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Abstract

The last decade saw the advent of increasingly realistic epidemic models that leverage on the availability of highly detailed
census and human mobility data. Data-driven models aim at a granularity down to the level of households or single
individuals. However, relatively little systematic work has been done to provide coupled behavior-disease models able to
close the feedback loop between behavioral changes triggered in the population by an individual’s perception of the
disease spread and the actual disease spread itself. While models lacking this coupling can be extremely successful in mild
epidemics, they obviously will be of limited use in situations where social disruption or behavioral alterations are induced in
the population by knowledge of the disease. Here we propose a characterization of a set of prototypical mechanisms for
self-initiated social distancing induced by local and non-local prevalence-based information available to individuals in the
population. We characterize the effects of these mechanisms in the framework of a compartmental scheme that enlarges
the basic SIR model by considering separate behavioral classes within the population. The transition of individuals in/out of
behavioral classes is coupled with the spreading of the disease and provides a rich phase space with multiple epidemic
peaks and tipping points. The class of models presented here can be used in the case of data-driven computational
approaches to analyze scenarios of social adaptation and behavioral change.
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Introduction

Understanding human behavior has long been recognized as

one of the keys to understanding epidemic spreading [1,2], which

has triggered intense research activity aimed at including social

complexity in epidemiological models. Age structure [3], human

mobility [4–16] and very detailed data at the individual level [17–

20] are now incorporated in most of the realistic models. However,

much remains to be done. Models based on social mobility and

behavior [21,22] have shown to be valuable tools in the quan-

titative analysis of the unfolding of the recent H1N1 pandemic

[21,22], but it has become clear that societal reactions coupling

behavior and disease spreading can have substantial impact on

epidemic spreading [2,23] thus defining limitations of most current

modeling approaches [24]. Societal reactions can be grouped into

different classes. First, there are changes imposed by authorities

through the closure of schools, churches, public offices, and bans

on public gatherings [25–28]. Second, individuals self-initiate

behavioral changes due to the concern induced by the disease [29–

36]. Behavioral changes vary from simply avoiding social contact

with infected individuals and crowded spaces [37] to reducing

travel [38,39] and preventing children from attending school. In

all cases we have a modification of the spreading process due to the

change of mobility or contact patterns in the population. In

general, these behavioral changes may have a considerable impact

on epidemic progression such as the reduction in epidemic size

and delay of the epidemic peak.

Several studies have been carried out in order to evaluate the

impact and role that organized public health measures have in the

midst of real epidemics [26–28]. However, only a few recent

attempts have considered self-induced behavioral changes indi-

viduals adopt during an outbreak in order to reduce the risk of

infection. In some approaches individual behaviors were modeled

by modifying contact rates in response to the state of the disease

[27,29,30,36,40]. In others new compartments representing indi-

vidual responses were proposed [31,33,35]. Finally, in some

studies the spread of information in the presence of the disease was

explicitly modeled and coupled with the spreading of the disease

itself [32]. However, we are still without a formulation of a general

behavior-disease model.

In this study we propose a general framework to model the

spread of information concerning the epidemic and the eventual

behavioral changes in a single population. The emergent infectious

diseases that we consider throughout the manuscript resemble

the natural history of an acute respiratory infection with a short

duration of infectiousness and have mild impact on the health

status of individuals in that healthy status is recovered at the end of

the infectious period. We modify the classic susceptible-infected-

recovered (SIR) model [41] by introducing a class of individuals,

SF , that represents susceptible people who self-initiate behavioral

changes that lead to a reduction in the transmissibility of the

infectious disease. In other words, this class models the spread of

‘fear’ associated with the actual infectious disease spread [35,42].

Individuals who fear the disease self-initiate social distancing
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measures that reduce the transmissibility of the disease. The

spread of fear depends on the source and type of information to

which individuals are exposed [32,43]. We classify the general

interaction schemes governing the transitions of individuals

into and out of SF by considering behavioral changes due to dif-

ferent information spreading mechanisms, i.e., belief-based versus

prevalence-based and local versus global information spreading

mechanisms. We provide a theoretical and numerical analysis of

the various mechanisms involved and uncover a rich phenome-

nology of the behavior-disease models that includes epidemics with

multiple activity peaks and transition points. We also show that in

the presence of belief-based propagation mechanisms the popu-

lation may acquire a collective ‘memory’ of the fear of the disease

that makes the population more resilient to future outbreaks. This

abundance of different dynamical behaviors clearly shows the

importance of the behavior-disease perspective in the study of

realistic progressions of infectious diseases and provides a chart for

future studies and scenario analyses in data-driven epidemic

models.

Methods

Epidemic model and basic assumptions
In order to describe the infectious disease progression we use the

minimal and prototypical SIR model. This model is customarily

used to describe the progression of acute infectious diseases such

as influenza in closed populations where the total number of

individuals N in the population is partitioned into the compart-

ments S(t), I(t) and R(t), denoting the number of susceptible,

infected and recovered individuals at time t, respectively. By

definition it follows N~S(t)zI(t)zR(t). The model is described

by two simple types of transitions represented in Figure 1. The first

one, denoted by S?I , is when a susceptible individual interacts

with an infectious individual and acquires infection with trans-

mission rate b. The second one, denoted by I?R, occurs when an

infected individual recovers from the disease with rate m and is

henceforth assumed to have permanent immunity to the disease.

