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Abstract: ‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’) is a crop pathogen that is a member of
the 16SrXII-A ribosomal subgroup. It is also known as stolbur phytoplasma and causes yield losses
in several important crops, especially in Solanaceous crops. Different strains of the pathogen are
regularly reported all over the world, particularly in the Mediterranean region. In this study, the
determination of genetic diversity for the pathogen infecting tomatoes and potatoes was carried out
by using multilocus sequence typing analysis for the Tuf, SecY, and Vmp1 genes to gain insight into the
epidemiology of ‘Ca. P. solani’ in Turkey. Genetic diversity of the phytoplasmas was investigated by
sequence-based phylogenetic analyses and in silico RFLP analysis of related genes. It was determined
that all ‘Ca. P. solani’-related strains infecting tomatoes and potatoes were tuf-b, which is linked to
field bindweed (Convolvulus arvensis L.). Tomato or potato-infecting ‘Ca. P. solani’-related strains
showed similarities with each other; however, the isolates collected from different plants showed
genetic differences in terms of the SecY gene. This study indicates that the highest genetic variability
of collected samples was found in the Vmp1 gene. RsaI-RFLP analysis of TYPH10F/R amplicons
showed that potato-infecting ‘Ca. P. solani’-related strains were found to be similar to some existing
V types. However, the V-type of tomato-infecting isolates is not similar to any previously reported
V-type. The results indicate that there could be an important genetic diversity of ‘Ca. P. solani’-related
phytoplasmas in Turkey. This could indicate various ways in which the pathogen has adapted to the
two host plants as a consequence of the various Vmp1 gene rearrangements seen in these two plant
hosts. Obtained results also indicate that the epidemiology of ‘Ca. P. solani’-related phytoplasmas in
the tomato and potato agroecosystem may be better understood with the use of molecular data on
the complex of vmp-types.

Keywords: ‘Candidatus Phytoplasma solani’; potato; tomato; SecY; Vmp1; Tuf ; 16SrDNA

1. Introduction

Potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum L.) are two significant
crops of the Solanaceae family, with an annual production of 13.095.258 and 5.100.674 tons,
respectively, in Turkey [1]. As with many other wild and cultivated plants, tomato and
potato plants are seriously affected by phytoplasma agents, which are phytopathogenic
Mollicutes invading phloem tissues (the sieve elements) of the host plant. The diseases
caused by phytoplasmas have been causing significant economic losses. The most com-
mon phytoplasma agent detected in tomato and potato production areas in Turkey is ‘Ca.
phytoplasma solani’ [2–5]. ‘Ca. phytoplasma solani’ was also detected and characterized
in different plant species, e.g., sesame [2–5], grapes [6], maize [7], pomegranate [8], and
cucumber [9] in Turkey. ‘Ca. P. solani’ causes “bois noir” in vineyards and leaf redness
diseases in maize plants [10]. Bois noir is one of the serious phytoplasma diseases that
affect grapevines and is linked to stolbur phytoplasma [11]. ‘Ca. P. solani’ also results
in stolbur (yellow type disease) in potato, tomato, pepper, tobacco, carrot, celery, garden
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bean, parsley, etc. [11]. Stolbur disease is characterized by a significant yield loss. The
polyphagous insect vector Hyalesthes obsoletus (Cixiidae), which can complete its life cycle
on just a few plant species, typically transmit the pathogenic agent ‘Ca. P. solani’ from
plant to plant [12,13]. Because of its intricate ecological and epidemiological complex life
cycle, it can adapt to different agroecosystems. Therefore, spreading the disease agent
via insects or other crop plants into various geographical regions is inevitable [14,15]. A
symptomless period in crop plants for a certain amount of time may also mask the disease
is being detected unless delicate molecular methods have been employed. Therefore, rapid
and simple phytoplasma detection/typing methods have been in great demand [16]. The
use of the 16SrDNA sequence often does not provide enough information to carry out most
of the epidemiological investigations based on strain discrimination [17]. Multigene geno-
typing techniques have been developed to distinguish different phytoplasma strains. ‘Ca.
Phytoplasma solani’ has many different strains that have been molecularly characterized
based on the Tuf, SecY, Vmp1, and Stamp sequencing. Many researchers have developed
molecular typing methods, including several genes [11,18,19]. Molecular detailed charac-
terization or typing of ‘Ca. P. solani’ has so far identified 33, 59, and 80 genetic variants
based on the sequences of SecY, Stamp, and Vmp1, respectively [14,20]. Additionally, the
Tuf gene sequence studies indicated the existence of three ‘Ca. P. solani’ Tuf-types (a, b1,
and b2) are linked to various ecological systems [14,21–23]. The housekeeping gene Tuf
encoding the elongation factor Tu was examined to ascertain the molecular epidemiology
of ‘Ca. P. solani’ [24]. RFLP characterization of Tuf revealed two main types: Tuf a, which
infects stinging nettle (Urtica dioica), and Tuf -b (later called Tuf -b1), which is linked to field
bindweed (Convolvulus arvensis) [25]. In a limited area of Germany, a third minor genotype
known as Tuf -c was also discovered in hedge bindweed (Calystegia sepium) as an alternate
host plant [24]. By the sequence analysis, novel tuf-type variants were associated with
stinging nettle, designated as Tuf -b2 [26,27] and Tuf -ab [28,29] in vineyards in Austria,
Macedonia, Croatia, and Montenegro.

