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Thyroid cancer incidence is markedly increased in volcanic areas where residents are
biocontaminated by chronic lifelong exposure to slightly increased metals in the
environment. Metals can influence the biology of living cells by a variety of mechanisms,
depending not only on the dose and length of exposure but also on the type and stage of
differentiation of target cells. We explored the effect of five heavy metals (Cu, Hg, Pd, W
and Zn) at nanomolar concentrations (the biocontamination level in residents of the
volcanic area in Sicily where thyroid cancer is increased) on stimulating the proliferation of
undifferentiated (thyrospheres) and differentiated human thyroid cells. Thyrosphere
proliferation was significantly increased after exposure to each individual metal and a
greater stimulating effect was observed when a mixture of the examined metals was used.
No effect was seen in differentiated thyrocytes. For all metals, the dose-response curve
followed a biphasic pattern that is typical of hormesis. Thyrosphere growth concerned
the size rather than number, except with the metal mixture. An altered morphology was
also observed in metal-treated thyrospheres. Metal-induced proliferation was due to
activation of the ERK1/2 pathway, as confirmed by growth inhibition when ERK1/2
signaling was blocked. These studies show that stem/precursor thyroid cells are sensitive
to small increases in environmental metal concentrations that are harmless for
differentiated thyrocytes.

Keywords: environment, heavy metals, thyroid stem cells, thyroid, thyrospheres
INTRODUCTION

A dramatic worldwide increase in thyroid cancer has been observed in recent decades, despite the
incidence of most other cancers having remained stable or only increased slightly during the same
period (1).

Indirect but strong evidence supports the possibility that this increase is not only “apparent” (due
to the identification of a large number of small tumors that clinically are not relevant) (2, 3), but that
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a “true” increase in number and a change in thyroid cancer
aggressiveness is also occurring (4, 5). These considerations
imply that environmental factors are promoting the initiation
and progression of thyroid cancer: radiation, and dietary and
atmospheric pollutants related to the industrialized way of life
are the most likely factors.

Metals are natural components of the Earth’s crust. These
inorganic elements can play an important role in human biology,
both as essential nutrients and also as potentially toxic
compounds. At abnormal concentrations, metals may have
detrimental effects on a variety of cell functions, including
growth, transformation and survival. These toxic effects may be
exerted by different metals at different concentrations in different
cell types, depending on the specific cell biology and intracellular
metal accumulation and metabolism. In the last few decades, the
industrialized lifestyle has involved a progressively greater use of
metals and the consequent environmental pollution, raising
some concerns for the potential toxic effects of human bio-
contamination due to chronic exposure to increased metals in
the environment (6).

We recently reported that the incidence of thyroid cancer is
double in the Mt. Etna volcanic area of Sicily relative to adjacent
non-volcanic areas (7), an observation that reflects previous
observations in other volcanic areas (2, 3, 8–13). In the Sicilian
volcanic area, a significant non-anthropogenic heavy metal
pollution is present and causes the bio-contamination of
residents (14), suggesting the possibility of a cause-effect
relationship with the increased incidence of thyroid cancer.
However, in the urine of volcanic area residents, only boron,
molybdenum, palladium and tungsten are at higher levels than
the 95th percentile of Italian standard values (14), posing the
question of whether chronic exposure to a small increase in
environment metals, often within the “normal” limits for each
single metal, can have a detrimental effect on thyroid cell biology.

A detrimental effect of metals at slightly increased
concentrations is possible, as indicated by the biological effects
of many metals at very low concentrations, activating a biphasic,
non-linear hormetic response in exposed cells (15). Moreover, a
combined effect of different metals at only slightly increased levels
but acting synergistically is also possible. Finally, another
possibility is that cells at a lower level of differentiation, such as
embryonic cells, may bemore sensitive to the detrimental effects of
metals (16). We recently documented that tungsten, at
concentrations in the range of values measured in the urine of
residents from the volcanic area, promoted proliferation, inhibited
apoptosis and induced the characteristics of a transformed
phenotype in human thyroid stem/precursor cells but not in
differentiated thyrocytes (17). These data indicate that a small
increase in tungsten in the culture medium, which is harmless for
differentiated thyrocytes, can affect the biology of stem/precursor
thyroid cel ls , inducing the character is t ics of pre-
neoplastic transformation.