The SIR model is therefore described by the two following

reactions and the associated rates:

SzI {?
b

2I , ð1Þ

I {?
m

R: ð2Þ

While the I?R transition is itself a spontaneous process, the

transition from S?I depends on the structure of the population

and the contact patterns of individuals. Here we consider the usual

homogeneous mixing approximation that assumes that indivi-

duals interact randomly among the population. According to this

assumption the larger the number of infectious individuals among

one individual’s contacts the higher the probability of transmission

of the infection. This readily translates in the definition of the force

of infection in terms of a mass action law [44], lS?I~bI(t)=N

that expresses the per capita rate at which susceptible individuals

contract the infection. In order to simulate the SIR model as a

stochastic process we can consider a simple binomial model of

transition for discrete individuals and discrete times. Each member

of the susceptible compartment at time t has a probability

lS?IDt~bDtI(t)=N during the time interval between t and tzDt

to contract the disease and transfer to the infected state at time

tzDt, where Dt is the unitary time scale considered that we have

set to Dt~1 day in simulations. As we assume to have S(t)
independent events occurring with the same probability, the

number of newly infected individuals Iz generated during the

time interval Dt is a random variable that will follow the binomial

distribution Bin S(t),bDtI(t)=N½ �. Analogously, the number of

newly recovered individuals Rz at time tzDt is a random variable

that will obey the binomial distribution Bin I(t),mDt½ �, where the

number of independent trials is given by the number of infectious

individuals I(t) that attempt to recover and the probability of

recovery in the time interval Dt is given by the recovery probability

mDt. In this processes we recognize that the stochastic variables

define a Markov chain [45,46] of stochastic events fS(t),I(t),
R(t) : t~0,Dt,2Dt, . . .g in which the current state of the system is

determined only by the state of the system at the previous time steps.

Formally, we can indeed write the following Markov chain relations:

S(tzDt)~S(t){Iz,

I(tzDt)~I(t)zIz{Rz,

R(tzDt)~R(t)zRz:

ð3Þ

These equations can be readily used to simulate different stochastic

realizations of the epidemic events with the same basic parameters

and initial conditions. This allows us to analyze the model’s

behavior by taking into account statistical fluctuations and noise in

the epidemic process. The equations can also be translated into the

standard set of continuous deterministic differential equations

describing the SIR model by using expected values as

dtS(t)~{bS(t)
I(t)

N
,

dtI(t)~{mI(t)zbS(t)
I(t)

N
,

dtR(t)~mI(t):

Figure 1. Schematic representation of the two types of
transitions that will be recurrent in the paper. In panel (A) we
show the first in which individuals in compartment X interact with
individuals in class Y , represented by the small square, becoming Y
themselves. In general the compartment inducing the transition of
individuals in X could be any other compartment in the model, e.g. M ,
different from the end-point of the transition. We assume the
homogeneous mixing of the population so that the rate at which an
individual in X interacts with individuals in Y and changes status is
simply given by the product of prevalence Y=N of Y and the
transmission rate b, bY=N . This type of reaction can be written as

XzY{?
b

2Y . In the case of the SIR model X~S and Y~I . In panel
(B) we show the second type. This is a spontaneous transition with rate
m in which an individual in compartment Y spontaneously moves to
compartment Z. These types of reactions can be written as Y{?

m
Z. In

the SIR model Y~I and Z~R.
doi:10.1371/journal.pone.0023084.g001
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The crucial parameter in the analysis of single population epidemic

outbreaks is the basic reproductive number R0, which counts the

expected number of secondary infected cases generated by a

primary infected individual. Under the assumption of homogeneous

mixing of the population the basic reproductive number of the SIR

model is given by

R0~
b

m
: ð4Þ

By the simple linearization of the above equations for I=N%1 it is

straightforward to see that in the single population case any

epidemic will spread to a nonzero fraction of the population only if

R0w1. In this case the epidemic is able to generate a number of

infected individuals larger than those who recover, leading to an

increase in the overall number of infectious individuals I(t). The

previous considerations lead to the definition of a crucial epide-

miological concept: the epidemic threshold. Indeed, if the trans-

mission rate is not large enough to allow a reproductive number

larger than one (i.e., bwm), the epidemic outbreak will be confined

to a tiny portion of the population and will die out in a finite amount

of time in the thermodynamic limit of N??.

In the following we will use binomial stochastic processes to

simulate numerically the progression of the epidemics and we will

use the continuum limit to provide the analytical discussion of the

models.

Coupling epidemic spreading and behavioral changes
We need to classify the source and type of information

concerning the disease that people use to conduct their behavior

in order to model the coupling between behavioral changes and

the disease spread. In other words, while the disease spreads in the

population, individuals are exposed (by local contacts, global mass

media news, etc.) to information [32] on the disease that will lead

to changes in their behavior. This is equivalent to the coupled

spread of two competing contagion processes [32,33,35]: the

infectious disease and the ‘fear of the disease’ contagion processes.

The fear of the disease is what induces behavioral changes in the

population. For this reason we will assume that individuals affected

by the fear of the disease will be grouped in a specific

compartment SF of susceptible individuals. These individuals will

not be removed from the population, but they will take actions

such as reducing the number of potentially infectious contacts,

wearing face masks, and other social distancing measures that

change disease parameters. In the following we will consider that

self-induced behavior changes have the effect of reducing the

transmission rate of the infection, introducing the following

reaction:

SF zI {?
rbb

2I , ð5Þ

with 0ƒrbv1 (i.e., rbbvb). The above process corresponds to a

force of infection on the individuals affected by the fear contagion

lSF?I~rbbI(t)=N . The parameter rb therefore modulates the

level of self-induced behavioral change that leads to the reduction

of the transmission rate. As the scope of the awareness of the

disease or of the adopted behavioral changes is avoidance of

infection, we assume that individuals in the SF compartment relax

their behavioral changes upon infection and return back to their

regular social behavior. While the above modeling scheme is a

straightforward way to include social distancing in the system, a

large number of possible scenarios can be considered in the

modeling of the contagion process that induce susceptible

individuals to adopt self-induced behavioral changes and transition

to the state SF . In particular we consider three main mechanisms:

N Local, prevalence-based spread of the fear of the
disease. In this scenario we assume that susceptible

individuals will adopt behavioral changes only if they interact

with infectious individuals. This implies that the larger the

number of sick and infectious individuals among one

individual’s contacts, the higher the probability for the

individual to adopt behavioral changes induced by aware-

ness/fear of the disease. The fear contagion process therefore

can be modeled as

SzI {?
bF

SF zI , ð6Þ

where in analogy with the disease spread, bF is the

transmission rate of the awareness/fear of the disease. This

process defines a transition rate for the fear of the disease that

can be expressed by the usual mass-action law lI
S?SF

~

bF I(t)=N.

