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Abstract 

Background: Reliable and effective label‑free quantification (LFQ) analyses are dependent not only on the method 
of data acquisition in the mass spectrometer, but also on the downstream data processing, including software tools, 
query database, data normalization and imputation. In non‑human primates (NHP), LFQ is challenging because the 
query databases for NHP are limited since the genomes of these species are not comprehensively annotated. This 
invariably results in limited discovery of proteins and associated Post Translational Modifications (PTMs) and a higher 
fraction of missing data points. While identification of fewer proteins and PTMs due to database limitations can 
negatively impact uncovering important and meaningful biological information, missing data also limits downstream 
analyses (e.g., multivariate analyses), decreases statistical power, biases statistical inference, and makes biological 
interpretation of the data more challenging. In this study we attempted to address both issues: first, we used the 
MetaMorphues proteomics search engine to counter the limits of NHP query databases and maximize the discovery 
of proteins and associated PTMs, and second, we evaluated different imputation methods for accurate data inference. 
We used a generic approach for missing data imputation analysis without distinguising the potential source of miss‑
ing data (either non‑assigned m/z or missing values across runs).

Results: Using the MetaMorpheus proteomics search engine we obtained quantitative data for 1622 proteins and 
10,634 peptides including 58 different PTMs (biological, metal and artifacts) across a diverse age range of NHP brain 
frontal cortex. However, among the 1622 proteins identified, only 293 proteins were quantified across all samples with 
no missing values, emphasizing the importance of implementing an accurate and statiscaly valid imputation method 
to fill in missing data. In our imputation analysis we demonstrate that Single Imputation methods that borrow infor‑
mation from correlated proteins such as Generalized Ridge Regression (GRR), Random Forest (RF), local least squares 
(LLS), and a Bayesian Principal Component Analysis methods (BPCA), are able to estimate missing protein abundance 
values with great accuracy.

Conclusions: Overall, this study offers a detailed comparative analysis of LFQ data generated in NHP and proposes 
strategies for improved LFQ in NHP proteomics data.
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Background
Quantitative proteomics using mass spectrometry (MS) 
has significantly advanced over the years and now allows 
the effective analysis of thousands of proteins. A number 
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of technical advancements have been made at both the 
instrument level and data analysis level to increase the 
amount of biologically relevant information elicited from 
proteomics data. One of the methods for mass spectrom-
etry-based proteomics is label-free quantification (LFQ) 
where the relative amount of proteins across experimen-
tal groups is determined without using any isotopically 
labelled tags [1, 2]. LFQ proteomics has several advan-
tages for large scale experiments in terms of cost effec-
tiveness and overall experimental design. Also, with the 
advent of high resolution top end mass spectrometers, 
LFQ has become more reliable and a method of choice 
for many investigators [3].

A primary challenge for proteomics data analysis is 
the direct dependence on predefined protein sequence 
databases for protein identification. During the proteom-
ics data search, experimental data are searched against 
an in silico-generated library of theoretical spectra 
obtained from the gene annotation of the same organism. 
Therefore, when the gene annotation of the organism is 
not very detailed, it directly and negatively impacts the 
resulting proteomics data. Specifically, reduced genome 
annotation results in fewer protein identifications and 
inadequate detection of important PTMs. Genetically 
well annotated organisms like H. sapiens or M. mus-
culus benefit from rich genome annotations, allowing 
robust proteomics data searches that account for known 
genetic variability like splice variants or amino acid 
sequence variation of encoded proteins [4]. For proteom-
ics in other organisms, a different approach is needed 
to account for the incomplete gene annotation and less 
robust proteomics data search. To this end, our group 
has previously shown that the use of proteogenomic 
approaches can improve the search library limitations 
by incorporating the information from transcriptomics 
data into search databases [4]. However, adapting pro-
teogenomic approaches can be cumbersome, time-con-
suming, and cost-intensive since it requires additional 
RNA-Seq experiments, and in some cases proteogenomic 
approaches may be impossible due to limited amounts of 
available samples.

Another challenge in proteomics, particularly for LFQ, 
is the occurance of missing data. Missing data in LFQ 
can range from 10 to 50% overall, and in 70–90% of data 
across multiple samples at least 1 data point is missing 
per peptide/protein [5]. The sources of missing values 
range from tryptic miscleavages to ion suppression in the 
mass spectrometer, and improper MS/MS fragmentation 
or database search limitations [5]. Based on the source, 
missing values can be categorized either as non-assigned 
m/z or m/z missing across runs. Since NHP proteom-
ics datasets have both types of missing values and given 
very limited studies in NHP, we used a generic approach 

that was agnostic to the potential source of missing val-
ues in our study. Future studies need to consider the 
source of missing values for more comprehensive evalu-
ation of imputation methods specific to each missing 
value source. We do examine three categories of miss-
ing values here: missing not at random (MNAR), missing 
completely at random (MCAR), and missing at random 
(MAR). Random missingness related to the data acqui-
sition processes is defined as MCAR and leads to truly 
random missing values throughout the dataset. MAR is 
where values are missing in the final results because high 
concentrations of certain peptides cause other peptides 
with lower concentrations to go undetected. Lastly, pep-
tides with extremely low concentrations below the limit 
of detection can be categorized as MNAR. Here, we pri-
marily focus on a combination of all three missingness 
types (MNAR-MAR-MCAR), because all three are likely 
to occur in real data.