SecY is an integral membrane protein that forms a heterotrimeric channel-like structure
with SecE and SecG in the SecY secretion pathway of preproteins via the bacterial cell
membrane, which is mediated by ATPase [30,31]. Because of its capacity to interact with
numerous targeting factors, chaperones, and accessory proteins, the SecYEG translocon is
globally conserved and plays a vital role in bacterial protein transport regulating protein
translocation across the cytoplasmic membrane [32] because protein translocation is a
ubiquitous and necessary mechanism that permits secretory proteins to leave cells and
membrane proteins to integrate into lipid bilayers [33].

Vmp1 and Stamp are the other housekeeping genes encoding membrane proteins.
Phylogenetic analyses of Vmp1 and Stamp-based molecular markers allow us to better
understand how phytoplasma population structures and dynamics are formed [34,35]. The
Vmp1 gene encodes a 557-amino-acid protein with a suspected signal peptide and a possible
C-terminal transmembrane domain [36]. The mature 57.8 kDa Vmp1 protein is presumably
embedded in the phytoplasma membrane, with a significant hydrophilic portion exposed
to the cell surface [36].

Understanding the genetic diversity of phytoplasma is a powerful tool for analyzing
their epidemiology and putting proper disease monitoring and management in place. The
primary focus of this study was to investigate the genetic diversity of ‘Ca. P. solani’ infecting
tomato and potato plants to highlight the potential of genetic variants in the country and
what they are. The presence of ‘Candidatus Phytoplasma solani’-related strains have been
previously reported in Turkey. However, no studies have been conducted yet in terms of
studies on genes that provide epidemiological information. Based on the nested-PCR assay,
we first identified the causal agents of the symptomatic tomato and potato sampled from
the Kahramanmaraş and Adana regions. Afterward, some informative genes were used for
detailed characterization of the pathogen to evaluate the epidemiologically informative
Tuf, Vmp1, and SecY genes of ‘Ca. P. solani’-related strains in naturally infected tomato and
potato to elucidate genetic relationships that could have importance in disease transmission
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in the region. Our data also prove that different ‘Ca. P. solani’ lineages infect tomato and
potato plants in close regions.

2. Results
2.1. Phytoplasma Detection and Symptom Observation

Potato plants with leaf yellowing or reddish discoloration with rolling leaf symp-
toms and tomato plants with floral abnormalities with sepal hypertrophy symptoms were
observed and sampled from the surveyed fields (Figure 1). The presence of plants with
these symptoms at the edge of the field raised suspicion of vector-borne disease infection.
Guided sampling was performed to collect diseased plants, so all samples were taken from
symptomatic plants. P1/Tint and F2n/R2 primer pairs were used to amplify DNA bands
(about 1.2 kb) from 16 symptomatic leaf tissues and the positive control (data not shown).
However, no bands were observed from the asymptomatic plants and negative control.
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Figure 1. Disease symptoms related to the presence of ‘Ca. P. solani’-related strains in tomato and
potato. (a) symptoms of potato stolbur phytoplasma of aerial tubers, (b) stolbur-infected potato
plants in the field have yellowing and upward rolling top leaves, (c,d); Stolbur phytoplasma-infected
tomato plants exhibited signs of sepal hypertrophy.