The present study is aimed at investigating whether five heavy
metals that are slightly increased in the volcanic environment
and their mixture differently affect human thyroid cells at
different stages of differentiation.
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To this end we used human mature thyrocytes and
undifferentiated thyrocytes in the form of thyrospheres,
aggregates of thyroid stem cells and precursors of thyrocytes at
different level of differentiation. Thyrospheres are able to either
differentiate in mature thyrocytes or produce additional
thyrospheres (by a process named self-renewal) depending on
the culture medium used.
MATERIALS AND METHODS

Investigated Heavy Metals
The following metals were investigated in the chemical form of
salt compounds: copper (Cu) used as CuSO4, zinc (Zn) as ZnCl2,
mercury (Hg) as HgCl2, palladium (Pd) as PdCl2 and tungsten
(W) as Na2WO4. All of these salts were obtained from Sigma-
Aldrich (St. Louis, MO, USA). CuSO4 and Na2WO4 were
dissolved in deionized water, ZnCl2 and PdCl2 were dissolved
in deionized water containing 10% 1N HCl and HgCl2 was
dissolved in absolute ethanol.

Stock solutions were prepared for all of these salts at 10 mM
concentrations and stored at 4°C until used, when they were
further diluted to the indicated concentrations in RPMI medium
containing 0.1% BSA.

Cultures of Human Thyroid Cells
Normal human thyroid tissue specimens were obtained from 14
euthyroid female patients aged 30–65 years who had undergone
surgery (Oncology Surgery unit of the Garibaldi-Nesima Medical
Center in Catania) for a solitary thyroid nodule classified TIR-3
at cytology which was shown to be benign at pathological
examination. Written informed consent was obtained in all
cases and the study was approved by the local Ethics
Committee (n.12/2015/CECT2).

The isolation and culture of human thyroid cells were
performed as previously reported (17). Briefly, after the
meticulous removal of fibrous tissue, the just excised fresh
thyroid tissue was first minced with sterile scissors and then
digested with collagenase IV (1 mg/ml, Sigma-Aldrich) for 2 h at
37°C. The resulting cell suspension containing intact and
fragmented thyroid follicles was centrifuged (400 g for 10 min),
and the pellet was suspended in RPMI 1640 culture medium
(Sigma) supplemented with 2 mM glutamine (Sigma), 2.5% heat-
inactivated fetal bovine serum (FBS, from Invitrogen), B-27
(1:100, Thermo), insulin-transferrin-sodium selenite liquid
medium supplement (ITS, 1:200, Thermo), and epidermal
growth factor (EGF, 1 ng/ml; Sigma), before being incubated at
37°C in a 5% CO2 atmosphere. After 12–24 h, viable thyroid cells
attached to the flasks and supernatants containing unattached
cells were transferred into fresh flasks, and the cells were cultured
at 100% confluence. Residual fibroblasts, when present, were
depleted using magnetic anti-fibroblast beads (Miltenyi Biotec)
according to the manufacturer’s instructions.

Under these conditions, follicular cell monolayers are formed
after 1–2 days. The culture medium was then renewed every 2–3
days and all experiments were performed with cells at passages 3–7.
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Differentiated thyrocytes in primary culture were grown in
the above descrived RPMI medium supplemented with 1 mU/ml
bovine thyroid-stimulating hormone (TSH) (Sigma) and
deprived of EGF.

Stem/progenitor thyroid cells were obtained by the
trypsinization of primary culture thyroid cells and seeding cells
at a density of 1–5 × 104 cells/ml. These were cultured in ultralow
attachment plastic flasks (Eppendorf) in the standard stem cell
medium, RPMI 1640 supplemented with 2% B-27 (Thermo)
enriched with EGF (20 ng/ml, from Sigma). Under these
conditions, stem/progenitor thyroid cells form free-floating
thyrospheres, aggregates of thyroid stem cells and precursors of
thyrocytes at different levels of differentiation. Human
thyrospheres generated with these procedure were characterized
for phenotypic and genetic markers as previously reported (18).

Cell Proliferation Measurement
Cell proliferation was evaluated by 5-bromo-2’deoxyuridine
(BrdU) incorporation. Thyrocytes and precursor/stem cells
disaggregated from thyrospheres were seeded at a cell density of
10,000–15,000 cells/well in a 96-well microtiter plate in phenol red-
free RPMI medium supplemented with 2% FBS. After adhesion
and overnight starvation in RPMI medium with 0.1% BSA, heavy
metals were added to the culture medium at the indicated
concentrations. After 48 hours of exposure to metals, cells were
labeled with BrdU (DELFIA cell proliferation kit, PerkinElmer) for
an additional 24 hours and BrdU incorporation was evaluated
according to the manufacturer’s instructions.

