S)A}ﬁtheticBiology

HeoO606

pubs.acs.org/synthbio

Modular Synthetic Biology Toolkit for Filamentous Fungi
Laszlé Moézsik,” Carsten Pohl,” Vera Meyer, Roel A. L. Bovenberg, Yvonne Nygard,

and Arnold J. M. Driessen™

Cite This: ACS Synth. Biol. 2021, 10, 2850-2861

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations

@ Supporting Information

ABSTRACT: Filamentous fungi are highly productive cell
factories, often used in industry for the production of enzymes
and small bioactive compounds. Recent years have seen an
increasing number of synthetic-biology-based applications in fungi,
emphasizing the need for a synthetic biology toolkit for these
organisms. Here we present a collection of 96 genetic parts,
characterized in Penicillium or Aspergillus species, that are
compatible and interchangeable with the Modular Cloning system.
The toolkit contains natural and synthetic promoters (constitutive
and inducible), terminators, fluorescent reporters, and selection
markers. Furthermore, there are regulatory and DNA-binding
domains of transcriptional regulators and components for
implementing different CRISPR-based technologies. Genetic
parts can be assembled into complex multipartite assemblies and
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delivered through genomic integration or expressed from an

AMAI-sequence-based, fungal-replicating shuttle vector. With this toolkit, synthetic transcription units with established promoters,
fusion proteins, or synthetic transcriptional regulation devices can be more rapidly assembled in a standardized and modular manner

for novel fungal cell factories.

KEYWORDS: synthetic biology toolkit, Modular Cloning, hybrid transcription factor, inducible promoter, transcriptional regulation,

filamentous fungi

B INTRODUCTION

Filamentous fungi are widely used as cell factories: organic
acids, small-molecule drugs, and homologous as well as
heterologous proteins expressed in fungi are applied in various
industries, and fungal biotechnology is considered as an
innovation driver for a circular economy.' Not only are fungi
excellent workhorses for protein production because of their
natural capacity for protein secretion, but also, fungal genomes
contain a large number of biosynthetic gene clusters (BGCs)
encoding potentially useful natural products. The core
enzymes of these natural-product-producing clusters are
usually nonribosomal peptide synthetases (NRPSs), polyketide
synthases (PKSs), or terpene synthases (TPSs). Advanced
bioinformatics tools predict about 30—70 BGCs per fungal
species.” It has become obvious that next to known natural
products, fungal genomes hold an enormous amount of
untapped biosynthetic potential in the form of transcriptionally
silent, uncharacterized BGCs.> These “cryptic” BGCs, which
are usually not expressed under laboratory conditions, can
potentially provide new leads for novel natural products. Single
species like Aspergillus nidulans or Penicillium rubens contain
over 30 NRPSs and PKSs that are responsible for natural
product biosynthesis, most of which are still awaiting
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characterization.™
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Synthetic biology has revolutionized metabolic engineering
by providing new tools to create modular, synthetic genetic
circuits for controlled activation and/or fine-tuned expression
of specific genes or complete BGCs, thereby optimizing the
production of endogenous or exogenous proteins and
secondary metabolites.” "' In addition to “rewiring” pathways
that are already transcriptionally active, such tools can be used
for the activation of transcriptionally silent BGCs and the
discovery of novel natural products. Synthetic genetic circuits
provide a new way of transcriptional regulation by mimicking
natural regulatory mechanisms. Synthetic transcription factors
(STFs) can be employed to achieve transcriptional regulation
and in their simplest design are fusions between the DNA-
binding domain (DBD) of a known transcription factor and a
transcriptional regulator (activator or repressor). As the DBD
of a TF binds to its specific upstream activating sequence
(UAS) in the targeted promoter, the strength of the regulation
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Transcriptional Unit

