC6) at
Cp = 1.0 g/L in water.

The characterization of the P(MEA/MPC6) micelles in water was conducted via SLS measurements
(Figure 8). Here, the dn/dCp value for P(MEA/MPC6) in water was 0.0651 mL/g, and was subsequently
used during SLS analysis to estimate the apparent Mw of the P(MEA/MPC6) micelles. The aggregation
number (Nagg), which is the number of individual polymer chains present in one micelle, was calculated
from the Mw values of the polymer micelle in water and the individual polymer chain in methanol
obtained from SLS measurements. The Nagg of P(MEA/MPC6) micelle was 143 in water, indicating
the formation of interpolymer micelles. It was speculated that the hydrophobic interactions between
the MEA units in the individual polymer chains were too weak to facilitate the self-folding of a
single chain. For P(MEA/MPC6) with 94 mol% of the relatively hydrophobic MEA units in the
copolymer’s composition, hydrophobic interactions between multiple chains resulted in interpolymer
aggregates. This phenomenon was also seen in the aqueous solution of random copolymers of sodium
2-(acrylamido)-2-methylpropanesulfonate and n-dodecyl methacrylamide, and in the copolymers of
poly(ethylene glycol) methacrylate and n-dodecyl methacrylate. Here, interpolymer aggregates were
formed when the hydrophobic content of the copolymer exceeded 50 mol% [10,11].
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Theoretically, the shape and size distribution of the aggregates can be estimated using Rg/Rh.
For instance, a value of 0.778 represents a rigid sphere with a narrow distribution, whereas a value
of 1.0 is associated with spherical aggregates, and values higher than 2 are often seen in rodlike
structures [37,40]. In our study, the Rg/Rh value for P(MEA/MPC6) in water was 0.95, indicating that
the polymer micelles were spherical (Table 2). The A2 value provides information about the affinity of
solute molecules with the solvent of interest [41]. For our case, the A2 value obtained from the SLS
analysis of P(MEA/MPC6) in water was 2.5 × 10−5 cm3 g−2 mol. This positive value was proof that
the hydrophilic MPC unit had completely covered P(MEA/MPC6), thereby facilitating its solubility in
water. The A2 value for the MPC homopolymer was reported as 2.5 × 10−4 cm3 g−2 mol in aqueous
solution [42]. The A2 value for P(MEA/MPC6) was 10 times lower than that of the MPC homopolymer,
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which was attributed to the composition of the copolymer; here, the copolymer consisted of 94 mol%
of the hydrophobic MEA unit.

Table 2. The association behavior of P(MEA/MPC6) in water.

Sample Mw(SLS) a

× 10−7 (g/mol)
Rh

b

(nm)
Rg

a

(nm) Rg/Rh
RTEM

c

(nm) Nagg
d A2

a
× 105

(cm3 g−2 mol)
CAC e

(g/L)

P(MEA/MPC6) 3.37 96.9 92.1 0.95 103 143 2.5 0.0082
a Estimated from static light scattering (SLS) analysis of the aqueous solutions. b Obtained from DLS analysis
of the aqueous solutions. c Estimated via TEM. d Aggregation number (Nagg) calculated from the Mw values of
the polymer micelle in water and the individual polymer chains in methanol obtained from SLS measurements.
e Critical aggregation concentration (CAC) estimated via the pyrene fluorescence method.