Since LFQ data contain a relatively high percentage of 
missing values, multiple approaches for the imputation 
of missing values in proteomics data have been proposed 
[5–8]. Imputation is important because many of the sta-
tistical methods for multivariate or multi-omic analy-
sis require complete data, and simply inserting zeros 
for missing values to get these methods to compute can 
lead to drastically different inference. It is also important 
to compute statistical inference without simply ignor-
ing all of the missing data points within a protein which 
can lead to bias because missing data can either mask 
or be directly associated with a biological effect. Com-
pletely removing any proteins with missing data from 
the analysis is also problematic because it can reduce a 
large meaningful dataset of thousands of proteins down 
to a much smaller number of proteins for which complete 
data were obtained.

There is no unified consensus on a best approach for 
imputing missing values in proteomics data and there has 
been little discussion about applying Multiple Imputa-
tion (MI) methods [5–10]. MI methods are often imple-
mented to account for the uncertainty in the prediction 
of the imputed values, whereas Single Imputation (SI) 
methods treat the predicted values as if they were true 
values in downstream association analysis. MI methods 
reduce bias in statistical analysis by creating multiple ver-
sions of the imputed data where the imputed values in 
each of the imputed datasets are allowed to vary by a ran-
dom component that reflects the level of confidence the 
prediction algorithm has in a particular imputed value 
[11]. In the statistical literature, MI is preferred over SI 
because SI can falsely inflate correlations between vari-
ables and lead to biased statistical inference by treating 
imputed values as if they were true values in downstream 
association analysis [11–15]. However, the use of MI 
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with large data (>1000s of variables) like proteomics data 
is computationally difficult and we demonstrate that it 
may not yet be computationally feasible with proteom-
ics data except if applied jointly with variable selection 
techniques.

In this study, we tested the effectiveness of various 
approaches to improve both the proteomics search 
coverage and enhance quantitative data information. 
We first implemented the MetaMorphues proteomics 
search engine which can enhance proteomics or PTM 
searches and compensate to a greater extent for less well 
annotated genomes and search databases [16]. Then we 
evaluated different imputation approaches for filling 
in missing data points, comparing SI and MI methods. 
However, directly comparing the accuracy of the raw 
imputed values between SI and MI methods is not appro-
priate, because the imputed raw values from MI methods 
will always appear less accurate by design [11–15]. As a 
more appropriate way of comparing the two techniques, 
we first compared the accuracy of regression coefficients 
from downstream association analyses computed on the 
incomplete data imputed by SI methods with the regres-
sion coefficients computed by association analysis on 
the real and complete data. Secondly, we compared the 

pooled regression coefficients from MI with regression 
coefficients computed by association analysis on the real 
and complete data. In the context of high-dimensional 
proteomics data, MI techniques are not as well explored 
[9, 10, 17]. Here, we examined how well MI imputes high-
dimensional data and whether or not MI is necessary to 
reduce bias when imputing missing values with proteom-
ics data for association analysis. A short overview of our 
study design is shown in Fig.  1. Overall, our study pro-
vides a detailed description for an improved pipeline for 
label free proteomics in non-human primates (NHP).

Results and discussion
The raw proteomics data search using MetaMorpheus 
identified 1622 proteins and 10,634 peptides across all 
45 P. anubis prefrontal cortex samples (Age 7–23 years). 
As described in a study by Solntsev et al., MetaMorpheus 
allows faster and more accurate proteomics data searches 
with comprehensive analysis of PTMs using a G-PTM-
D discovery approach. It uses a multi-notch search, a 
hybrid search strategy between traditional narrow win-
dow search and open search. In the multi-notch strat-
egy, the search is narrowed compared to an open search 
to only allow certain predefined mass differences for 

Fig. 1 Overview of the study design (A) Enhanced discovery of PTMs using high resolution mass spectrometry and search database augmentation 
in MetaMorphues (B) Graphical representation of imputation workflow (missing data introduction and comparative evaluation of single and 
multiple imputation)
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peptide modifications, thus decreasing the search time. 
Also, with the data calibration in MetaMorpheus there 
is increased accuracy of peptide identifications [16]. The 
modifications identified in our study include common 
biological PTMs (such as acetylation, oxidation, meth-
ylation or phosphorylation), common artifacts (carba-
myl, deamidation, water loss or ammonia loss) and some 
metal PTMs (calcium, sodium, iron etc.). An overview 
of the observed peptides with different modifications is 
shown in Fig.  2. As shown in the upper panel of Fig.  2, 
out of 4963 high confident peptides (q ≤ 0.01, precursor 
mass within ±5 ppm error tolerance, presence of at-least 
one unambiguous PTM and a MetaMorpheus score of 
> 8), we found 3254 peptides with no or fixed modifica-
tions only, 945 biological PTMs, 434 metal PTMs and 
711 common artifacts (usually introduced during sam-
ple preparation or mass spectrometer data acquisition). 
Further breakdown of the number of peptides specific 
to each modification type is shown in the lower panel of 
Fig.  2. Our data showing oxidation at Methionine (M) 
and N-terminal acetylation being most common PTMs 
are in line with the literature and are therefore often 
included as variable modifications in proteomics search 
engines. Amino acid specificity and associated PTMs 