N Global, prevalence-based spread of the fear of the
disease. In some circumstances, individuals adopt self-

induced behavioral changes because of information that is

publicly available, generally through newspapers, television,

and the Internet. In this case the local transmission is

superseded by a global mechanism in which the news of a

few infected individuals, even if not in contact with the large

majority of the population, is able to trigger a widespread

reaction in the population. In this case the fear contagion

process is not well represented by the usual mass action law

and has to be replaced by

bF

I(t)

N
?lII

S?SF ~bF (1{e{dI(t)), ð7Þ

where 0vdƒ1. Figure 2 shows the schematic representation

of this.

For small values of d we have a pseudo mass action law [44] of

the first order in d:

bF (1{e{dI(t))~bF dI(t)zO(d2)
� �

: ð8Þ

The above contagion process acts on the whole population

even in the case of a very limited number of infectious

individuals and the parameter d{1 identifies the characteristic

Figure 2. Schematic representation of the third type of
interaction discussed. In this case the transition into compartment
Y is based on the absolute number of the individuals in the
compartment (shown by the small square). In general the inducing
compartment could be different (e.g. M) than the end-point of the
transition.
doi:10.1371/journal.pone.0023084.g002
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number of infected individuals reported by the news above

which the fear spreads quickly in the population similarly to a

panic wave.

N Local, belief-based spread of the fear of the disease.
In addition to the local prevalence-based spread of the fear of

the disease, in this case we assume that the fear contagion may

also occur by contacting individuals who have already

acquired fear/awareness of the disease. In other words, the

larger the number of individuals who have fear/awareness of

the disease among one individual’s contacts, the higher the

probability of that individual adopting behavioral changes and

moving into the SF class. The fear contagion therefore can

also progress according to the following process:

SzSF {?
abF

2SF , ð9Þ

where the transmission rate is abF , with a modulating the ratio

between the transmission rate by contacting infected individ-

uals and contacting individuals with fear of the disease. The

transition rate is defined by the mass-action law lIII
S?SF ~

abF SF (t)=N.

The fear/awareness contagion process is not only defined by the

spreading of fear from individual to individual, but also by the

process defining the transition from the state of fear of the disease

back to the regular susceptible state in which the individual relaxes

the adopted behavioral changes and returns to regular social

behavior. We can imagine a similar reaction SF?S on a very long

time scale in which individuals lose memory of the disease

independent of their interactions with other individuals and

resume their normal social behavior. This would correspond to

spontaneous recovery from fear as proposed by Epstein et al. [35].

However, our social behavior is modified by our local interactions

with other individuals on a much more rapidly acting time-scale.

We can therefore consider the following processes:

SF zS{?
mF

2S ð10Þ

and

SF zR{?
mF

SzR: ð11Þ

We can then define two mass-action laws: lA
SF?S

~mF S(t)=N and

lB
SF ?S

~mF R(t)=N. These mimic the process in which the

interaction between individuals with fear and without fear,

susceptible or recovered, leads the individual with fear to resume

regular social behavior. Both processes, occurring with rate mF , tell

us that the larger the number of individuals who adopt regular

social behavior among one individual’s contacts, the higher the

probability for the individual to relax any behavioral changes

and resume regular social behavior. The two interactions trans-

late into a unique mass action law: lA
SF?S

zlB
SF?S

~lSF?S~

mF (S(t)zR(t))=N . The fear contagion process is therefore

hampered by the presence of large numbers of individuals acting

normally. The spreading of fear is the outcome of two opposite

forces acting on society, but is always initially triggered by the

presence of infectious individuals [27,32,33,35,36]. In Table 1 we

report all the infection and recovery transitions for the disease and

fear contagion dynamics and the corresponding terms and rates. We

will use those terms to characterize different scenarios of interplay

between the information and disease spreading processes. Unless

specified otherwise the numerical simulations will be performed by

individual-based chain binomial processes [45,46] in discrete time

and the analytical discussion will consider the continuous

deterministic limit. In the comparison between the analytic

conclusions with the numerical simulations we will always make

sure to discuss the differences due to stochastic effects such as the

outbreak probability at relatively small values of the reproductive

number R0. In the following discussion R0 will refer to the basic

reproductive number of the SIR model unless specified otherwise.

Results

Model I: Local, prevalence-based spread of the fear of the
disease

The first model (Model I) we consider is the coupling of the SIR

model with local prevalence-based spread of the fear of the disease.

The coupled behavior-disease model is described by the following

set of equations:

Table 1. In this table we show all the transitions and their rates used in the three different models.