The representative sequences were chosen and submitted to GenBank under the acces-
sion numbers ON856337, ON856338, and ON856338, respectively. The 16SrDNA partial
sequences of positive samples showed 100% identity with each other and 99.70% with that
of ‘Ca. P. solani’ (GenBank accession number AF248959). Phylogenetic analysis based on
16SrDNA was also performed to classify the subgroup of phytoplasmas. According to
the phylogenetic analysis results, all 16 positive samples were found to be infected with
16SrXII-A group phytoplasmas (Figure 2). While constructing the phylogenetic tree, one
representative isolate was selected from each type based on other genes.
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Figure 2. The Phylogenetic tree was constructed using ~1.2 kbp 16SrDNA gene fragments from the
study’s phytoplasmas (bold) and the other phytoplasma species obtained from GenBank. The ‘Ca. P.
solani’ strains detected in Turkey’s border neighbors are also included in the tree. MEGA7-created a
neighbor-joining analysis was performed. At the nodes of the phylogenetic tree, bootstrap values
greater than 70% were provided after 1000 bootstrap repeats. A distance of 0.01 substitutions per
nucleotide site is represented by the scale bar. GenBank accession numbers and ribosomal subgroups
are reported on the right of the strain names. A. laidlawii was employed as the outgroup to root
the tree.

2.2. Sequence Typing by RFLP Analyses and Phytogenetic Relationships

The first identification based on the 16S rDNA was accomplished using iPhyClas-
sifier based on in silico RFLP patterns (similarity coefficient 1.00), which showed that
the discovered phytoplasma belonged to the 16SrXII-A subgroup. Distinctive enzyme
digestion patterns such as AluI, MseI, TaqI, and 14 others are shown in Figure 3. Based on
the 16SrDNA gene, all isolates were found to exhibit the same RFLP profile. Since addi-
tional genes were recommended as criteria for thorough differentiation of ‘Ca. Phytoplasma’
species [37], classification was performed using sequence typing for three epidemiologically
informative genes, Tuf, Vmp1, and SecY.