To further evaluate the metal effect on thyroid stem/progenitor
cell growth, we also measured thyrosphere numbers and volume
after exposure to metal. Thyrospheres were first dissociated
mechanically and enzymatically into single cells and then seeded
at a cell density of 3000 cells/well in a 96-well microtiter plate in
phenol red-free RPMI medium supplemented with 0.1% B-27,
before being exposed for 8–10 days to metals at the concentration
causing the greatest effect at BrdU incorporation. The secondary
thyrosphere number was counted in each well (96-well plate, 100
mL) and the average of four wells was averaged for each condition.
Phase-contrast images of morphological changes of secondary
thyrosphere formation were captured by an Olympus optical
microscope supported by a DP20-5E digital camera. Thyrosphere
size was calculated by measuring sphere areas using Image J
software (NIH, Bethesda, MD, USA) (19).

To ascertain whether changes in thyrospheres’ size were due
to proliferation rather than endoreplication, thyrospheres were
dissociated into single cells by trypsin-EDTA treatment for
10 min with gentle pipetting and the number of viable
cells counted.

Cell proliferation was also evaluated in cells exposed to metals
in the presence of PD98059 (20 mM, Cell Signaling), a selective
inhibitor of ERK1/2. The inhibitor was kept in the culture
medium throughout the entire period of exposure to metals.

Immunoblot Analyses
To measure the extracellular signal-regulated protein kinase
(ERK1/2), thyrospheres were lysed and subjected to Western
blot analysis, as previously described (20). The following
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antibodies against total and phosphorylated ERK1/2 were
purchased from Cell Signaling Technology (Beverly, MA,
USA): anti-ERK1/2, anti-P-ERK1/2 (T202/Y204) and anti-
Vinculin. Bands were detected digitally using the Odyssey Fe
imaging system (Li-COR Bioscience, Lincoln, NE, USA) and the
blots were then quantified using the Li-COR Image Studio
software version 5.2.5.

The metal concentration used for evaluating ERK1/2
activation at 5, 15 and 30 minute time points was selected on
the basis of the peak effect of each metal on BrdU incorporation.

ERK phosphorylation was also measured in cells exposed to
metals in the presence of PD98059 (20 mM) that was kept in the
culture medium throughout the entire period of exposure
to metals.

Statistical Analysis
All data were expressed as mean ± SEM. Statistical analyses were
performed using the GraphPad Prism 5.0 Software. All
differences between mean values were evaluated by the
Student’s t-test. A two-sided P < 0.05 was accepted as significant.
RESULTS

Metal Effect on Thyroid Cell Proliferation
Parallel experiments carried out in both thyrospheres and
differentiated thyrocytes indicated that all examined metals
significantly increased BrdU incorporation in thyrospheres but
not in thyrocytes.

Metals were investigated in a wide range of concentrations
spanning 1,000-fold the lowest dose tested and always included
the average metal concentration previously documented in the
urine of residents of the volcanic area (mg/g creatinine assuming
1g of creatinine equivalent to 1 L of urine): Cu= 5.5, Zn= 217.0,
W= 0.12, Hg= 0.21, Pd= 0.09 (14). In thyrospheres, BrdU
incorporation was significantly increased after exposure to each
metal examined, with peak values being significantly higher than
basal values: Cu +36.7% ± 6.9, p<0.001; Zn +58.8% ± 10.1,
p<0.001; W +59.5% ± 13.3, p<0.01; Hg +36.7% ± 10.1, p<0.01;
and Pd +36.2% ± 7.2, p<0.001. Values then declined in all cases
when the metal concentration was further increased (Figure 1A).
In parallel experiments, thyrospheres were exposed to a mixture
of the five examined metals, each at a concentration causing the
greatest BrdU incorporation (Pd at 0.01 nM, Hg at 0.1 nM, Cu
and W at 10 nM and Zn at 100 nM). The growth effect of this
metal mixture on thyrospheres was +91.0% ± 14.8, which was
significantly higher (p<0.001) than control thyrospheres and also
significantly higher than the effect observed with each single
component of the mixture acting alone at the same
concentration (p<0.05 for Cu, W and Zn, p<0.01 for Hg and
Pd, see Figure 1B)

No effect of the examined metals was observed in
differentiated thyrocytes at any concentration tested (Figure
1A). Also the metal mixture had no effect (data not shown).