Transition Transition rate Equation flow term Dynamical model

Disease
SzI{?

b
2I lS?I ~b I(t)

N
b I(t)

N
S(t) Models I,II,III

I{?
m

R m mI(t) Models I,II,III

Behavior
SF zI{?

rbb
2I lSF ?I ~rbb I(t)

N
rbb I(t)

N
SF (t) Models I,II,III

SzI{?
bF

SF zI lI
S?SF ~bF

I (t)
N

bF
I (t)
N

S(t) Models I,II,III

SzI{?
bF

SF zI lII
S?SF ~bF 1{e{dI(t)

� �
bF 1{e{dI(t)
� �

S(t) Model II

SzSF {?
bF a

2SF lIII
S?SF ~bF a SF (t)

N
bF a SF (t)

N
S(t) Model III

SF zS{?
mF

2S lA
SF ?S~mF

S(t)
N

mF
S(t)
N

SF (t) Models I,II,III

SF zR{?
mF

SzR lB
SF ?S~mF

R(t)
N

mF
R(t)
N

SF (t) Models I,II,III

In the last column we write the model in which the transition has been used. For example, the first transition SzI{?
b

2I is related to the disease dynamic and has been
used in all three models.
doi:10.1371/journal.pone.0023084.t001
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dtS(t)~{lS?I S(t){lI
S?SF S(t)zlSF?SSF (t),

dtS
F (t)~{lSF?I SF (t)zlI

S?SF S(t){lSF?SSF (t),

dtI(t)~{mI(t)zlS?I S(t)zlSF?I SF (t),

dtR(t)~mI(t):

A schematic representation of the model is provided in Figure 3.

Considering Table 1 we can write down all the terms,

dtS(t)~{bS(t)
I(t)

N
{bF S(t)

I(t)

N
zmF SF (t)

S(t)zR(t)

N

� �
,

dtS
F (t)~{rbbSF (t)

I(t)

N
zbF S(t)

I(t)

N
{mF SF (t)

S(t)zR(t)

N

� �
,

dtI(t)~{mI(t)zbS(t)
I(t)

N
zrbbSF (t)

I(t)

N
,

dtR(t)~mI(t),

ð12Þ

in which

X
i

dtXi(t)~0 for V t and Xi[ S,SF ,I ,R
� �

, ð13Þ

meaning that the total number of individuals in the population

does not change. In acute diseases, the time scale of the spreading

is very small with respect to the average lifetime of a person,

allowing us to ignore birth and death processes and the

demographic drift of the population. This is also the time scale

over which it is more meaningful to consider the effect of the

spread of behavioral changes. Diseases with a longer time scale

may be equally affected by behavioral changes emerging especially

as cultural changes toward certain social behavior – for instance

sexual habits in the presence of a sexually transmitted disease with

a long latency period – but in this case the demography of the

system should be taken into account.

To explain the equations we can simply consider the negative

terms. In particular the first term of the first equation in Eq. (12)

takes into account individuals in the susceptible compartment S
who through interaction with infected individuals become sick.

The second term takes into account individuals in the susceptible

compartment S who through interaction with infected individuals

change their own behavior. The first term of the second equation

takes into account individuals in compartment SF who through

interaction with infected individuals become sick. It is important to

remember that the transmission rate for people in compartment

SF is reduced by a factor rb due to the protection that they gain on

account of membership in this class. The last term in the second

equation takes into account people in compartment SF who

through interaction with healthy individuals, S, and recovered

ones, R, normalize their behavior and move back to compartment

S. The first term in the third equation takes into account the

spontaneous recovery of sick individuals.

It is natural to assume that in the beginning of the disease

spreading process the population is fully susceptible except for the

infectious seeds, which means that we can set SF (t~0)~0. At this

point the behavioral response is not active yet. If the disease

proceeds to spread much faster than fear contagion, then the

model reduces to the classic SIR with basic reproductive number

R0~b=m. In this case the initial spread is well described by

I(t*0)*SF (t*0)*R(t*0)*0. The number of individuals in

the compartment SF is of the same order of infectious and

recovered individuals. From the conservation of the number of

individuals follows S(t?0)*N. Since S is the leading order, all

the terms in the equations like X (t)Y (t) in which both X and Y
are different from S can be considered as second order. Using this

approximation we can linearize the system and reduce the

equations to first-order ordinary differential equations that are

easy to integrate. In particular for SF we can write

dtS
F (t)~zbF I(t){mF SF (t), ð14Þ

which has the following solution:

SF (t)*
bF

m(R0{1)zmF

em(R0{1)t{e{mF t
� �

: ð15Þ

For R0w1 fear will spread in the population since the condition

m(R0{1)w{mF is always satisfied. The growth of the fear

contagion is due to the spread of the infection in the population.

When fear spreads much faster than the disease, bF&b,

everyone quickly becomes scared and our model reduces to an

SIR model with a reduced reproductive ratio RF
0 ~rbb=m~rbR0

that is dominated by the characteristics of the SF compartment.

By considering both stochastic simulations of the model and

direct integration of the equations, we explored numerically the

intermediate regime between these two limits, i.e. bF=b*O(1).

Figure 3. Model I Schematic representation of Model I.
doi:10.1371/journal.pone.0023084.g003
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The spread of the fear of infection contagion in this regime does

not significantly affect the timing of the disease spread, as showed

in Figure 4. In this figure the stochastic fluctuations are

demonstrated by 50 individual realizations and compared with

the median profiles obtained by considering 5|103 different

stochastic realizations. The deterministic solution of the equation

for I(t), obtained by direct integration of the equations, is well

inside the 95% reference range of our stochastic simulations as

shown in Figure 5. In this region of the model’s phase space fear

simply produces a mild reduction in the epidemic size.

By increasing the value of bF it is possible to find a region of

parameters characterized by multiple peaks. In Figure 6 we show

50 stochastic runs and the median profile obtained from 5|103

runs for a set of parameters associated with multiple peaks. After

the first wave of infection individuals leave the compartment SF

and return to the susceptible state in which they are less protected

from the disease. The second wave manifests if the number of

infected individuals at this stage is not too small and if there is still

a large enough pool of individuals susceptible to the infection. A

closer inspection of the parameter space by numerical integration

of the deterministic equations yields very rich dynamical behavior.