HpaII and RsaI restriction enzymes performed RFLP studies on the Tuf and Vmp1 gene
amplicons, respectively. All 16 positive plant samples yielded successful amplification of
the Tuf gene with Tuf1f/r, and TufAYf/r primers gave the expected ~0.96 kbp PCR product
(Figure 4a). The HpaII restriction profiles showed the presence of the bindweed-associated
Tuf-b type as defined by [38] in all infected tomato and potato samples (Figure 4b). The
Tuf gene partial sequences of positive samples showed 100% identity with each other
and 99.89% with that of ‘Ca. P. solani’ (GenBank accession number JQ797670.1) and
representative sequences were selected and submitted to GenBank under the accession
numbers ON864440, ON864441, and ON864442, respectively.
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Figure 3. In silico RFLP patterns discriminating ‘Ca. P. solani’-related genotypes obtained from
tomatoes and potatoes using iPhyclassifier. (A–C) are AluI, MseI, and TaqI digestions, respectively,
indicating that the isolates are in subgroup 16SrXII-A. (D): the digestion profile of all samples with
RFLP enzymes commonly used in phytoplasma 16Sr grouping. M: φX174 DNA-HaeIII Digest ladder
(size range: 72, 118, 194, 234, 271, 281, 310, 603, 872, 1078, 1353 bp).
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Figure 4. Wet and in silico gel images related to Tuf amplicons. (a) 1% agarose gel image of TufAYf/r
amplicons. (b) RFLP analysis of the fTufAY/rTufAY amplicons of the elongation factor Tu (Tuf ) gene
with HpaII. Only ‘Candidatus Phytoplasma solani’ Tuf -type b was detected. M1: 1 kb DNA ladder and
M2: φX174 DNA-HaeIII Digest ladder.
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SecY gene sequences were determined for 16 samples from Adana and Kahraman-
maraş. All samples gave the expected ~0.9 kbp bp PCR amplicons with PosecF1/R1 and
PosecF3/R3 primer pairs (data not shown). Regardless of the region from which it is
isolated, all ‘Ca. P. solani’ isolates infecting tomatoes were found identical to each other in
terms of partial SecY gene fragments. Potato-infecting ‘Ca. P. solani’ isolates were found
to be identical too; however, when the SecY gene fragments infecting tomato and potato
plants were compared, it was detected that 99.88% similarity according to the blast analysis.
Representative sequences were selected and submitted to GenBank under the accession
numbers ON885880, ON885881, and ON885882, respectively. Phylogenetic analysis of
‘Ca. P. solani’-related strains infecting tomato and potato based on the SecY gene showed
clustering of all strains in a close cluster to SecY-4-type phytoplasmas (Figure 5).
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Figure 5. Unrooted phylogenetic tree constructed using ~0.9 kbp SecY gene fragments from ‘Ca. P.
solani’ strains representing SecY sequence variants. The evolutionary history was inferred by using
the Maximum Likelihood method based on the Tamura-Nei model. The neighbor-joining approach
was used to do the minimum evolution analysis, and the bootstrap was reproduced 1000 times.
The names of the strains and their GenBank accession numbers are shown in the figure, and the
nucleotide sequences acquired in this study are highlighted with red diamonds. SecY types are shown
in parentheses.
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All 16 ‘Ca. P. solani’-related strains yielded Vmp1 gene amplicons of around ~1.4 kbp
length. All TYPH10F/R nested-PCR products showed identical lengths (Figure 6). How-
ever, the RsaI digestion profiles of tomato and potato samples were found to be different,
as seen in Figure 7. Regardless of the region from which it is isolated, all ‘Ca. P. solani’
isolates infecting tomatoes were found identical to each other in terms of partial Vmp1 gene
fragments. Potato-infecting ‘Ca. P. solani’ isolates were found to be identical too; however,
when the Vmp1 gene fragments infecting tomato and potato plants were compared, it
was detected that 93.54% similarity according to the blast analysis. Representative se-
quences were selected and submitted to GenBank under the accession numbers ON885883,
ON885884, and ON885885, respectively.
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Figure 7. pDRAW32 1.1.147 generated RsaI digestion RFLP patterns of TYPH10F/TYPH10R PCR
fragments of the Vmp1 gene after virtual digestion with the reference strains. The RsaI-RFLP profiles
are labeled on top with the V nomenclature as suggested by the SEE-ERA.NET nomenclature [39].
The blue line has been added to make it easier to compare digested bands. M: marker HaeIII digested
ϕX174 is shown on the right and left. Marker fragments length from top to bottom are 1353, 1078,
872, 603, 310, 281, 271, 234, 194, 118, and 72 bp.

A phylogenetic tree was built using Vmp1 gene sequences from the NCBI GenBank
database to represent the various RFLP patterns. These sequences were differentiated from
each other according to RsaI-RFLP digestion profiles. RsaI enzymatic digestion profiles
with Vmp1 gene amplicons enabled the identification of two distinct RFLP types (Figure 7),
according to different V types reported in the previous studies [21,29,39].
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Different profiles have been obtained for Vmp1, similar to the SecY gene-based typing.
While the RsaI digestion profiles of the ‘Ca. P. solani’ Vmp1 gene fragments isolated
from potatoes were found close to the V1 type, the digestion profile of RsaI isolated from
tomatoes was uniquely determined. The Vmp1 gene sequence variations varied in tomato
and potato isolates.

In this study, the phytoplasmas infecting the tomato and potato were also distin-
guished by their distinct Vmp1 profiles thanks to restriction digestion using RsaI enzymes
(Figure 7).