identified in our study are shown in Table  1. The most 
common biological modifications occur at Lysine (K) 
apart from other important biological modifications like 
ADP-Ribosylation, HexNac, phosphorylation, nitrosyla-
tion occurring at serine (S), threonine (T) and tyrosine 
(Y). Most of the metal-specific PTMs occur at aspartate 
and glutamate. The complete list of all normalized pro-
tein data and all peptide data is shown in Supp. File  1, 
and a list of observed PTM specific peptides is shown in 
Supp. File 2.

To illustrate the importance of our PTM discovery in 
P. anubis, we selected Carbonic anhydrase 3 (CA3) as a 
reference protein. This protein is member of the carbonic 
anhydrase (CA) family with an important physiological 
role in hydration of carbon dioxide to bicarbonate and 
protons. Many CAs have been shown to be overex-
pressed in several diseases and are intriguing drug targets 
with some already in clinical use as therapeutic agents 
for glaucoma and epilepsy [18]. Using proteomics we 
can have a more in-depth understanding of several iso-
forms, along with their novel PTMs, which can provide 
additional leads in future drug discovery programs of 
CAs. With our current proteomics workflow, as shown 
in Supp. File 4 Panel A, we observed more than 90% of 

Fig. 2 Distribution of peptides with or without modification (number in bars represent number of peptides observed in each category). Lower 
panel shows breakdown of number of PTM specific peptides detected in each subclass of three categories (Biological, Metal and Artifact)
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sequence coverage of CA3. Apart from some known 
modifications like phosphorylation at S48 (reported ear-
lier in Rattus norvegicus UniProtKB - P14141 (CAH3_
RAT) [19], we also observed a number of important and 
previously unknown modifications including various 
metal PTMs which might have important biological roles 
given that CA3 is part of the metalloprotein superfam-
ily. Further studies are needed to confirm the biological 
importance of these novel modifications. A full list of 
all individual peptides and PTMs detected for CA3 are 
reported in Supp. File  3. For representative and manual 
confirmation of the PTM identification workflow, Supp. 
File 4 panel B shows all PTMs detected for reference pep-
tide “DIKHDPSLQPWSVSYDGGSAK” from CA3 along 
with the experimental MS/MS spectral match with theo-
retical “b” and “y” ions. It is important to mention that 
out of 8 reference peptides shown in Supp. File  4 Panel 
B, 5 peptides had retention times similar to different co-
eluting peptides suggesting that the co-eluting peptides 
could be the source of non-assigned MS/MS ions. List of 
co-eluting peptides of each reference peptide are shown 
in Supp. File 4.

Another independent but related focus of our study 
was to improve the quantitative accuracy of the prot-
eomics data by imputing the missing data points. As the 
nature of the missing values is directly affected by the 
search algorithms, the availability of less comprehensive 
databases for our current model organism (P. anubis Uni-
prot Reference Proteome ID UP000028761) resulted in 
more missing data points. In earlier studies from our lab 
we have shown in detail how using a less comprehensive 
proteomics database with un-annotated splice variants 
can lead to a failure to match peptides with even single 

amino-acid substitutions. Therefore if a sample contains 
a peptide with substituted amino acid (not annotated in 
reference database), it will not be matched with the data 
and will be considered as missing. Non-assigned m/z is 
the additional source of missing data in non-human pri-
mates along with other commonly observed m/z missing 
values between the runs in general LFQ proteomics data. 
One of the approaches used for increasing proteomics 
data information and decreasing percent missing values 
for organisms having a less comprehensive database is by 
searching the data with combined search database using 
genetically related organisms with more comprehensive 
databases [20]. For our dataset, there is no significant 
increase in either the number of proteins or percent-
age of missing data when applying this approach (e.g. by 
using H. sapiens search database together with P. anu-
bis we observed 1974 proteins, where 630 proteins were 
observed with P. anubis reference database only, 634 pro-
teins were observed with H. sapiens reference database 
and an additional 710 proteins were observed in both P. 
anbuis and H. sapiens) as shown in Supp. Fig. 5 and Supp. 
file 6.