: CCAT ‘ AATG ‘ | AGGT | ‘ TTCG ‘ | GCTT I CGCT :
| Promoter + 5’UTR Coding Sequence | H | Terminator + 3’'UTR |
b : P1 - pICH41295 : CDS1 - pICH41308 : T1 - pICH41276 H
: Pact Pc PhisB An : ergA Pc eGFP eBFP : H
H PgndAAn PpyrGAo : amdS Ania eGFP-NLS Firefly luciferase : Tamds Ania H
H Patp9 An_ PalcA synt. Ania H bleoR eGFP-SKL alcR An : '
H PgpdA Ania 1xTetO-CPgpdA H hph (HygR) DsRed.T1 Qs (QA-1S ' Ttif35 Pc '
H Ptef1 Ania 4xTetO-CPgpdA H pyrG Ao DsRed.T1-NLS - ) H H
B Ptef-EF1 Ania 6xTetO-CPgpdA H sdh-H85L An DsRed. T1-SKL rtTA25-M2 : TpenDE Pc :
H PfraAAn 10xTetO-CPgpdA : hisB Pc mCherry SpCas9-NLS : ] :
: Poat1 Pc Pu3 Pc : hisB AN dTomato dSpCas9-VPR-NLS : TxinAAnia :
H PglaA An Pu6 Pc H - n H Toat! P H
: BxInAAnia PIRNAMet] Pe i [ cps2-pich41258 | : [ cDs3-paGm1299 | :[ cDsa-pacmi3ot | il H
' PpcbAB Pc PtRNA[Leu] Pc H H H H H
: P40s An CPpebC Pe : LelggldD : Rl 1P AR : oGFP-NLS : fovet =2 H
: PpcbC Pc CPnirAAn : LexA DED : 32 AD) H H TactA Ania H
: CPura3 Sc : : \(13:1":5/:% H SYFP-NLS H :
H H 14D BD H H H H
: P2 - pAGM1251 { P3 - pAGM1276 : b : et : : il i
H L : i : SpCas9 : H : Tu6 Pc :
: ;:8823 i CPpcbC Pc : dSpCas9(m2) : CDS5 - pICH41264 : TtRNAAN :
: : CPRirAAn : €GPF-NLS : :
: 11xQUAS : ! dSpCas9(m4) ' p300core HAT AD : TtRNAAR :
: 5xLexA UAS : CPura3 Sc H : RTT109 HAT AD : :
: : : : VPR-NLS AD : :

PtRNA-Arg21-sgRNA-Esp3l sgRNA transcription unit An (TU1 - level 0)
PtRNA-Pro1-sgRNA-Esp3l sgRNA transcription unit An (TU1 - level 0)
Pgpda-HH-sgRNA-HDV-Bsal sgRNA transcription unit (level 1)

pLM-AMA002 MoClo transcription unit reciever (AMA1)
PLM-AMA15.0 SpCas9 and sgRNA transcription unit (AMA1)
pLM-AMA18.0 dSpCas9m4-VPR and sgRNA transcription unit (AMA1)

Penicillin locus flanking regions Pc (level 0)
PKS17 locus flanking regions Pc (level 0)

ADDITIONAL UNITS

Figure 1. List of vectors in the Fungal Modular Cloning Toolkit. (a) Location of genetic parts in a transcription unit with their corresponding linker
sequences. (b) List of parts of the toolkit, containing promoters (P1), UASs (P2), UAS-compatible core promoters (P3), coding sequences with
various fusion possibilities (CDS1—S5), terminators (T1), complete transcription units (TUs), and additional vectors (sgRNA transcription units,
flanking sequences, and AMA1 vectors). Abbreviations (Pc, An, Ania, Ao, Sc) indicate the origin of the template (P. rubens, A. niger, A. nidulans, A.

oryzae, S. cerevisiae, respectively).

can be increased by integrating additional UASs in a synthetic
promoter. These systems are further tunable by utilizing
inducible promoters to titrate the protein levels of the
corresponding TFs or other genetic switches. By the use of
such synthetic transcriptional regulators, gene activation or
repression can be achieved in a controlled manner, or
transcription can be fine-tuned for each gene individually.”™”
Synthetic expression systems have previously been demon-
strated in Aspergillus species,”*'"" Trichoderma reesei,” P.
rubens,” and Ustilago maydis.11 For instance, the bacterial
doxycycline/tetracycline-inducible system has been adopted
for Aspergillus species and U. maydis, providing inducer-based
transcriptional regulation.””'' STF-based regulatory systems
show transferability among a variety of different fungi.”'> Next
to methods that require introducing genetic parts permanently
into the host organism genome, plasmid-based alternatives are
also available for filamentous fungi, as well as CRISPR-based
technologies for transcriptional regulation."*™"* All of these
synthetic-biology-based tools provide new alternatives to
further aid the exploitation of fungal workhorses.