The CAC value of P(MEA/MPC6) was determined via fluorescence spectroscopy using pyrene
as the probe molecule. Pyrene is hydrophobic and its fluorescence spectrum is heavily dependent
on the polarity of the surrounding environment. The intensity ratio (I3/I1) between the third and the
first vibronic peaks in the pyrene emission spectra can be used as a measure of the environmental
polarity [43]. Therefore, the fluorescence spectra of pyrene in the presence of P(MEA/MPC6) at varying
Cp were recorded at the excitation wavelength of 334 nm (Figure S9). The changes in the I3/I1 ratio in
the pyrene emission spectra were plotted as a function of Cp to determine CAC (Figure 9). We noted
that the copolymers did not form micelles below the CAC. The solubility of pyrene in water ensured
that the resulting fluorescence spectrum remained almost unchanged (I3/I1 ≈ 0.572). This calculated
value was nearly the same as that obtained for pyrene in the absence of the copolymer (I3/I1 ≈ 0.562),
demonstrating that there was no discernible difference in the polarity of the environment surrounding
pyrene as the P(MEA/MPC6) copolymer was locked in random coils at low concentrations in water.
However, the formation of copolymer micelles above the CAC meant that the pyrene molecules were
entrapped in the hydrophobic domains. As such, the pyrene molecules were surrounded by a non-polar
environment. The number of pyrene molecules in the hydrophobic domain increased when Cp rose.
Consequently, the I3/I1 value gradually increased to a maximum of 0.602 at Cp = 0.08 g/L. The CAC
value of P(MEA/MPC6) in water was determined at the inflection point as 0.0082 g/L. Unlike the
formation of unimer micelles independent of Cp, P(MEA/MPC6) was incapable of aggregation in dilute
aqueous solutions. Interpolymer association occurred when the P(MEA/MPC6) concentration increased
to a certain level. Therefore, the CAC value was determined as the Cp at which the interpolymer
micelles started to form.
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the pyrene molecules were entrapped in the hydrophobic domains. As such, the pyrene molecules 
were surrounded by a non-polar environment. The number of pyrene molecules in the hydrophobic 
domain increased when Cp rose. Consequently, the I3/I1 value gradually increased to a maximum of 
0.602 at Cp = 0.08 g/L. The CAC value of P(MEA/MPC6) in water was determined at the inflection 
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incapable of aggregation in dilute aqueous solutions. Interpolymer association occurred when the 
P(MEA/MPC6) concentration increased to a certain level. Therefore, the CAC value was determined 
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Figure 9. Fluorescence intensity ratio (I3/I1) of pyrene in the presence of P(MEA/MPC6) plotted against
the polymer concentration (Cp). I3 and I1 are the fluorescence intensities of the third and the first
vibronic peaks, respectively, in the pyrene emission spectra recorded at the excitation wavelength of
334 nm.

4. Conclusions

Biocompatible, amphiphilic, statistical copolymers, P(MEA/MPCm), which were composed
of hydrophobic MEA and hydrophilic MPC units, were prepared via conventional free-radical
polymerization reactions. P(MEA/MPC12) and P(MEA/MPC46) possessed a high MPC content, were
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dissolved as unimers, and did not aggregate in water. On the other hand, P(MEA/MPC6) formed
uniform micelles composed of a PMEA core and a PMPC shell, with Rh and Nagg values of 96.9 nm and
133, respectively, due to the hydrophobic interactions of the MEA units. The mobility of the MEA units
in P(MEA/MPC6) was restricted, as confirmed via the observed 1H NMR spin–spin relaxation times.
A slight decrease in the motion of the MPC units was also observed and was attributed to the entrapment
of some MPC units in the hydrophobic domain; the associated interpolymer aggregates were covered
by phosphorylcholine groups. From these results, we concluded that P(MEA/MPCm) copolymers with
m ≤ 6 mol% formed micelles, and, as such, were well suited for biomedical applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/8/1808/
s1: Figure S1. (a) Time-conversion and (b) the pseudo first-order kinetic plots for conventional free-radical
polymerization of equimolar concentrations of MEA (•) and MPC (�) in methanol at 40 ◦C. [M]0 and [M]
were the monomer concentrations at a polymerization times of 0 and t min, respectively; Figure S2. 1H NMR
spectra of P(MEA/MPCm) with various feed mol% of the hydrophilic MPC in methanol-d4 at room temperature;
Figure S3. Photographs of (a) PMEA, (b) P(MEA/MPC6), (c) P(MEA/MPC12) and (d) P(MEA/MPC46) solutions
after dialysis using pure water; Figure S4. SEC elution curves for (a) PMEA, (b) P(MEA/MPC6), (c) P(MEA/MPC12)
and (d) P(MEA/MPC46) using methanol containing 0.1 M lithium perchlorate as the eluent at 40 ◦C; Figure S5.
Hydrodynamic radius (Rh) distributions for (a) P(MEA/MPC6), (b) P(MEA/MPC12) and (c) P(MEA/MPC46) in
methanol at Cp = 10 g/L at 25 ◦C; Figure S6. Zimm plots of (a) P(MEA/MPC6), (b) P(MEA/MPC12) and (c)
P(MEA/MPC46) in methanol at 25 ◦C; Figure S7. Hydrodynamic radius (Rh) of P(MEA/MPC6) as a function of
polymer concentration (Cp) in water; Figure S8. Transmission electron microscopy (TEM) images for P(MEA/MPC6)
at Cp = 1.0 g/L in water with different magnification; Figure S9. Fluorescence spectra of pyrene excited at 334
nm in water in the presence of P(MEA/MPC6) at Cp = 0.08 (solid line) and 0.0012 g/L (dashed line); Table S1.
The Fineman–Ross parameters of the copolymers, as determined using 1H NMR measurements in methanol-d4 at
room temperature; and Table S2. The composition of the copolymer, as estimated using 1H NMR measurements
in methanol-d4 at room temperature.
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