Even though MetaMorpheus (with its G-PTM-D and 
Match between runs option) compensates to a greater 
extent for the missing data arising due to less compre-
hensive search database for P. anubis and missing-ness 
arising due to other factors including improper MS/MS 
fragmentation, our protein data still contained a large 
percentage of missing data. Out of 1622 total proteins 
identified, only 293 proteins had no missing values across 
all samples. This high number of proteins with incom-
plete data emphasizes the importance of implementing 
an accurate and statistically valid imputation method to 

Table 1 Amino acid specificity of detected PTMs in our study

Amino Acid Specificity PTMs identified in our study

Cysteine (C) Nitrosylation, Ammonia loss, Carbamyl

Aspartate (D) Carboxylation, Calcium, Fe [II], Sodium, Fe [III], Zinc, Potassium, Magnesium, Cu [I]

Glutamate (E) Carboxylation, Calcium, Fe [II], Sodium, Fe [III], Zinc, Potassium, Magnesium, Cu [I], Water Loss

Lysine (K) Methylation, Formylation, Hydroxylation, Trimethylation, Acetylation, Glutarylation, Suc‑
cinylation, Butyrylation, Crotonylation, Malonylation, Dimethylation, Hydroxybutyrylation, 
Carboxylation, Pyridoxal phosphate, Carbamyl

Methionine (M) Oxidation, Carbamyl

Asparagine (N) Hydroxylation, Deamidation, Ammonia loss

Proline (P) Hydroxylation

Glutamine (Q) Deamidation

Arginine (R) Citrullination, Methylation, Dimethylation, Carbamyl

Serine (S) Phosphorylation, ADP‑ribosylation, HexNAc

Threonine (T) Phosphorylation, HexNAc

N‑Terminal (X) Acetylation, Carbamyl

Tyrosine (Y) Sulfonation, Nitrosylation, Phosphorylation
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fill in missing data. Otherwise, these missing data will 
decrease statistical power, introduce potential biases, and 
limit options for downstream analyses. With a limited 
availability of studies testing effectiveness of imputation 
strategies in NHP proteomics data, we aimed to evalu-
ate various imputation methods on our current data-
set to determine which method would be most helpful 
in  improving the statistical analysis of LFQ proteomics 
data for organisms with less comprehensive annotated 
genomes in general and NHP species in particular. Brief 
overviews of each of the various imputation methods 
used in this study are provided in Supp. File 5.

First we evaluated the accuracy of SI techniques. SI 
methods fill in the best predicted value for each missing 
data point and treat it as truth for the subsequent statis-
tical analyses. We used several different SI methods in 
this study, including single value approaches where miss-
ing values are very simply replaced with a constant or a 
randomly selected value. Here we chose to only apply 
two single value approaches. The first method replaces 
missing values with zeros [5] (zero imputation) and the 
second replaces missing values with the respective pro-
tein mean (mean imputation). We also implemented 
approaches where information from the whole dataset is 
used to reconstruct the missing values (e.g., SVD, BPCA) 
[21–23]. Lastly, we applied methods that exploit meas-
ures of local similarity for imputation (e.g., KNN, GRR, 
and Random Forest) [22–25]. All of the approaches, how-
ever, are SI methods that do not incorporate uncertainty 
into the prediction of the imputed values.

In contrast, MI methods are implemented to account 
for the uncertainty in the prediction of the imputed val-
ues by creating multiple versions of the imputed data 
where the imputed values in each of the imputed datasets 
are allowed to vary by a random component that reflects 
the level of confidence the prediction algorithm has in a 
particular imputed value [11–15, 26]. It has been repeat-
edly demonstrated that MI methods can reduce bias in 
downstream statistical analysis [11–15]. For this reason, 
we evaluated MI techniques alongside SI methods and 
we specifically considered if any of the imputation meth-
ods were significantly altering correlations between sam-
ples and measures or causing biased statistical inference.

To evaluate the accuracy of the SI methods, we first 
introduced missing values into our complete data with 
global missingness ranging from 0 to 30% (Supp. Fig. 1). 
Then, we imputed the missing data with each imputa-
tion method and compared the results to the original 
complete data. Percent bias (i.e., the percent difference 
between the imputed value and truth) was calculated 
for each method, and data points with a percent bias 
< 5% were considered as correctly imputed. We used 
the 5% cutoff because our results highlighted that the 

top performing imputation methods accurately imputed 
> 95% of the data even with a stringent criteria of 5%. 
However keeping in view the current bioanalytical 
acceptance criteria we used a range of 5 to 30% protein 
missing-ness in the datasets to test the performance of 
each imputation method. Figure  3 shows the percent-
age of correctly imputed values using different methods 
for a mixture of MCAR-MAR-MNAR missingness. Our 
results indicate that SI methods exploiting local similar-
ity (GRR, LLS, SeqKNN, IMPSeq, and Random Forest) 
or the global data structure (BPCA) all accurately impute 
the raw data at high proportions. Methods where missing 
values were replaced with the protein mean also showed 
reasonably high accuracy, but repeatedly filling in the 
mean for each missing value - particularly where there is 
high amounts of missingness - will cause distributional 
problems and will very likely introduce biases for statisti-
cal correlation analyses of the imputed data. We note that 
the SeqKNN and IMPSeq methods often failed to com-
pute with our data in our implementation. There was not 
one SI method that demonstrated clear improvements 
in accuracy over the others, so we selected four meth-
ods (GRR, LLS, BPCA, and Random Forest) to be further 
evaluated at overall missingness percentages of 10–30% 
and protein missingness percentages between 0 and 30% 
(Supp. Fig.  2). Again, among these top four methods 
there was no significant difference in accuracy (ANOVA 
p = 0.19 for 30% global missingness and 20–30% protein 
missingness).