Targeted DNA delivery and precise genome editing are
often required for the construction of STF-regulated genetic
circuits. Engineering of nondomesticated strains is often time-
consuming, and engineering efforts show low efficiency. The
targeting efficiency of the integrated donor DNA to the
designated loci can be increased by using long homologous
fragments of genomic DNA of the host organism. More
accurate genome editing is possible with strains devoid of the
fungal homologues of the ku70 or ku80 genes, as homology-
directed repair (HDR) will be favored over the non-
homologous end joining (NHE]) DNA repair pathway.'® In
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some (nondomesticated) fungal isolates, genome engineering
can be less efficient because of the presence of the NHE]
machinery, resulting in more random integration events. In
such strains, DNA delivery using nonintegrative fungal shuttle
vectors can be advantageous, as this method does not rely on
genomic integrations. The AMA1 sequence provides autono-
mous vector replication and therefore supports episomal DNA
delivery in several species of filamentous fungi, and shuttle
vectors containing this sequence are commonly used.'” Such
vectors enable rapid genetic circuit assembly for gene
expression in the fungal host. Fungal shuttle vectors are
commonly used to deliver the in vivo expressed components of
the CRISPR-Cas (CRISPR-associated protein) genome editing
technology in filamentous fungi,18 which further allows for
swift and reliable genomic engineering.

Modular toolkits allow rapid construction of genetic circuits,
various STFs, and protein fusions in a combinatorial manner
through recombination of already available genetic parts or
incorporation of new genetic parts into the established
system.'” Standardized, characterized genetic parts are key
elements for rapid and modular construction of novel genetic
circuits. In modular cloning systems, typically the genetic
elements (as PCR products or synthetic DNA) are first
inserted into entry vectors (level 0) to create genetic parts.
These basic genetic parts (also called modules) are then used
for the next step of the assembly into transcription units (level
1), which can be further combined into genetic circuits
containing multiple transcription units (level 2)."” The Golden
Gate Assembly-based Modular Cloning (MoClo) system
supports the assembly of several transcription units on a single
plasmid, where the number of units is limited only by the
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host’s tolerance for the size of plasmid DNA."” A limitation of
the Golden Gate Assembly line is the initial cloning step, which
often requires the removal of type IIS recognition sites used by
MoClo through PCR amplification or DNA synthesis. This
initial work can be reduced by using parts made available
through repositories for synthetic toolkits, which could
contribute to more rapid assembly of novel synthetic circuits
for various organisms. Synthetic modular vector collections
(toolkits) are publicly available for bacteria,”® various
yeasts,”"”” plants,”> and mammalian host™* cell lines. Although
collections of Golden Gate-based vectors were recently
established in Aspergillus niger> (GoldenMOCS) and
deposited on Addgene for metabolic pathway construction™
or in Sordaria macrospora and P. rubens™® for protein fusions
and gene deletions, a substantial collection of generic tools for
synthetic biology applications in filamentous fungi is not yet
deposited and available in global nucleic acid repositories.

Modular assemblies provide high flexibility with regard to
assembly compared with systems that leave an “assembly scar”
after cloning. As the genetic parts in such systems are flanked
with Type IIs restriction enzyme cut sites because the
restriction happens outside their recognition sequence, the
created cohesive sequences can be used for one-pot “scarless”
cloning approaches. These cohesive linker sequences mark the
predetermined location for the genetic element in an
assembled transcription unit and are used for the assembly
of multiple transcription units as well. For example, in the
standard MoClo language,'” a transcription unit for cytosolic
proteins consists of promoters (P), untranslated regions (),
coding sequences (CDS) and terminators (T), and four-base-
pair linker sequences are used to connect them to each other
and to the receiving backbone (e.g, GGAG-(P)-TACT-(U)-
AATG-(CDS)-GCTT-(T)-CGCT). This hierarchical structure
provides a platform for rapid and easily automatable assembly
of multigene constructs but on the other hand creates
limitations for interchanging building blocks from other
modular systems. Numerous modular assemblies have aimed
to improve the standard MoClo assembly,””*"** but by
changing the linker sequences for transcription unit assembly
and failing to consider backward compatibility, this creates
incompatibility among the different modular assembly systems.

This Fungal Modular Cloning Toolkit consists of 96 genetic
parts as MoClo-compatible entry vectors, including synthetic
and native fungal promoters, terminators, selection markers,
various CDSs for transcriptional activation and DNA-binding
domains, fluorescent reporters, and the AMA1 sequence for
fungal autonomous replication as well as CRISPR components
such as Cas9, dCas9 sequences, and single guide RNA
(sgRNA) transcription units for filamentous fungi (Figure 1).
This generic modular toolkit, which provides the building
blocks for rapid construction of complex genetic circuits,
should be of great use to the field of fungal synthetic biology
and accelerate the discovery of bioactive compounds as well as
optimization of their production.