Figure 7 displays the phase diagram of the model on R0-bF plane

regarding different number of disease activity peaks for a set of

model parameters. As rb increases, the region in which multiple

peaks are encountered shifts to smaller values of R0 and larger

values of bF . Fixing rb, increasing values of bF increase the

number of infection peaks while an increase in R0 leads to a

decrease in the number of peaks. It is interesting to note that

adding a simple modification to the basic SIR model leads to

scenarios with more than one peak. This is important not only

from a mathematical point of view (existence of states character-

ized by multiple and unstable stationary points in the function I(t))

Figure 4. Model I for mF ~0:5 day{1, rb~0:5, m~0:1 day{1, N~106 and R0~2. We show the medians of I(t), evaluated using 5|103 stochastic
runs for the baseline (SIR model without fear of contagion) and three realizations of the model for different values of bF . In particular in panel (A) we
show the baseline SIR model with the same disease parameters. In panel (B) we set bF ~1 day{1. In panel (C) we set bF ~2:5 day{1 . In panel (D) we
set bF ~5 day{1 . It is clear how the peak time is the same for all the scenarios and how the number of infected individuals at peak is reduced as bF

increases.
doi:10.1371/journal.pone.0023084.g004

Figure 5. Model I fixing bF ~0:25 day{1, rb~0:5, m~0:1 day{1 and
R0~2. We compare the solution of the deterministic equations (red
solid line) with the 95% reference ranges of our stochastic solutions.
Here we consider 5|103 runs that produced at least an epidemic size
of 0:1% of the population (N~106).
doi:10.1371/journal.pone.0023084.g005
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but also for practical reasons; in historical data from the 1918

pandemic multiple epidemic peaks were observed [26–28]. By

increasing the value of bF to larger and larger values, the spread of

the fear contagion becomes increasingly rapid with respect to the

spread of the disease. It is natural to think in this regime that the

reproductive number of the disease is characterized by the SF

class. We then have two different scenarios:

1. If rbb=mw1, then the epidemic size is given by that of an SIR

model with b?brb;

2. If rbb=mv1, then fear completely stops the spreading of the

disease.

This is confirmed in Figure 8 in which we plot the proportion

of recovered individuals at the end of the epidemic, which is

evaluated by the integration of the deterministic equations. We

consider different values of bF and rb and hold fixed the other

parameters. It is clear that for very large values of bF the

spreading of the disease is characterized by the reproductive

number rbR0.

At the end of the disease epidemic the system enters the so-

called ‘disease-free’ stage. This region of the phase space is

described by

(S,SF ,I ,R)~(S,SF ,0,R?): ð16Þ

This regime can be easily derived by setting I(t)~0 in the set of

Eqs. (12). The system is then reduced to

dtS(t)~mF SF (t)
S(t)zR(t)

N

� �
,

dtS
F (t)~{mF SF (t)

S(t)zR(t)

N

� �
,

dtI(t)~0,

dtR(t)~0:

ð17Þ

From the last equation it is clear that R(t)~constant~R?, and

the first and second equations are equivalent. It is then possible to

find the solution for SF and S by using the conservation of

individuals. In particular the equation to solve is

dtS
F (t)~{mF SF (t)

S(t)zR?

N

� �
~{mF SF (t)

N{SF (t)

N

� �
: ð18Þ

By integrating this equation directly it is easy to show that fear

disappears exponentially:

SF (t)*e{mF t: ð19Þ

In the stationary state, for t??, the system reaches the disease-

and fear-free equilibrium:

Figure 6. Model I Multiple waves of infection. Fixing
m~0:1 day{1 , R0~2, bF ~3 day{1 , mF ~0:1 day{1, N~106 and
rb~0:1 we show 100 stochastic runs of the infected profiles and the
median evaluated considering 5|103 runs in which the epidemic size is
at least 0:1% of the population.
doi:10.1371/journal.pone.0023084.g006

Figure 7. Model I Phase diagram of infection waves on R0-bF plane. We display the regions of parameter space on R0-bF plane exhibiting
different number of disease activity peaks for three different values of rb~0, 0:15, 0:3, where we have fixed m~0:1 day{1 , mF ~0:1 day{1 and
N~106 . The phase diagram has been obtained by numerical integration of the deterministic equations in Eq. (12).
doi:10.1371/journal.pone.0023084.g007
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(S,SF ,I ,R)~(N{R?,0,0,R?): ð20Þ

There is no possibility of an endemic state of fear. Fear can only be

produced by the presence of infected people. As soon as the

infection dies out, fearful people recover from their fear by

interacting with all the susceptible and recovered individuals and

become susceptible themselves.

Model II: Global, prevalence-based spread of the fear of
the disease

The second fear-inducing process we consider is the spread of

the fear contagion through mass-media (Model II). In order to

increase ratings mass-media widely advertise the progress of

epidemics, causing even the people that have never contacted a

diseased person to acquire fear of the disease. In this formulation,

even a very small number of infected people is enough to trigger

the spread of the fear contagion. To model this we consider a

pseudo mass-action law [44] in which the number of infected

people is not rescaled by the total population. Hence the absolute

number of infected individuals drives the spread. The transition

rate peculiar to this model can be written as lII
S?SF ~bF

1{e{dI(t)
� �

. The equations describing the system read as

dtS(t)~{lS?I S(t){lI
S?SF S(t){lII

S?SF S(t)zlSF?SSF (t),

dtS
F (t)~{lSF?I SF (t)zlI

S?SF S(t)zlII
S?SF S(t){lSF?SSF (t),

dtI(t)~{mI(t)zlS?I S(t)zlSF?I SF (t),

dtR(t)~mI(t):

A schematic representation of the model is provided in Figure 9.