To evaluate the growth effect caused by metals using an
independent method, we measured the number and size of
thyrospheres 8 days after exposure to each metal at the
April 2021 | Volume 12 | Article 652675
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concentration causing the maximum effect on BrdU incorporation
and to the metal mixture. All metals caused an increase in the
thyrosphere size and also an altered morphology (Figure 2A).
Average size values indicated that the increase (mM2) was
significant for all metals (p<0.05 for all metals except zinc p<0.01;
Figure 2B). The metal-induced growth effect observed with this
procedure roughly reflected the effect observed with the BrdU
incorporation method, with the greatest effect caused by
thyrosphere exposure to the metal mixture. In contrast, chronic
exposure to metals did not increase the number of thyrospheres.
Only the metal mixture had such an effect, significantly increasing
Frontiers in Endocrinology | www.frontiersin.org 4
the number of thyrospheres (p<0.01) relative to both control
thyrospheres and also thyrospheres exposed to each individual
metal (Figure 2B).

Counting viable cells of dissociated thyrospheres indicated
that proliferation rather than endoreplication was involved in the
effect of metals on thyrospheres.

Metal Effect on ERK1/2 Phosphorylation
To investigate the mechanism involved in the metal-induced
growth in human thyrospheres, we measured the extracellular
signal-regulated protein kinase phosphorylation (ERK1/2), a
A

B

FIGURE 1 | (A) Chronic exposure of human thyrospheres (aggregates of stem/precursor thyroid cells) to heavy metals at the indicated salt concentrations
significantly increased BrdU incorporation in all cases. Basal values in untreated cells were always considered equal 100 and values of BrdU incorporation after cell
exposure to metals were expressed as percent changes over basal. The dose-response curves followed in all cases a biphasic pattern, declining after the peak value
when metal concentrations were further increased. Data shown for each metal indicate the average values ± SEM of four separate experiments except for W (ten
separate experiments). In differentiated thyrocytes none of the five heavy metals studied or their mixture had any effect on BrdU incorporation. *p < 0.05, **p < 0.01
and ***p < 0.001 vs. 0. (B) The mixture of the five metals studied (Mix), each at the concentration causing the maximum BrdU incorporation, promoted BrdU
incorporation significantly more than control thyrospheres (CTRL) and also significantly more than each metal acting alone (average values ± SEM of four separate
experiments). *p < 0.05, **p < 0.01 and ***p < 0.001 vs. Mix.
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pathway that is already reported to be activated by cell exposure
to metals (17, 21–24).

Each single metal rapidly and significantly (p<0.01)
stimulated ERK1/2 phosphorylation with an increase that was
over 100% for all metals except Hg. The peak value occurred at
5 min and then values decreased, returning to basal levels after
30 min. Hg had a more prolonged effect, but ERK1/2
phosphorylation returned to basal values at 30 min also with
this metal. Again, thyrosphere exposure to the metal mixture
caused ERK1/2 phosphorylation that was significantly greater
than that observed with each single metal alone (Figure 3).

Thyrospheres pre-treatment with PD98059 (30 min)
decreased the ERK phosphorylation induced by the exposure
(5 min) to each single metal and their mixture (Supplemental
Figure 1).

Effect of ERK1/2 Inhibition on Metal-
Induced Cell Proliferation and Secondary
Thyrospheres’ Formation
To confirm that the ERK1/2 signaling pathway plays a major role
in thyrosphere growth after exposure to metals, we measured
BrdU incorporation after exposure to metals in the presence of
the ERK1/2 inhibitor PD98059. In this condition, thyrospheres
proliferation was significantly reduced for all metals, with a
different effect for different metals: the ERK1/2 inhibition was
Frontiers in Endocrinology | www.frontiersin.org 5
greater for Cu, Zn and for the metal mixture (p<0.001), was less
significant for Hg (p<0.01) and smaller for Pd and W (p<0.05)
(Figure 4A).

Inhibition of the ERK1/2 pathway also affected the thyroid
stem cell self-renewal, reducing the number of secondary
thyrospheres. No significant change was observed in
thyrospheres’ size or morphology. The decrease in thyrosphere
number was greater in control (not metal-exposed) thyrospheres
(p<0.001 in comparison with thyrospheres grown in the absence
of the inhibitor). The PD98059 effect on secondary thyrosphere
number was present to a lesser extent for all metals (range -23 to
-40%), and was significantly lower than observed in control
thyrospheres (Figure 4B). It should be noted that in
thyrospheres exposed to Hg or to the metal mixture, the
number was reduced relative to thyrospheres cultivated in the
absence of PD98059, but the difference was not statistically
significant (Figure 4B).
DISCUSSION