B RESULTS AND DISCUSSION

In this work, we describe a modular synthetic biology toolkit
for use in filamentous fungi. Most of the genetic parts in this
toolkit originate from Aspergillus or Penicillium species or from
other established synthetic fungal systems for gene regulation,
heterologous expression, and genetic engineering.””~"** Tt is
a common observation that promoters and other genomic
elements of filamentous fungi are interchangeable among
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fungal species and are therefore widely used in heterologous
filamentous fungal systems.”'> The parts of this MoClo toolkit
were analyzed in P. rubens unless the genetic part was already
established or characterized in previous studies as listed in
Table 1. All of the vectors were constructed using the
standardized MoClo system, which was discussed in detail by
Weber et al.."” This collection of basic genetic parts provides a
tool for rapid assembly of various combinations of parts into
multigene genetic circuits, which can be delivered to the host
organism through genomic integration or using episomal
AMAL1 vectors.

A collection of functional native or synthetic promoters and
terminators are essential for a synthetic biology toolkit. The
Fungal Modular Cloning Toolkit provides 20 promoters, three
core promoters, and 11 terminators (Table 1). These genomic
elements were previously used in synthetic genetic circuits in
Aspergillus or Penicillium with varying strain background,
media, and cultivation methods (Table 1).>~"** Others were
benchmarked previously in P. rubens using fluorescent
reporters in a BioLector microbioreactor.”’

Constitutive Promoters. Constitutive promoters deliver
stable expression across different growth environments and
growth phases. Strong constitutive promoters like the
commonly used promoter of gpdA (ANIA 08041)* from
the glycolytic pathway are often used to drive gene expression
in Aspergillus or Penicillium. The gpdA promoter is used to
constitutively express various genes as well as fungal selection
markers, ribozyme self-cleaved sgRNA, or expression of
STFs.”'® The promoter of the TEFI (translation-elongation
factor 1a) gene is another common strong and constitutive
fungal promoter that has been used for polygalacturonase
production and the expression of the SpCas9 encoding gene.'®
The constitutive promoter of the 40S ribosomal protein S8
(An0465, 40S, RPS8) has been shown to provide stable
expression of fluorescent reporters, STFs for scalable tran-
scriptional activation,” and expression of dSpCas9-VPR from
Streptococcus pyogenes for CRISPR-based transcription activa-
tion (CRISPRa).'* The promoter of gndA (Anl11g02040, 6-
phosphogluconate dehydrogenase) was shown to give an
intermediate strength of transcription’” and proven to be
weaker than the constitutive An0465 promoter in P. rubens.”
The well-studied promoters of the bidirectional penicillin
biosynthesis genes pchbAB (Pc21g21390) and pcbC
(Pc21g21380) are commonly used as strong promoters.
Although pcbAB and pcbC are under the control of regulation
by both nutritional and developmental factors, they provide a
strong transcription rate in lactose-based cultivations.”” Our
toolkit also includes the constitutive promoter of oliC31
(An04g08190, mitochondrial ATP synthase subunit 9), which
was shown to provide expression comparable to the promoter
of pcbAB in Penicillium”” as well as the constitutive promoter of
the housekeeping y-actin (Pc20g11630) from P. rubens.
Besides reliable and constitutive promoters, stimulus-respon-
sive feedback loops may require expression of the regulators at
certain time points of the cultivation. Therefore, a set of
inducible promoters (PXInA by xylose, POAT1 by amino acids,
PglaA by maltose, PTet by tetracycline, and PalcA by
aldehydes) are incorporated.

Synthetic Promoters. An increasing number of promoter
libraries have been designed for yeast and filamentous fungi by
the creation of synthetic promoters for STFs through the
combination of various upstream activating sequence (UAS)
elements and different core (or minimal) promoters (CPs).>’

https://doi.org/10.1021/acssynbio.1c00260
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Transcription-factor-based specific activation/repression
mechanisms interact with the designated UAS elements, but
a CP sequence is required to recruit general transcription
factors and the RNA polymerase II for transcription
initiation.”® As part of this toolkit, a collection of CPs are
included (CPpcbC from P. rubens, CPNirA from A. nidulans,
and CPURA3 from S. cerevisiae), which in combination with
UASs compatible with a DBD of an STF (1x, Sx, or 11x QUAS
for QA-1£DBD, Sx LexA UAS for LexA-DBD) can create
synthetic promoters with expression levels ranging from hardly
detectable to similar to that of highest expressed native genes.”
Moreover, entry vectors are provided for the construction of
bacterial-originated tetracycline-inducible (Tet-On) synthetic
genetic circuits, including the rtTA25-M2 (modified TetR-
3xVP16) STF and its synthetic promoters using 1, 4, 6, or 10
repeats of TetO UASs.