Considering Table 1 we can explicitly introduce all the terms,

dtS(t)~{bS(t)
I(t)

N
{bF S(t) 1{e{dI(t)

� �

zmF SF (t)
S(t)zR(t)

N

� �
,

dtS
F (t)~{rbbSF (t)

I(t)

N
zbF S(t) 1{e{dI(t)

� �

{mF SF (t)
S(t)zR(t)

N

� �
,

dtI(t)~{mI(t)zbS(t)
I(t)

N
zrbbSF (t)

I(t)

N
,

dtR(t)~mI(t),

yielding that the population size is fixed,

X
i

dtXi(t)~0 for V t and Xi[ S,SF ,I ,R
� �

: ð21Þ

As in the previous model, if the infection spreads faster than the

fear contagion, then the reproductive number is simply R0~b=m.

In the opposite limit it is easy to understand that the reproductive

number is RF
0 ~rbR0. In this latter limit, if rbR0v1, then the

global prevalence-based spread of fear suppresses the spread of the

disease. Moreover, in general we will have a reduction in the

epidemic size as a function of rb. The early time progression of SF

is analogous to that of Model I:

SF (t)*
dbF

m(R0{1)zmF

em(R0{1)t{e{mF t
� �

: ð22Þ

The analogy is due to the fact that as in the first model the

transition to SF is related only to the presence of infected

Figure 8. Model I fixing mF ~0:5 day{1, m~0:1 day{1, N~106 and R0~2 we evaluate the normalized epidemic size R?=N for different
values of bF and rb through direct integration of the equations. Once the product rbR0 is smaller than unity, then the epidemic size goes to 0
as bF??.
doi:10.1371/journal.pone.0023084.g008
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individuals. Even in this case the condition m(R0{1)w{mF is

always satisfied so that if R0w1, then fear can spread in the

population.

Interestingly, there is a region of the phase space in which this

model and Model I are equivalent. In both models the transition to

fear is related only to the presence of infected individuals. In the

first model we use a mass-action law while in the second we use a

pseudo mass-action law. It is possible to relate one of the

transmission rates of fear to the other by tuning the parameters.

Let us focus our attention on small values of d. We can

approximate the transition rate by

lII
S?SF ~bF ½dI(t)zO(d2)�: ð23Þ

Let us consider the first order term only, i.e., lII
S?SF *bF dI(t).

The relation between the two transmission rates can easily be

obtained by imposing

lII
S?SF ~lI

S?SF , ð24Þ

which leads to

bII
F ~bI

F

1

Nd
, ð25Þ

where we define bII
F as the rate in the second model, given bI

F in

the first. The above relation guarantees the equivalence of the two

models at the first order on d. In the small d region in which the

approximation (23) holds, Model I and II are mathematically

indistinguishable for suitable values of the parameters, which

indicates that even in the phase space of Model II we have multi-

peak regions. These regions, of course, coincide with the regions in

the first model.

The disease-free equilibrium of this model does not allow for an

endemic state of fear,

(S?,SF
?,I?,R?)~(N{R?,0,0,R?), ð26Þ

as the transition to fear is induced by the presence of infected

individuals only. As soon as the epidemic dies out the in-flow to the

SF compartment stops, while the out-flow continues to allow

people to recover from fear. When the number of infected

individuals goes to zero, the media coverage vanishes, as does the

fear it causes.

Even in this model the effect of fear results in a reduction of the

epidemic size. This reduction is a function of d and of all of the

parameters. As d increases the transition into fear becomes faster.

Since the people in compartment SF are more protected from the

disease, the epidemic size inevitably decreases. While keeping the

value of d fixed, increasing bF reduces the epidemic size and drives

it to its asymptotic value. The asymptotic value of R? as a function

of bF depends on the product rbb=m. If this product is bigger than 1,

obtained through direct numerical integration of the equations as

shown in Figure 10-A, then the asymptotic value is equal to the

epidemic size of an SIR model with b’~brb. If the product is

smaller than 1, obtained similarly through direct integration of the

equation as shown in Figure 10-B, then the asymptotic value is zero;

the rate of the spread of awareness is infinitely faster than the spread

of the disease. This dynamic can be thought as that of an SIR with a

reproductive number smaller than 1.

Model III: Local, belief-based spread of the fear of the
disease

In this section we introduce the last model (Model III) in which

we also consider self-reinforcing fear spread which accounts for the

possibility that individuals might enter the compartment SF simply

by interacting with people in this compartment: fear generating

fear. In this model people could develop fear of the infection both

by interacting with infected persons and with people already

concerned about the disease. A new parameter, a§0, is necessary

to distinguish between these two interactions. We assume that

these processes, different in their nature, have different rates. To

differentiate them we consider that people who contact infected

people are more likely to be scared of the disease than those who

interact with fearful individuals. For this reason we set 0ƒaƒ1.

Let us consider the case of the limit in which no infected

individuals are present in the population. The SF compartment

can only grow through the interaction SzSF �?abF
2SF . It is

possible to show that in the early stage this can be thought of as an

SIS-like model. Let us consider the case in which there are no

infected individuals and just one individual in the compartment

SF , i.e., SF (t~0)~1. Considering this limit, the set of equations

of Model III could be written as

Figure 9. Model II Schematic representation of Model II. The pseudo mass-action law is represented by the dashed line.
doi:10.1371/journal.pone.0023084.g009

Behavior-Disease Models

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23084



dtS(t)~{abF S(t)
SF (t)

N
zmF SF (t)

S(t)

N
,

dtS
F (t)~abF S(t)

SF (t)

N
{mF SF (t)

S(t)

N
,

dtI(t)~0,

dtR(t)~0:

We assume that in this early stage all the population is almost fully

susceptible S(t*0)*N. The equation for SF is then

dtS
F (t)~abF SF (t){mF SF (t)~ a

bF

mF

{1

� �
mF SF (t): ð27Þ

This is the typical early-time term for the ‘infected’ individuals in

an SIS model. The spread of fear contagion will start if

a
bF

mF

{1w0: ð28Þ

This allows us to define the reproductive number of fear by

RF:a
bF

mF

: ð29Þ

In isolation, the fear contagion process is analogous to the

reproductive number of an SIS or SIR model with transmission

rate abF . However, in the general case the spread of the fear of

infection is coupled with the actual disease spread. The complete

set of equations is

dtS(t)~{lS?I S(t){lI
S?SF S(t){lIII

S?SF S(t)zlSF?SSF (t),

dtS
F (t)~{lSF?I SF (t)zlI

S?SF S(t)zlIII
S?SF S(t){lSF?SSF (t),

dtI(t)~{mI(t)zlS?I S(t)zlSF?I SF (t),

dtR(t)~mI(t):

A schematic representation of the model is provided in Figure 11.

Considering Table 1 we can write all of the terms explicitly,

dtS(t)~{bS(t)
I(t)

N
{bF S(t)

I(t)zaSF (t)

N

� �

zmF SF (t)
S(t)zR(t)

N

� �
,

dtS
F (t)~{rbbSF (t)

I(t)

N
zbF S(t)

I(t)zaSF (t)

N

� �

{mF SF (t)
S(t)zR(t)

N

� �
,

dtI(t)~{mI(t)zbS(t)
I(t)

N
zrbbSF (t)

I(t)

N
,

dtR(t)~mI(t):

ð30Þ

Also in this model we assume that the population size is fixed,

X
i

dtXi(t)~0 for V t and Xi[ S,SF ,I ,R
� �

: ð31Þ

If we consider the case in which the disease spreads faster than the

fear of it, then the reproductive ratio is R0~b=m. In the opposite

case the reproductive ratio is governed by the compartment SF so

that RF
0 ~rbR0 and the epidemic size will be reduced depending

on the value of rb. In this latter case, if rbR0v1, then the

protection from infection gained in the compartment SF causes

the disease to fade out. Following the same linearization strategy

shown in previous sections, the early stage of the SF compartment

is given by

SF (t)*
bF

m(R0{1){mF (RF {1)
| em(R0{1)t{emF (RF {1)t
� �

: ð32Þ

Two different regions in the parameter space are then identified:

one in which the rate of increase of fear is dominated by its own

thought contagion process, mF (RF {1)wm(R0{1), and one in

which the rate of the local belief-based spread is dominated by the

disease, m(R0{1)wmF (RF {1). In the first case the fear spreads

independently of the value of R0, and the epidemic size will be

reduced due to the protection that individuals gain in the SF

compartment.

Figure 10. Model II Reduction of the epidemic size as a function
of bF for different values of d and rb. We fix R0~2, m~0:4 day{1 ,
mF ~0:5 day{1 and N~106 . In panel (A) we assume rb~0:6 for which
rbR0w1. Increasing the value of bF results in an asymptotic value of the
epidemic size other than zero. In panel (B) we consider rb~0:4. In this
case, instead, rbR0v1. By increasing the value of bF the epidemic size is
increasingly reduced. This effect is stronger for bigger values of d. The
values are obtained by numerical integration of the equations.
doi:10.1371/journal.pone.0023084.g010
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The new interaction, although intuitively simple, significantly

complicates the dynamics of the model. In particular within

several regions of the parameter space we observe two epidemic

peaks as demonstrated in Figure 12. In this figure we plot the

medians for two different values of RF evaluated considering at

least 5|103 runs in which the epidemic size is at least 0:1% of the

population. We also show 50 stochastic runs of the model to

explicitly visualize the fluctuation among them. This non-trivial

behavior can be easily understood. Fear reinforces itself until it

severely depletes the reservoir of susceptible individuals, causing a

decline in new cases. As a result people are lured into a false sense

of security and return back to their normal behavior (recovery

from fear) causing a second epidemic peak that can be even larger

than the first. Some authors believe that a similar process occurred

during the 1918 pandemic, resulting in multiple epidemic peaks

[26–28]. We show in Figure 13 for a set of model parameters the

phase diagram of the model on R0-bF plane regarding different

number of disease activity peaks as obtained by numerical

integration of the deterministic equations. The figure should be

considered as illustrative as we do not have any analytical

expression on the sufficient conditions yielding multiple infection

peaks.

Residual collective memory of the disease and its effect

on epidemic resurgence. At the end of the disease epidemic

the system enters the disease-free stage. Setting I(t)~0 and the

epidemic size to R? the set of differential equations becomes

dtS(t)~{abF S(t)
SF (t)

N
zmF SF (t)

N{SF (t)

N

� �
,

dtS
F (t)~zabF S(t)

SF (t)

N
{mF SF (t)

N{SF (t)

N

� �
,

dtI(t)~0,

dtR(t)~0:

ð33Þ

Conservation of the total number of individuals yields the

following differential equation for SF :

dtS
F (t)~mF

SF (t)

N
(RF {1)(N{SF (t)){RF R?
� �

, ð34Þ

with the solution

SF
I~0(t)~

Nc

RF {1zHe{cmF t
: ð35Þ

We have defined c as

c:RF 1{
R?

N

� 	
{1, ð36Þ

where H is a time-independent variable and is a function of the

parameters of the model. Interestingly, there are two possible

disease-free equilibriums. One in which

cƒ0[(S?,SF
?,I?,R?)~(N{R?,0,0,R?), ð37Þ

where fear dies along with the disease, and the one given by

cw0[(S?,SF
?,I?,R?)~(

R?