3. Discussion

The first report of stolbur disease was recorded in 1988 in Turkey [40]. Epidemic
occurrences of tomato or potato stolbur disease were previously reported in different re-
gions of Turkey [2,3,41,42]. As seen by previous studies, the association between ‘Ca. P.
solani’-related strains and other phytoplasma species have already been noted in Turkey.
However, very few studies report detailed characterization, such as MLST or multigene
characterization of phytoplasma diseases in Turkey. By employing DNA sequences of
the 16S rRNA, Tuf, SecY, and Vmp1 genes of ‘Ca. P. solani’, this study emphasized that
there could be different genetic variations infecting tomatoes and potatoes in Turkey. This
study used a multiple gene sequence analysis to discriminate between closely similar ‘Ca.
P. solani’ variations infecting crops belonging to the same family. The two provinces are
about 200 km apart, and the altitude difference is 545 m. The genetic differences between
the samples did not differ according to the region, and the most important difference was
detected with the SecY and Vmp1 genes. It has been determined that this genetic difference
between the pathogen originates from the cultivated plant from which it is isolated. The
16SrDNA and Tuf partial gene sequences of positive samples from tomato and potato
showed 100% identity with each other and >99% with reference strains. The conserved
16SrDNA gene has been the main basis for the classification of phytoplasmas into ribosomal
groups based on 16S and subgroups, as well as the naming of “Candidatus Phytoplasma”
species. However, due to the high level of rRNA nucleotide sequence conservation across
numerous phytoplasma lineages, identifications based only on the 16SrDNA gene have
some limitations. Therefore, different genes other than 16SrDNA are generally used for
further typing of phytoplasmas. The Tuf gene is more informative than 16SrDNA for the
epidemiological search of the ‘Ca. P. solani’ strains. The epidemiological informative and
housekeeping gene-based data of ‘Ca. P. solani’ are combined in their genetic structure.
Based on the nucleotide polymorphisms of the gene constitutive elongation factor Tu en-
coding (Tuf), ‘Ca. P. solani’ often belongs to one of two molecular types (tuf a, b) [38]. Tuf -b,
one of the epidemiological types of ‘Ca. P. solani’ is mainly reported as Convolvulus arven-
sis-related (field bindweed). According to our findings, all ‘Ca. P. solani’-related isolates
were found as Tuf -b type. The abundance of the Tuf -b-type-infecting tomato and potato
plants indicates that the Convolvulus arvensis-related alternative host system is the primary
component of ‘Ca. P. solani’-related strain ecology in the Adana and Kahramanmaraş
provinces in Turkey agro-ecosystem. Tuf -b type and other strains of ‘Ca. P. solani’ was
also reported in Iran and Azerbaijan, border neighbors with Turkey. If we look at vectorial
transmission, Hyalesthes obsoletus Signoret (Homoptera: Cixiidae), a polyphagous insect
vector that lives predominantly on bindweed (Convolvulus arvensis L.), and other hosts
of ‘Ca. P. solani’ inside and/or outside agrosystems is responsible for the transmission of
‘Ca. P. solani’ to crop plants [38,43]. No vector or weed sampling was performed in our
study; however, the presence of the Hyalestes obsoletus and Convolculus arvensis have been
previously reported in Turkey [44,45]. According to data from this study, phytoplasmal
diseases that may be transmitted by Hyalestes obsoletus may cause significant yield losses in
these crops in the future.

Recently, a study characterizing SecY and Vmp1 partial genes of the ‘Ca. P. solani’
strains was carried out in the Eastern Region of Turkey [46]. They found that the phy-
toplasma associated with tomato showed a highly phylogenetic affinity with the same



Pathogens 2022, 11, 1031 9 of 14

sequences of the same agent from Serbia and France, respectively, based on Vmp1 and SecY
gene sequences. The Vmp1 gene sequence was included in the phylogenetic analysis in this
study (Figure 8). While all of the phytoplasma isolates infecting the tomato in our study
formed a single clade, it was determined that they differed from the Vmp1 type detected
in the previous study. We think this situation is probably due to the geographical region
difference between Turkey. In our study, as seen in Figure 5, we identified two different
SecY genotypes that were found to be genetically close to the SecY-4 type in central regions
of Turkey that are closely related to those found in other countries infecting different insects
or hosts.
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Figure 8. Unrooted phylogenetic tree constructed using ~1.4 kbp Vmp1 gene fragments of the ‘Ca.
P. solani’ strains obtained in GenBank (Detailed information (host plant and origin country) about
‘Candidatus Phytoplasma solani’ strains used in the tree were provided in Supplementary Table S1).
The phylogenetic analysis was performed with the neighbor-joining technique, and 1000 bootstrap
replicates. The phytoplasma strain names, GenBank accession numbers, and related V types are
given in the tree. The gene sequences obtained in this study are highlighted with red dots.