Synthetic Transcription Factors. Various STFs (tran-
scriptional activators or repressors) can be constructed using
transcription factor domain fusions, where a selected regulator
domain can be recruited to a promoter region of the gene of
interest.”~ These STFs often consist of direct fusion of a DBD
and an activation domain (AD). On the basis of the ability of
the DBD of a transcription factor to bind to its UAS, these
STF fusion proteins can be used to design synthetic
transcriptional regulators or genetic control circuits. Viral
ADs are widely used to create potent STFs, most commonly
VP16 or its tandem repeats (VP64, VP160) from herpes
simplex virus. Numerous DBDs of transcription factors have
been shown to be functional in filamentous fungi, like the
bacterial TetR-based STF from the Tet expression system in A.
niger and A. fumigatus,’ the qa-1F-based STF (qa-1F-DBD-
VP16, QF) from Neurospora crassa in P. rubens,” the bacterial
Bm3R1-based STF (Bm3R1-VP16) in A. niger, T. reesei, and
several yeasts,6 and the Gal4 and LexA DBDs, which are
frequently used in synthetic expression systems. In Aspergillus
species, the often-utilized Tet-On/Tet-Off system provides
precise, reversible, and efficiently controlled gene expression
using rtTA and rTA STFs, respectively. With the Tet-On
system, induced gene activation can be achieved in a titratable
manner by addition of the tetracycline derivative doxycycline,
whereas induced repression can be achieved using the
tetracycline-controlled transactivator (tTA) component to
quantitatively reduce gene expression using the Tet-Off
system.” The Fungal Modular Cloning Toolkit contains a
collection of DBDs (from the qa-1F, Gal4, LexA, and TetR
transcription factors) and transcriptional activation domains
(from the qa-1F, Gal4, and B42 transcription factors), VP16
and its four tandem repeats VP64, the tripartite activator VPR
(VP64-p65-Rta), and histone acetyltransferases (p300core and
Rtt109).

CRISPR Elements. Next to STFs, catalytically inactive
CRISPR-Cas proteins can provide new alternatives for the
delivery of transcriptional regulators to the target. The
CRISPR/Cas9-based systems require the expression of both
the Cas protein and a locus-specific sgRNA in the host
organism. The toolkit provides entry vectors for both
catalytically active (spCas9) and dead (dSpCas9) Cas9 versions
from S. pyogenes, which is the most widely applied Cas protein
in filamentous fungi. Catalytically active Cas9 provides
opportunities for genome editing, whereas dCas9 can be
applied to deliver transcriptional regulators to a desired
genomic locus through protein fusion of regulator domains.
CRISPRa (activation) and CRISPRi (interference) can provide

2856

a genome-editing-free alternative for transcriptional activation
and repression, respectively. In comparison with the use of
STFs, CRISPRa/i tools can provide genome-editing-free
transcriptional regulation in filamentous fungi, guiding the
regulator to the desired genomic locus, resulting in transcrip-
tional activation (dCas9-VP64 and dCas9-VP64-p6S-Rta
“VPR”)"*'* or epigenome editing (dCas9-p300)."> The toolkit
provides various options for CRISPR sgRNA delivery. A
sgRNA “plug-and-play” transcription unit carrying (level 1)
vector is included, in which the transcript is under control of
the gpdA RNA polymerase II (Pol II) promoter, resulting in a
transcript that is self-cleaved using the hammerhead and
hepatitis delta virus ribozymes flanking the sgRNA (HH-
sgRNA-HDV)."* Ribozyme-based sgRNA delivery is widely
used in filamentous fungi,'® as it relies only on an established
promoter in the host and ribozyme sequences that work across
multiple species. Although the delivery of the ribosome-self-
cleaved sgRNAs has been shown to work in numerous fungal
applications, in some cases RNA polymerase III (Pol III)-
transcribed sgRNA delivery could be advantageous, as the
created transcript does not need further processing.'®’’
Therefore, the toolkit provides entry vectors containing a
collection of Pol III promoters and corresponding terminators
(tRNA-Met, tRNA-Leu, U6, and U3) established in P. rubens*®
as well as sgRNA transcription units using tRNA promoters
(tRNA-Arg and tRNA-Pro) established in A. niger’" (Table 1).
To assemble a functional transcription unit, the latter utilizes
the Esp3I restriction enzyme for insertion of the sgRNA target
sequence into the sgRNA transcription unit, whereas the
former ones are provided as entry vectors (Figure S1). Two
previously established AMAl-based fungal CRISPR vectors
with terbinafine and phleomycin markers are also part of this
toolkit: pLM-AMA-18.0 for CRISPR-based transcriptional
activation and pLM-AMA-15.0 for CRISPR-based genome
editing in P. rubens, both with a blue/white selection-aided
user-friendly sgRNA “plug-and-play” module to aid rapid
library construction.'* The toolkit provides a collection of
commonly used transcriptional activation domains (VP16,
VP64, and VPR), histone acetyltransferases (p300core and
Rtt109), and fluorescent reporters for possible fusion
variations.