Using the four highly accurate SI methods and two 
additional MI methods, we evaluated whether or not 
any of the methods introduced significant bias into the 
downstream statistical analysis. The data here are col-
lected from healthy adult animals ranging in ages from 7 
to 23 years. To evaluate these methods for bias, we com-
puted regressions between protein abundance and age 
for each protein with complete data. Then, missing values 
were introduced and imputed. Regression analysis was 
subsequently computed with the newly imputed results 
and the new regression coefficients and p-values were 
compared to truth. Unfortunately, MI methods often 
failed to converge as the number of proteins in the data-
set approached 40, so for the comparison of MI and SI 
methods, either 10, 20, 30, or 40 proteins were randomly 
sampled from the complete data before introducing miss-
ing values and computing the imputation. Our results 
indicate that when randomly sampling 10 to 40 proteins 
and introducing missingness at rates between 10 to 40%, 
none of the imputation methods significantly biases the 
regression coefficients or p-values in either direction 
(Fig.  4). With a smaller number of proteins, however, 
there is suggestive evidence that LLS imputation may 
falsely inflate p-values (Fig. 4B). Conversely, MICE-Norm 
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appears to be slightly conservative as the number of pro-
teins grows (Fig.  4B). Of all the methods, Random For-
est imputation appears just as unbiased, if not more 
unbiased, than any of the other imputation techniques – 
including the MI methods.

In order to more directly assess the influence of impu-
tation on the inter-variable correlations, we computed 
Cronbach’s alpha (a measure of internal consistency) for 
a random subset of the complete data and compared it 
to the Cronbach’s alpha for the same subset of imputed 
data. Wherever the inter-variable correlation is decreased 
through imputation, Cronbach’s alpha will also decrease 
relative to the true data. Similarly, wherever the inter-var-
iable correlation is increased through imputation, Cron-
bach’s alpha will increase. Any methods demonstrating 
consistent shifts in either direction away from the true 
Cronbach’s alpha may be biasing downstream results 
by altering the correlation structure between variables. 

This will be especially true for multivariate analyses. For 
example, hierarchical clustering may pull out a set of very 
strongly correlated proteins, but it may be the case that 
only one of the proteins in the set was used heavily dur-
ing the imputation of all of the other proteins in the set 
which led to correlations that may not actually exist. The 
suggestive patterns of bias seen among the differences 
in the regression coefficients and p-values were ampli-
fied in the Cronbach’s alpha analyses. LLS shows strong 
and significant bias in Cronbach’s alpha (Fig. 5). This bias 
appears to diminish as more proteins are added to the 
imputation. MICE-Norm shows suggestive evidence of a 
conservative bias for 20% global missingness and 30 ran-
domly selected proteins. Random Forest demonstrates 
a slight, yet significant conservative bias for 20% global 
missingness and 30 randomly selected proteins.

It is known that MI reduces bias in statistical analysis 
by creating multiple versions of the imputed data where 

Fig. 3 Percentage of correctly imputed values (imputed values with Percent Bias < 5%) for 12 different Single Imputation methods and 4 different 
levels of overall missingness. Each point represents a single iteration of added missingness and imputation evaluation. A < 5% protein missingness. 
B 5–10% protein missingness. C 10–20% protein missingness. D 20–30% protein missingness
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the imputed values in each of the imputed datasets are 
allowed to vary by a random component that reflects 
the level of confidence the prediction algorithm has in 
a particular imputed value [11–15, 26]. However, in the 
context of high-dimensional proteomics data, we dem-
onstrate that MI may not be necessary (or beneficial) to 
reduce bias when imputing missing values with proteom-
ics data for association analysis. Our results even sug-
gest that MICE-Norm (the parametric MI technique) is 
overestimating the uncertainty in the imputed data and 
incorporating too much noise as the number of variables 
grows (Figs.  4 & 5). A direct example of what happens 
with the imputed values from MICE-Norm demon-
strates how the variance quickly balloons when the num-
ber of variables grows large (Supp. Fig.  3). It is worth 
noting, however, that this problem is not evident in the 
non-parametric approach (Supp. Fig.  4). In addition to 

these results, we have found that MI often fails to con-
verge with a large number of variables which makes MI 
approaches very difficult to apply in proteomics data with 
1000s of proteins. Therefore, advanced variable selection 
would need to be computed in order for MI methods to 
work with high-dimensional proteomics data [9, 10]. MI 
also greatly complicates potential multi-omic studies – 
particular where users are interested in directly testing 
joint hypotheses across the multiple data types. Even 
though MI may ultimately protect from additional false 
positives, we believe that proceeding with SI is a very 
sensible approach.