According to the Vmp1 gene typing, by using RsaI digestion of TYPH10F/R products,
we distinguished two new different profiles not reported in previous studies that have
become prevalent in Turkish tomato and potato fields (Figure 7). ‘Ca. P. solani’-related
strains isolated from potatoes were found to be similar to the V1 type. However, the
strains isolated from tomatoes were not similar to any previously reported V variants of
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‘Ca. P. solani’. Like all Mollicutes, phytoplasmas do not have a cell wall, and the role of
membrane proteins in phytoplasma-host interactions has been emphasized by previous
studies [36,47]. Furthermore, the newly discovered Vmp1 genotypes could raise the poten-
tial for another insect(s) or different host(s) to be involved in the disease dissemination of
‘Ca. P. solani’-related strains in Turkey. The Vmp1 gene provides information about the
phytoplasma vector-pathogen-weed host relationships and the molecular epidemiology
of the pathogen [36]. This gene is highly variable and interacts with hosts or vectors in
complex ways. According to previous studies, it could be instructive and helpful for
understanding the molecular epidemiology of ‘Ca. P. solani’ [21,25].

Further investigations that characterize ‘Ca. P. solani’-related strains infecting weed
hosts (or other solanaceous plants) and planthoppers found in Turkish tomato and potato
fields must confirm and better understand ‘Ca. P. solani’-related strains epidemiology.

4. Material and Methods
4.1. Sources of Nucleic Acids and Field Sampling

In August 2020 and 2021, 10 tomato and six potato fields occupying 10 ha intensive
production areas in the central Anatolia region were surveyed to examine possible ‘Ca. P.
solani’-associated symptoms. Leaf samples were collected from 30 tomato and 18 potato
plants exhibiting typical phytoplasma symptoms in Kahramanmaraş and Adana provinces.
At least one sample of an asymptomatic plant as a negative control was taken from each
field. The samples were wrapped in paper, labeled, and put into plastic bags, then delivered
to the laboratory in cold chain conditions on the same day. The samples were then cleaned
of papers, sliced, and stored at −20 ◦C until use.

4.2. Isolation of Nucleic Acids and PCR Detection of Phytoplasmas

Total nucleic acid extractions were performed using fresh leaves (from midrib) of the
samples to isolate and identify possible phytoplasmas. With a few minor adjustments, the
extraction procedure was carried out utilizing the CTAB-based approach [48]. In short,
midrib tissues (~1 g) were homogenized inside CTAB-buffer (2% w/v cetyl trimethyl
ammonium bromide, 1.4 mol/L NaCl, 20 mmol/L EDTA, 100 mmol/L Tris HCl, 0.2%
2-β-mercaptoethanol and 2% polyvinylpyrrolidone-40, at pH 8.0) then it was left incu-
bating at 65 ◦C for 25 min. The lysate was extracted by using a 24:1 (v/v) mixture of
chloroform/isoamyl alcohol, then precipitated with isopropanol at 20 ◦C overnight. Cen-
trifugation at 15,000× g was used to separate the precipitated nucleic acids, after which
the pellet was cleaned with 70% ethanol, allowed to dry at room temperature, and then
dissolved in 50 µL of sterile double-distilled water (SDDW). Before polymerase chain
reaction (PCR) experiments, nucleic acids were measured and diluted with SDDW to a
final concentration of 20 ng/µL. Stem parts of a cactus plant known to be infected with
phytoplasma were used as a positive control in the DNA isolation.

Initial phytoplasma identification was made by nested-PCR analysis with phyto-
plasma universal primer pairs P1 [49]/Tint [50] amplifying a fragment of ~1.6 kbp from
the 16SrRNA gene and a part of the 16S–23S spacer region followed by R16F2n/R2 primer
pairs [51] amplifying ~1.2 kbp products from the 16S rRNA. Pure DNA from maize plants
known to be infected with the ‘Ca. P. solani’-related strain was used as a positive control in
PCR-related analyses.