Fluorescent Reporters. Fluorescent reporters are often
used to validate genetic circuits, protein expression, and
localization through fusions. This toolkit provides a collection
of CDSs of fluorescent and bioluminescent reporters (GFP,
DsRed, dTomato, mCherry, YFP, BFP, firefly luciferase) with a
nuclear localization sequence (NLS) or serine-lysine-leucine
peroxisomal localization (SKL) or without any localization
tags, established in Aspergillus and Penicillium species (Table
1). Reporters can be used to demonstrate functionality of
genetic circuits or as fusion proteins to validate the expression
of the gene of interest.

Selection Markers. The toolkit contains a collection of the
most commonly used fungal selection markers (ergA, amds,
pyrG, ble, hph, sdh2, and hisB) as entry vectors. Table 1 shows
DNA sources of the markers and their established applications.
Overexpression of the native squalene epoxidase (ergA) gene
has been shown to provide resistance against terbinafine in a
broad range of fungi as well as in Penicillium. In Aspergillus,
Trichoderma, and Penicillium species lacking acetamidase
activity, overexpression of the acetamidase (amdS) gene
provides selection on media containing acetamide as a sole
nitrogen source that can be counterselected using fluoroace-
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Figure 2. Transcription unit construction using the MoClo system and delivery platforms. A schematic representation of the recombination and
assembly of the MoClo entry vectors into transcription units is shown. Transcription units can be assembled into (a) fungal shuttle vectors or (b, c)
multigene constructs that can be delivered (b) as AMA1-based episomal vectors or (c) via genomic integration by homologous recombination.

tamide. The orotidine S’-phosphate decarboxylase (pyrG) gene
from A. oryzae is widely applied in Aspergillus, with examples in
Penicillium and Neurospora, as a strong, recyclable, auxotrophic
selection marker that can be counterselected using S-
fluoroorotic acid or fully supplemented using uracil or uridine.
Overexpression of the bacterial resistance genes as phleomycin
(ble) or hygromycin B phosphotransferase (hph) provides
selection in numerous Aspergillus and Penicillium strains as well
as in N. crassa for phleomycin (glycopeptide antibiotic of the
bleomycin family) or hygromycin (aminoglycosidic antibiotic),
respectively. The succinate dehydrogenase (sdh2) gene from A.
niger is also included, with a single histidine-to-leucine point
mutation in the third cysteine-rich cluster (H269L), which has
been shown to play a role in conferring resistance to the
fungicide carboxin in A. flavus. After generation of a histidine-
auxotrophic strain, delivery of the key gene of histidine
biosynthesis can provide selection. For the creation of such
strains, the toolkit provides entry vectors on the native hisB
genes from A. niger and P. rubens.

Several options exist for the introduction of assembled
transcription units in fungi; if the assembled constructs include
the AMALI sequence, it can be delivered as an episomal vector
(Figure 2a,b), or multigene constructs can be integrated to a
genomic locus using homologous flanking sequences (Figure
2¢). In the toolkit, fungal shuttle vectors with an AMAI
sequence are included. The AMAI sequence supports
autonomous plasmid replication in numerous filamentous
fungi as well as flanking regions for homologous recombina-
tion-based genomic integration into P. rubens at the frequently
used penicillin  (Pc21g21370-Pc21g21390) and PKS17
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(Pc21g16000) loci. A 50% shorter version of the AMAL
sequence is also provided on a MoClo entry vector, which can
be incorporated in complex MoClo-language-based constructs.
This truncated sequence can be amplified by PCR and showed
transient vector propagation while maintaining selection
pressure; without selection, more rapid loss of the vector was
detected compared with a full-size AMAL vector in A. niger.”>
As this sequence is integrated on a MoClo entry vector, it is
possible to incorporate it into a MoClo multigene construct
(level 2), turning the original bacterial vector into a fungal
replicating episomal vector (Figure 2b). Fungal shuttle vectors
can be assembled in Escherichia coli and delivered into
Aspergillus, Penicillium, potentially other fungi in the
Aspergillaceae family, or any other AMAI- and selection-
marker-compatible fungal host. The vector allows rapid
assembly and validation of transcription units, providing
alternatives for genomic integration (Figure 2c).