Among the SI techniques: Random forest, GRR, and 
BPCA are all reasonable imputation approaches for 
the analysis of our data. They each show high amounts 
of accuracy, and little bias. Random Forest is a logi-
cal choice for imputation and has been recommended 

Fig. 4 Differences between true regression estimates and imputed regression estimates (A) as well as differences between association p‑values 
(B) for 6 imputation methods. Evaluations were done on randomly selected 10 and 40 proteins from complete data (296 proteins with no missing 
values). Global missingness of 10 to 40% was introduced for each individual protein list. Regressions were computed with all imputed data 
regardless of their distance from truth
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in the literature multiple times as a good imputation 
method for proteomics data and metabolomics data 
[7, 27–29]. In addition, Random Forest benefits from 
being a non-parametric approach, which is critical in 
data that is not always normally distributed. It is also 
less sensitive to outliers and noise [25]. The Random 
Forest imputation algorithm (missForest) that is imple-
mented in this study first fills in missing values with 
the row medians, after marking each row that contains 
missing values as the prediction set and the complete 
data as the training set [25]. Then it begins an itera-
tive process of looping through missing data points 
several times, using the newly updated data to inform 
the previously missing data point. It repeats this until 
either the algorithm converges or the number of user-
defined iterations elapse [25]. Because the MI meth-
ods limited the number of proteins and the amount of 
missingness that could be used to previously evaluate 

the Random Forest algorithm, we wanted to complete 
a more in-depth evaluation of the Random Forest algo-
rithm across higher percentages of missingness and 
with all proteins. To approximate the point of protein 
missingness at which the accuracy of the Random For-
est algorithm begins to deteriorate, we used the pro-
tein full dataset (all 1622 proteins filtered down to 
1252 proteins that occurred in at least 25% of samples) 
instead of just the complete proteins. Here, we intro-
duced one missing value at a time where there was not 
already a missing value, imputed it along with all of the 
other real missing data points, and compared it to the 
real value. This was done in order to evaluate the accu-
racy of the Random Forest imputation algorithm while 
maintaining the exact data structure of the real data. 
All the way up to proteins with more than 75% missing 
data, Random Forest does not show a significant drop 
in accuracy (Fig. 6A). We hypothesize that this may also 

Fig. 5 Differences between true Cronbach’s alpha and imputed Cronbach’s alpha for 6 imputation methods. (*** Bonferroni p < 0.001 * Bonferroni 
p < 0.05). Evaluations were done on randomly selected 10, 20 or 30 proteins (left axis) from complete data (296 proteins with no missing values). 
Global missingness (top axis) of 10 and 20% was introduced for each individual protein list



Page 10 of 14Hamid et al. BMC Genomics          (2022) 23:496 

be a function of our data, where the relative amounts 
of protein across each of the samples remain quite sta-
ble as the protein mean imputation method also dem-
onstrated such high accuracy with these data (Fig.  3). 
The Cronbach’s alpha across all proteins after imputa-
tion with the Random Forest algorithm across all pro-
teins is significantly inflated for all amounts of overall 
missingness until the overall missingness reaches 70% 
(Fig. 6B). This means that users need to be aware that 
implementing this imputation with proteomics data is 
likely to falsely inflate correlations between variables. 
Despite this, our results show no significant increase 
or decrease in the estimates of the regression coef-
ficients and association p-values (Fig.  6C and D). It is 
worth noting, however, that as the proportion of over-
all missingness increases, the regression coefficients of 
the imputed data start to deviate more and more from 
truth (Fig. 6C). For this reason, imputing proteins with 
the Random Forest method when there is greater than 

30% protein missingness and datasets with more than 
20% of overall missingness is not advised. When imput-
ing in  situations with more than 20% overall missing-
ness, users should expect inflated correlations between 
features as well as p-values that are biased towards 
insignificance. While imputing with Random For-
est for proteins with > 30% missingness demonstrates 
very low percent bias, users would be making statisti-
cal inference with more than a third of the data being 
unknown which has the potential for severe biases and 
false positives.

Conclusions
Our current workflow for improving the efficiency of 
LFQ proteomics for NHPs by improved data search for 
enhanced PTM discovery and detailed evaluation of 
various methods for imputing the missing data can be 
very helpful for improving qualitative depth and quan-
titative accuracy of LFQ proteomic studies for NHPs. 

Fig. 6 In depth Evaluation of Random forest imputation for the full protein dataset (proteins present in at‑least 25% of samples, corresponding to 
1252 proteins) (*** Bonferroni p < 0.001 * Bonferroni p < 0.05)
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Our study incorporated the MetaMorpheus data search 
which improved the detection range of proteins includ-
ing 58 different PTMs, and we report a number of novel 
PTMs. We also evaluated multiple imputation methods 
for improving the statistical analysis of proteomics data 
for NHPs, and we discussed the costs and benefits asso-
ciated with MI in high-dimensional proteomics data. An 
implementation of the MetaMorpheus search workflow 
with an imputation of protein abundances for missing 
data with the Random Forest method is highly reliable 
when fewer than 30% of values for a particular protein 
(and less than 20% of datapoints overall) are missing. This 
standard LFQ workflow for NHP data also highlights the 
clinical translational opportunity in H. sapiens where 
discovery studies for control prefrontal cortex samples 
across a diverse age range is limited because of sample 
availability restrictions.