Using both differentiated and undifferentiated human thyroid
cells in primary culture, the present study demonstrates that five
heavy metals (Cu, Hg, Pd, W and Zn) promote proliferation in
thyroid stem/precursor cells, but not in differentiated thyrocytes.
A

B

FIGURE 2 | (A) Representative phase–contrast microscopy images of thyrospheres grown in standard medium (CTRL) or in medium added with each of the five
heavy metals tested (at the salt concentration causing the maximum BrdU incorporation) or their mixture for 8 days (Scale bar: 30 mM). (B) Histograms indicate the
mean value ± SEM of three separate experiments for measuring the size (mM2) and the number of thyrospheres after exposure to each metal or their mixture.
*p < 0.05, **p < 0.01, ***p < 0.001 vs. CTRL.
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This effect occurs after chronic cell exposure to metal
concentrations in the same range observed in the volcanic
environment. The study also demonstrates that metal-induced
proliferation occurs via activation of the ERK1/2 pathway and
that the mixture of the five metals has a significantly greater effect
than each single metal acting alone.

Exposure to the studied metals increased BrdU incorporation
in thyrospheres with a maximum growth increase ranging from
+35% to +59% for the different metals. This peak effect was
reached at metal concentrations in the nanomolar range, similar
to those measured in the urine of residents from the volcanic area
in Sicily, where the thyroid cancer incidence is doubled in
comparison to adjacent non-volcanic areas (7). For all metals,
the effect on BrdU incorporation followed a biphasic pattern,
decreasing after the peak value when the metal concentration
was further increased. This bimodal dose-response of a biological
effect is typical of hormesis, a well-recognized phenomenon
occurring at very low concentrations of the stimulating agent
and observed both in vitro and in vivo (15, 25). This chemically-
induced hormesis occurs for many compounds and trace
elements, including heavy metals (26), and can be cell-specific
(27), life-stage specific (28) and also depend on the duration of
exposure (29).

We now observe that a hormesis-driven growth response is
observed in immature but not in well-differentiated human
Frontiers in Endocrinology | www.frontiersin.org 6
thyroid cel ls after chronic exposure to nanomolar
concentrations of Cu, Hg, Pd, W and Zn. The different
response is certainly based on the different genetic and
biological characteristics of cells at different stages of
differentiation. In translational terms, this observation
highlights the increased sensitivity of thyroid cells to
environmental heavy metals during fetal life and also of stem
cells present in the adult thyroid. Immature thyroid cells,
therefore, may suffer cytotoxic damage from metal
concentrations that are not unhealthy for well-differentiated
thyrocytes. If progenitors exposed to such a low dose of metals
produce a progeny of mature thyroid cells prone to
transformation (17, 30–32), this process could favor an
increased incidence of thyroid cancer in the population.

Morphological evidence indicates that this growth effect
concerns the size rather than the number of thyrospheres
(except for the metal mixture) suggesting that exposure to
metals primarily affects the proliferating capacity of thyroid
precursor cells rather than the self-renewal of thyroid stem
cells. Moreover, thyrospheres exposed to slightly increased
metals show an abnormal shape, suggesting that the orderly
cell aggregation in spheres is also affected. The mechanisms and
consequences of this phenomenon require additional studies.

An important observation is that the mixture of the five
metals, each at a fixed concentration determined by its maximal
A

B

FIGURE 3 | The effect of metals on ERK1/2 phosphorylation in thyrospheres. Thyrospheres were treated for 30 min with the indicated metals at the concentrations
causing maximum BrdU incorporation, lysed at the indicated times and analyzed for ERK1/2 phosphorylation by Western blot. (A) Representative immunoblots from
six separate experiments. (B) Histograms represent the mean value ± SEM of densitometric values normalized to vinculin and expressed as percent of time 0.
*p < 0.05, **p < 0.01, ***p < 0.001.
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effect on stimulating proliferation, has a significantly greater
effect than each single metal used alone at the same
concentration used in the mixture. The more potent effect of
the mixture can be the final result of different mechanisms
concerning the synergistic and antagonistic relationship
between different metals that can interfere in the uptake,
accumulation and interaction of other metals with cellular
biological mechanisms (33). Our data concern a simplified and
limited chemical mixture: actually each component of the
mixture, at a different concentration than used in our study,
could differently interact with the other components determining
different thresholds for their biological effects (34, 35). For this
Frontiers in Endocrinology | www.frontiersin.org 7
reason, our data on the metal mixture are of limited general
significance. They are sufficient, however, to highlight the
complexity of defining the effect of a multiple and variable
environmental pollution on the cell biology, including the
transformation and carcinogenic potential. As a consequence,
it will be difficult for government agencies to assess the public
health risk when dealing with the exposure to multiple chemicals,
even when they are increased at a low-level (36).