For this toolkit, a shuttle vector (pLM-AMAO002) analogous
to a MoClo system “level 17 backbone was built, thus
providing a MoClo entry vector-compatible fungal tran-
scription unit delivery platform (Figures 2a and 3). As the
assembly follows the MoClo language,'” the vector uses Bsal
restriction enzyme-generated GGAG and CGCT fusion sites to
receive the compatible MoClo entry vectors. The fungal
shuttle vector additionally contains a lacZa fragment, which is
replaced during the assembly of the transcription unit, allowing
for convenient blue/white screening of successful clones. The
created transcription-unit-carrying vectors can directly be
transformed into fungal hosts using phleomycin as a selection
marker. To test our MoClo-adapted and AMA1-based fungal
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Figure 3. Transcription unit assembly from MoClo entry vectors on a pLM-AMAQO2 fungal shuttle vector and delivery to filamentous fungi. (a)
Schematic representation of the assembly of MoClo entry vectors into a single transcription unit delivered to P. rubens on the pPLM-AMAO002 fungal
shuttle vector. (b) Fluorescence microscopy imaging of filaments of a P. rubens strain carrying pLM-AMAO0O02 with the dSpCas9—eGFP-NLS
transcription unit, showing protein expression of the fluorescently labeled gene product. Scale bars represent 20 pm.

shuttle vector for expressing a gene of interest, a transcription
unit was assembled that expresses a fusion protein of the
catalytically dead Cas9 protein (dSpCas9) from S. pyogenes and
a green fluorescent protein with SV40 nuclear localization
(eGFP-NLS) reporter. The genetic parts were rapidly
assembled into a transcription unit on the pLM-AMAO002
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fungal shuttle vector through the first two steps (level 0
construction and level 1 assembly) of MoClo assembly (Figure
3a). The restriction-ligation-based assembly resulted in an
AMAL1 vector expressing a direct fusion of dSpCas9 and eGFP-
NLS driven by a constitutive promoter. The created vector was
delivered to P. rubens, and the expression of the protein fusion
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was validated using fluorescence microscopy, which showed
expression of nucleus-localized GFP (Figure 3b). The
construction of this expression platform required the
integration of the coding sequence of the gene of interest
into the appropriate position-predetermined MoClo entry
vector. As numerous entry vectors from the toolkit can be
utilized, the assembly and validation time of a transcription
unit can be significantly reduced. After successful validation of
additional new entry vectors, no more sequencing is required
in later assembly steps. With the high efliciency of MoClo
assembly, transcription units can be rapidly assembled in a
single cloning step. Meanwhile, multigene genetic circuits can
be constructed in two cloning steps (carrying up to seven
transcription units per assembly)."”

Taken together, this Fungal Modular Cloning Toolkit aims
to accelerate synthetic biology for filamentous fungi by
providing essential ready-to-use genetic parts for rapid
construction of genetic circuits as well as CRISPR components
for more efficient genome engineering and providing aid in
biotechnological exploitation. This toolkit provides genetic
parts for flexible and efficient assembly of genetic circuits for
filamentous fungi in the form of 96 MoClo entry vectors and
assembled transcription units. It is a collection of promoters
(constitutive and inducible), terminators, activator- and DNA-
binding-domains of transcription factors, fluorescent reporters,
fungal selection markers, and CRISPR proteins (SpCas9 and
dSpCas9) that are applicable for CRISPR-based applications.
All of the vectors are built using the MoClo synthetic biology
language, which allows the user to assemble numerous
transcription units on a single plasmid that can later be
delivered to the desired host organism by various delivery
methods. To further accelerate the testing of functional
transcription units, genetic parts are included that have been
tested in the community and shown to be interchangeable
between different fungal strains. This collection of fungal
genetic parts was created using the “MoClo Toolkit”," and
therefore, this toolkit (or an equivalent version of it) is needed
for the incorporation of new genetic parts for further novel
assemblies unless these parts are delivered into the assembly as
vector-free DNA fragments. As most of the genetic parts of the
toolkit were tested in A. nidulans, A. niger, and P. rubens strains
(Table 1), this toolkit aims for compatibility with strains in the
Aspergillaceae family but assumes functionality in other
filamentous fungal strains. The positions of the modular
entry vectors in a transcription unit assembly are represented
together with location identifiers in Figure 1. Complete vector
sequences are available as Genebank files in Supplementary
File S1 and available on Addgene as the “Fungal Toolkit for
Modular Cloning (FTK)”.