Material and methods
Animal model
Our study included 45 P. anubis brain frontal cortex 
samples, consisting of 35 females in the age range of 
7–23 years (21–69 human-equivalent years) and 10 males 
in the age range of 8–23 years (24–69 human equivalent 
years). The study was carried out in compliance with 
the ARRIVE guidelines. As part of current study, Ani-
mals were maintained in outdoor group housing at the 
Southwest National Primate Research Center (SNPRC), 
Texas Biomedical Research Institute (TBRI) provid-
ing full social security and physical activity. The TBRI’s 
Institutional Animal Care and Use Committee approved 
experimental protocols, and SNPRC veterinarians and 
veterinary staff conducted all procedures. Brain sam-
ples were removed and frontal cortex structures were 
dissected by an experienced neurologist, weighed, flash 
frozen in liquid nitrogen, and stored at − 80 °C until they 
were analyzed in their entirety.

Proteomics sample preparation
Samples were homogenized in Tris buffer. Tissue 
homogenate was subjected to an overnight Acetone 
precipitation at − 20 °C followed by centrifugation at 
12,000 g for 10 minutes. The protein pellet was dried and 
reconstituted in 100 mM of Ammonium Bicarbonate. 
After protein quantification, 100μg of each sample was 
processed further. Protein disulfide bonds were reduced 
using dithiothriotol (DTT) for 1 hour at 56 °C followed by 
alkylation using iodoacetamide (IAA) for 30 minutes in 
dark. The resulting protein mixture was subjected to an 
overnight trypsin digestion. Samples were desalted and 
cleaned up using Thermo Scientific Pierce C18 Tips. The 
final peptide mixture was dried and reconstituted in 0.1% 
formic acid.

Data acquisition
1μg of each sample was loaded on a PepMap RSLC C18 
easy-spray column (3um, 100A, 75um*15 cm) using Easy-
nLC 1200 coupled to an Orbitrap Lumos Tribrid Mass 
Spectrometer (Thermo Scientific). The peptides were 
separated using a 3-hour gradient of Mobile phase A 
(0.1% Formic acid in 95:5 Water: Acetonitrile) and Mobile 
Phase B (0.1% Formic acid in 80:20 Acetonitrile: Water). 
The following gradient program was used for peptide elu-
tion: 2 to 30% B in 140 minutes, 30 to 95% B in 30 minutes 
and 95–100%B in 10 minutes. The mass spectrometer 
data was acquired in MS1 scan mode (m/z = 375–1800) 
at a resolution of 120,000 with Automatic Gain Con-
trol (AGC) of 4.0 ×  105 and Maximum injection time of 
50 ms. MS/MS data acquisition was done using HCD 
mode at a resolution of 30,000 with an AGC target of 
5.0 ×  104 and maximum injection time of 54 ms. All the 
data acquisition was done using Thermo Scientific Xcali-
bur software.

Data analysis
Raw data were analyzed using MetaMorpheus, using 
the P. anubis reference proteome database from Uni-
prot with 44,721 entries (UP000028761). The data files 
were calibrated using following settings: precursor mass 
tolerance of 15 ppm, product mass tolerance of 25 ppm 
with Carbamidomethyl as fixed modification and oxida-
tion of methionine as variable modification. Trypsin was 
selected as protease with 2 maximum mixed cleavages 
and the calibrated data files were converted to mzML 
format. Post calibration data was searched using G-PTM-
D task for incorporation of common biological, metal 
or artifact PTMs into the search database. Final search 
was done using the augmented search database with 
incorporated G-PTM-D based modifications at precur-
sor and product mass tolerance of 5 and 20 ppm respec-
tively. Peptide or Protein quantification was done using 
the FlashLFQ approach and the Match between runs 
option was enabled. For both protein and peptide data 
files, only proteins or peptides identified in target data-
base were retained. For PTM discovery, all peptide data 
were filtered with a q-value threshold of ≤0.01, precur-
sor mass error of 5 ppm and presence of at least 1 unam-
bigous PSM (q < 0.01). The protein data were normalized 
and log transformed using global intensity normalization. 
Only proteins present in at least 25% of the samples were 
retained for downstream imputation analysis.