The ERK1/2 signaling pathway is a major effector of metal-
induced proliferation. This is an already reported mechanism, but
we observe it at nanomolar metal concentrations, much lower than
usually tested (21, 23, 24). Quantitatively, the effect of metals on the
ERK1/2 activation was similar for all compounds examined, but this
does not necessarily imply similar activation mechanisms. The
relative potency of each metal may be the final result of different
biological effects, possibly combined, and including the possible
generation of reactive oxygen species, the inhibition of phosphatases
and also different metal-specific mechanisms, such as the activation
of zinc-sensing receptors for the Zn effect (22).

A major role of the ERK1/2 signaling pathway in the metal-
induced growth of thyrospheres is confirmed by the significant
decrease in BrdU incorporation when metal stimulation
occurred in the presence of the specific ERK1/2 inhibitor
PD98059 (Figure 4). The inhibition of ERK1/2 signaling
significantly reduced the number of secondary thyrospheres, an
effect that was mostly evident in control thyrospheres (not
exposed to metals), suggesting that this pathway is relevant for
immature thyrocyte self-renewal and proliferation. The metal-
induced growth of thyrospheres, however, was only partially
inhibited by the presence of PD98059 (Figure 4), suggesting that
the ERK1/2 pathway is indeed involved, but that other
unexplored mechanisms may be activated. In addition to ERK,
in fact, other mitogen activated protein kinases (MAPK), such as
c-Jun NH2-terminal kinase (JNK) and p38 MAPK, may be
activated by extracellular signals and regulate cell functions like
growth, differentiation and apoptosis. All of these pathways
could respond to changes in the cellular environment, like the
increase of heavy metals (37), and initiate the downstream
induction of transcription factors such as the Nuclear Factor-
kappa B (NF-kb) which, in turn, may mediate a variety of cell
processes (38). In this complex network, most data indicate that
ERK is generally activated by mitogenic stimuli (as in our study),
while both JNK and p38 are more involved in the regulation of
apoptosis (39, 40). This evidence, however, is not univocal, as it
has always been observed with metal concentrations in the
micromolar range (2-3 orders of magnitude greater than in our
study), and may be metal and cell-type specific (37).

In conclusion, some potentially toxic heavy metals can
stimulate the growth of thyroid stem/precursor cells at
environmentally relevant concentrations that have no effect on
mature thyrocytes. Life-long (including pre-natal and early life)
exposure to such a mixture of slightly increased metals may affect
undifferentiated thyroid cells, making them (and possibly their
progeny) more susceptible to future damaging factors. Further
studies are required to assess the relevance of this phenomenon
on the increased incidence of thyroid cancer.
A

B

FIGURE 4 | Effect of the ERK1/2 inhibitor PD98059 on metal-induced BrdU
incorporation (panel A, cell proliferation) and secondary thyrospheres’ formation
(panel B). (A) Histograms represent the mean value ± SEM of three separate
experiments. For each metal and their mixture values are expressed as percent
of CTRL (untreated thyrospheres). After thyrospheres’ exposure to metals for
3 days in the absence or the presence of PD98059 (20 µM) BrdU incorporation
was significantly iblunted in all cases by the inhibition of the ERK1/2 pathway.
*p < 0.05; **p < 0.01 and ***p < 0.001 vs. CTRL. (B) Inhibition of the ERK1/2
pathway reduces secondary thyrospheres’ formation. Cells from dissociated
thyrospheres were plated at a density of 3,000 cells in nonadherent 96-wel
plates and exposed to metals in the absence or the presence of PD98059
(20 µM) for 8 days. Spheres were counted in 4 wells for each condition. The
results are expressed as mean value ± SEM of three separate experiments.
*p < 0.05; **p < 0.01 and ***p < 0.001 comparing thyrospheres’ number in the
presence of PD98059 to the number measured under the same condition in
control thyrospheres. ns, non significant; °p < 0.05; °°p < 0.01 and °°°p < 0.001
comparing thyrospheres’ number in the absence or the presence of PD98059.
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three independent experiments is shown. (B) Histograms represent the mean ±
SEM of densitometric values normalized to vinculin and expressed as percent of
control (not treated) thyrospheres. *p < 0.05; **p < 0.01 and ***p <0.001 comparing
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