4.3. Molecular Characterization of the Strains Based on Tuf, VMP1, and SecY Genes

Characterizations of ‘Ca. P. solani’-related strains associated with tomato and potato
were carried out based on the Vmp1 gene, which encodes a putative membrane protein,
the Tuf gene, which encodes the translation elongation factor Tu, and the SecY gene, which
encodes the translocase protein. All the phytoplasma-positive total nucleic acids am-
plified by the R16F2n/R2 primers were used as the template for amplification of Vmp1,
Tuf, and SecY genes using StolH10F1/R1, fTuf1/rTuf1 and PosecF1/R1 primer pairs fol-
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lowed by nested-PCR with TYPH10F/R, fTufAY/rTufAY, and PosecF3/R3 primer pairs,
respectively [36,52,53].

4.4. Sequencing and Phylogenetic Analyses

ExoSAP-IT® for PCR product clean-up (Thermo Fischer Scientific, Waltham, USA) was
used to purify the obtained amplicons in accordance with the manufacturer’s instructions.
The purified products were quantified utilizing a nanodrop spectrophotometer. Direct
sequencing of all positive amplicons with high-quality bands in the agarose gel from several
genes (16SrDNA, Tuf, SecY, and Vmp1) was performed by Letgen, Turkey, on both strands
with the related primer pairs used for the amplification. Chromatograms were edited using
the Chromas version 2.33 software (http://technelysium.com.au/wp/chromas/, accessed
on 26 June 2022) and assembled using the MEGA 7 software [54] to obtain a consensus
sequence, and it was used to cut off ~30–40 bp of the terminal end sequence. To find
the nucleotide identities for the ‘Ca. P. solani’ strains, the NCBI GeneBank database (http:
//www.ncbi.nlm.nih.gov, accessed on 26 June 2022) was searched using all of the consensus
sequences for each gene as the query sequences (http://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 26 June 2022).

The nucleotide identities for the ‘Ca. P. solani’ strains are available in GeneBank NCBI
(http://www.ncbi.nlm.nih.gov, accessed on 26 June 2022), and all of the consensus sequences
for each gene were used as the query sequences in the BLAST searches (http://blast.ncbi.
nlm.nih.gov/Blast.cgi, accessed on 26 June 2022). Multiple alignments were carried out using
ClustalW, and nucleotide sequences were collected in FASTA format [55].

Phylogenetic trees based on distance analysis were produced by Mega 7 [54]. As
indicated next to the tree branches, the proportion of replicate trees in which the related
strains grouped in the bootstrap test (1000 repetitions) was calculated. The scaled phy-
logenetic trees had branch lengths that corresponded to the evolutionary distances that
were utilized to build the trees. As an outgroup for the 16S rRNA tree root, the sequence
from Acholeplasma laidlawii (GenBank accession number M23932) was employed. In order
to rebuild the evolutionary connections according to the 16SrDNA, Tuf, Vmp1, and SecY
genes, various nucleotide sequences were retrieved from the GenBank database and used
together with the nucleotide sequences generated in this work.

Different nucleotide sequences were downloaded from the GenBank database and
used together with the nucleotide sequences generated in this study to reconstruct the
phylogenetic relationships according to 16SrDNA, Tuf, Vmp1, and SecY genes.

4.5. In Silico RFLP Analyses

Since all amplicons with positive results were sequenced, a wet restriction frag-
ment length polymorphism (RFLP) study was not preferred; instead, in silico RFLP
analysis was performed with these sequences via iPhyClassifier [56] based on the 16S
rRNA gene sequences with 17 different restriction endonuclease enzymes to determine
the structural diversity [57]. The pDRAW32 software v. 1.1.146 (AcaClone software,
http://www.acaclone.com (accessed on 26 June 2022)) was employed for virtual digestion
of the tuf and vmp1 sequences with the HpaII and RsaI endonucleases, respectively.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/pathogens11091031/s1, Table S1: Candidatus Phytoplasma solani’ genome project and
genetic diversity in the Euro-Mediterranean basin.
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7. Çağlar, B.K.; Şimşek, E.; Dikilitas, M.; Bertaccini, A. Characterization of ‘Candidatus Phytoplasma Solani’ associated with a maize
leaf reddening disease in Turkey. J. Phytopathol. 2021, 169, 658–666. [CrossRef]
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