B METHODS

Chemicals, Reagents, Oligodeoxyribonucleotides,
and Cloning. All medium components and chemicals were
purchased from Sigma-Aldrich (Zwijndrecht, The Nether-
lands) or Merck (Darmstadt, Germany). Oligodeoxyribonu-
cleotide primers were obtained from Merck. Enzymes were
obtained from Thermo Fisher Scientific (Waltham, MA)
unless otherwise stated. For the design of nucleic acid
constructs, in silico restriction cloning, and inspection of
Sanger sequencing results, SnapGene (GSL Biotech) was used.
PCR amplifications were conducted using KAPA HiFi
HotStart ReadyMix (Roche Diagnostics, Rotkreuz, Switzer-
land). Templates for PCR amplifications were acquired from
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various sources (Table 1) or ordered as synthetic DNA
fragments from Thermo Fisher Scientific. All internal Bpil and
Bsal cloning sites (and in some cases Dralll and Esp31) were
removed during cloning from the DNA fragments, and these
sequences were manually curated for frequent codons in P.
rubens. All of the vectors were constructed using the MoClo
assembly system and protocol.”” The receiver backbones
(established in the Modular Cloning assembly'”) used for
constructing the genetic parts containing entry vectors are
highlighted in Figure 1b. As the linker sequences between the
genetic parts in the transcription unit are based on the
standard MoClo language (Figure 1a), the parts are compatible
with modular systems that use this linker system.

Correctly assembled plasmids were identified with blue/
white screening and confirmed by sequencing. The tran-
scription unit expressing SpCas9—eGFP-NLS on a fungal
shuttle vector (pLM-AMAO002 P40s-dSpCas9-eGFP-NLS-
Ttif35) was assembled using a mixture of 30 fmol of each
entry vector (P40s An0465 (P1), dSpCas9(m2) (CDS2),
eGFP-NLS (CDSS), and Ttf3S (T1)) and the backbone
vector pLM-AMAO002.

The 50% shorter AMAL sequence”” was created by PCR and
integrated into a MoClo entry vector. The autonomously
replicating shuttle vector carrying the AMAI sequence was
based on the pDSM-JAK-109 backbone where the pGpda-
DsRed-SKL-TpenDE transcription unit was removed using the
BspTI and Notl restriction enzymes. The linear vector was
treated with the Klenow Fragment of DNA polymerase I and
self-ligated into a circular vector using the T4 DNA ligase
according to the instructions of the manufacturer, creating a
new AMAL vector without DsRed expression. This vector was
cloned with a removable LacZ gene cloning site using BspT],
based on the “level 1”7 receiver backbones of the MoClo
system, to create pLM-AMAOO02.

Fungal Strains, Transformation, and Cultivation.
Cultivation of fungal and bacterial strains, media composition,
protoplast generation, and fungal transformation usin
phleomycin marker was carried out as described previously."
A list of fungal strains created in this study with corresponding
transformed donor DNA can be found in Table SI.

Fluorescence Microscopy. Transformants were further
cultivated after transformation on phleomycin (S0 ug/mL)-
supplemented transformation solid medium for S days and
examined using fluorescence microscopy. A small amount of
hyphae was taken from the peripheral zone of the colonies and
suspended in phosphate-buffered saline (58 mM Na,HPO,, 17
mM NaH,PO,, 68 mM NaCl, pH 7.3). Confocal imaging was
performed on a Carl Zeiss LSM800 confocal microscope using
a 20X objective and ZEN 2009 software (Carl Zeiss,
Oberkochen, Germany). The GFP signal was visualized by
excitation with a 488 nm argon laser (Lasos Lasertechnik, Jena,
Germany), and emission was detected using a 509 nm
bandpass emission filter.

B ASSOCIATED CONTENT

@ Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.1c00260.

List of fungal strains used in this study and created
strains with their corresponding transformed donor
DNA and representation of different sgRNA tran-
scription unit assembly methods (PDF)
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