Introduction of missing values
For all of the initial imputation evaluations only the com-
plete data (i.e., proteins with no missingness) were used. 
Missingness was introduced to the complete data at vary-
ing rates and with four different missing mechanisms 
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– missing completely at random (MCAR), missing at ran-
dom (MAR), missing not at random (MNAR), and mix-
ture of all three (MCAR-MAR-MNAR), using approaches 
previously described [27]. Briefly, MCAR values were 
introduced by randomly selecting values to remove. MAR 
values were introduced by sorting the abundance values 
of two proteins using only one of the protein’s values. 
For the other protein not used to do the sorting, values 
were removed if the matched values (values shared across 
samples) in the protein used for sorting were above a cut-
point sampled from a chi-squared distribution. This is 
done to simulate a situation where high abundance in one 
protein leads to missingness in another protein. MNAR 
values were introduced by sampling a cut point from a 
chi-squared distribution and removing all values within 
the same protein below that cut point. For the mixture 
of all three missingness mechanisms, each missing type 
was sequentially added to the data at equal proportions 
until the desired rate of missingness was achieved. The 
mixture of all three missingness mechanisms (MCAR-
MAR-MNAR) was considered most heavily out of all of 
the simulations because all three types of missingness are 
likely present in our data and influencing the imputation 
procedures.

Evaluation of imputation methods
NAguideR was used beforehand to explore the various 
imputation methods that are commonly applied with 
proteomics data [6]. Thirteen SI methods (i.e., methods 
that predict the best value for each data point and treat 
it as truth in statistical analysis) were initially evaluated 
for accuracy. Percent bias (i.e., the percent difference 
between the imputed value and truth) was observed 
for each method and the percentage of data points with 
a percent bias < 5% was also recorded and observed for 
each type of missingness and for varying degrees of pro-
tein missingness and global missingness. Four SI meth-
ods (GRR, LLS, BPCA, and Random Forest) were further 
evaluated for accuracy.

The most consistently accurate SI methods were also 
compared with MI methods (MICE-Norm and MICE-
Random Forest). First, we compared the accuracy of 
regression coefficients from downstream association 
analysis between SI methods, truth, and the pooled 
results from MI methods. When the number of pro-
teins in the data approached 40, imputation became very 
slow and computationally expensive. In addition, when 
the number of proteins in the data approached 50 and 
when there were high proportions of missingness, the MI 
methods frequently failed to converge and returned the 
following error: “system is computationally singular”. To 
circumvent this error, a random subset of either 10, 20, 
30, or 40 proteins were sampled from the data. For the 

comparison of regression coefficients, we first introduced 
missing values into the complete data as described above 
and then sampled our random set of proteins before 
downstream analysis. These data were then merged with 
the available age information for each sample and, sub-
sequently, the missing values were imputed. For the SI 
methods, a simple regression analysis was computed 
between age and protein abundance, treating the imputed 
values as truth. For the MI methods, a regression analysis 
was computed on each of the multiply imputed versions 
of the data and the results from each analysis were pooled 
according to Rubin’s rules to obtain a single estimate and 
p-value [14]. The differences between the regression coef-
ficients and p-values from models using the complete 
data and regression coefficients from the models using 
the imputed data were recorded for each iteration of 
missingness that was introduced into the complete data. 
This was computed for global missingness rates of 10 and 
20% as well as each of the numbers of randomly selected 
proteins, and each of the four missingness types. For each 
method, we computed a one sample t-test on the differ-
ences between the imputed and true regression coeffi-
cients and p-values to test for departure from zero.

We also compared the Cronbach’s alpha (a measure of 
internal consistency) between the imputed results and 
truth (i.e. the actual protein value that was removed from 
the original data). Once again, a random subset of either 
10, 20, or 30 proteins were sampled from the complete 
data. The Cronbach’s alpha was computed with the com-
plete data and then missing values were introduced and 
imputation completed. Cronbach’s alpha was again com-
puted on the imputed results and compared with the 
true Cronbach’s alpha. For the MI methods, Cronbach’s 
alpha was computed on only 1 of the 5 multiply imputed 
datasets. The difference between the two measures was 
recorded and the process was repeated iteratively for 
global missingness rates of either 10% or 20% and each of 
the four missingness types. Higher numbers of proteins 
and higher rates of global missingness were not observed 
because the MI methods frequently failed to converge. 
A more in-depth evaluation of the Cronbach’s alpha was 
computed when MI methods were no longer being con-
sidered. For each method, we computed a one sample 
t-test on the differences between the imputed and true 
Cronbach’s alpha to test for departure from zero.

A more in-depth evaluation of accuracy and bias was 
carried out for the Random Forest method to determine 
the amount of missingness at which the method’s accu-
racy starts to deteriorate and where it begins to introduce 
biases. To maintain data structure as close to reality as 
possible, we used the full data after removing proteins 
with > 75% missing data and randomly selected only a 
single non-missing data point at a time, set it to missing, 
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and then imputed it. This was done iteratively for 10,000 
of the possible 42,433 non-missing values present in the 
data. For each iteration, the true value was recorded 
along with the imputed value as well as the percentage of 
missing data in the protein being imputed.

In addition to these evaluations, we also computed fur-
ther evaluations of the Cronbach’s alpha and regression 
coefficients for the Random Forest method. These were 
computed in an identical fashion to how they were com-
puted for all methods, just without restrictions on the 
number of proteins used (which were in place to allow 
the MI methods to compute) and with a wider range of 
overall missingness rates (10–70%).
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