RF {1
,N{

RF R?

RF {1
,0,R?), ð38Þ

where fear and behavioral changes persist even after the end of the

disease epidemic. The condition RF w1 is necessary but not

sufficient in order to have an endemic state of fear, while RF ƒ1 is

sufficient to avoid an endemic state of fear. Unfortunately, the

parameter c is an implicit function of the whole dynamics through

the epidemic size R?.

The presence of an endemic state, a societal memory of the

disease, and associated fear are quite interesting features of the

model induced by fear’s self-reinforcement. In Model I transition

to the compartment SF is possible only in the presence of infected

individuals. However, in this model fear is able to sustain its

presence in the population if the effective reproductive number of

the local belief-based spread is larger than unity even if the disease

dies out. Unfortunately, this argument cannot be used to fix the

range of parameters in the phase space with these properties since

any linearization at these stages of the compartments is not

suitable. The possibility of having an endemic state of fear

indicates that an event localized in time is capable of permanently

modifying society with interesting consequences. In the case of a

second epidemic, the presence of part of the population already in

the compartment SF reduces the value of the basic reproduction

number. To show this let us consider the differential equation for

the infected compartment I after the re-introduction of the very

Figure 11. Model III Schematic representation of Model III.
doi:10.1371/journal.pone.0023084.g011
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same infectious virus (meaning that the parameters b and m are

equal to those of the first infectious disease):

dtI(t)~ b
S(t)

N
zrbb

SF (t)

N
{m

� �
I(t): ð39Þ

The initial condition of the second disease epidemic could be

considered to be the disease-free equilibrium of the first epidemic.

By using Eq. (38) we can express the rate equation of the infected

compartment during the early stage of the second disease as

dtI(t)~ R0
R?

N(RF {1)
zrbR0 1{

RF R?

N(RF {1)

� 	
{1

� �
mI(t): ð40Þ

Let us define d1:R?=N as the proportion of recovered

individuals at the end of the first epidemic. In the case of the re-

introduction of the disease into the population we will have an

outbreak only if the argument in the parenthesis of the above

equation is larger than zero, yielding the following condition for

the reproductive number RII
0 of a second outbreak:

RII
0 ~

b

m
rbz

d1(1{rbRF )

RF {1

� �
w1: ð41Þ

It is worth noting that the societal memory of the first outbreak

increases the resistence in the population against the spread of the

second outbreak in a non-trivial way. One might be tempted to

conclude that the new reproductive number is simply provided by

the reproductive number of an SIR model with an equivalent

proportion of removed individuals (1{d1)
b

m
, but this is not the

case as we have to factor in the behavioral changes of individuals

in the compartment SF , obtaining

RII
0 v(1{d1)

b

m
: ð42Þ

To prove the last inequality we have to show that

rbz
d1(1{rbRF )

RF {1
v1{d1, ð43Þ

Figure 12. Model III Multiple waves of infection. Fixing mF ~0:5 day{1 , rb~0:42, a~0:05, R0~2, m~0:4 day{1 and N~106 we show 100
stochastic runs and the medians evaluated considering 5|103 runs for two different values of RF . In panel (A) RF ~1:2. In panel (B) RF ~1:4.
doi:10.1371/journal.pone.0023084.g012

Figure 13. Model III Phase diagram of infection waves on R0-bF plane. We display the regions of parameter space on R0-bF plane exhibiting
different number of disease activity peaks for three different values of rb~0, 0:15, 0:3, where we have fixed m~0:4 day{1 , mF ~0:5 day{1 , a~0:05
and N~106 . The phase diagram has been obtained by numerical integration of the deterministic equations in Eq. (30).
doi:10.1371/journal.pone.0023084.g013
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or

d1(1{rbRF )

RF {1
v1{d1{rb: ð44Þ

The expressions on both sides of the above inequality are first-

order polynomial functions of rb. For rb~1 they assume the same

value {d1. It is important to stress that in this limit (rb~1) the

model is indistinguishable from the classical SIR. These two

functions can only have one common point which occurs at rb~1.

We will consider only the region in which rbv1 as assumed in our

model. To prove our proposition we have to confront the slopes of

the functions and show that

d1RF

RF {1
v1: ð45Þ

The polynomial with smaller slope will always be below the other

in the relevant region rbv1. Eq. (45) can be rewritten as

d1v1{
1

RF

, ð46Þ

which is always satisfied, provided our assumption cw0. This is an

important result that confirms how an endemic state of behavioral

change in the population reduces the likelihood and impact of a

second epidemic outbreak. We note that such a state will

inevitably fade out on a long time scale. This can be modeled

with a spontaneous transition SF?S acting on a time scale longer

than the epidemic process itself.

Discontinuous transition in the epidemic prevalence. A

further interesting characteristic of this model resides in the

reduction of the epidemic size as shown in Figure 14. In this plot

we show R?=N, evaluated through direct integration of the

equations, as a function of RF and R0, keeping fixed the other

parameters. In this case the self-reinforcement mechanism creates

a more complicated phase space that allows for a jump in the

epidemic size as RF increases above a critical value R�F (see the

black solid line in Figure 14). This behavior, typical of the first-

order phase transitions in cooperative systems, signals a drastic

change in the dynamical properties of the behavior-disease model.

If RF v1, then obviously the fear of the disease is not able to affect

a large fraction of the population and the disease spreads as usual

in the population, affecting at the end of its progression R?

individuals. If RF w1 we face two different scenarios or two

different regions of R0 separated by the red solid line in Figure 14:

N In the case that R0rbw1 (i.e., the dashed line in Figure 14) the

generation of a finite fraction of individuals in the SF

compartment is not able to halt the epidemic. The behavioral

changes are not enough to bring the reproductive number

below the epidemic threshold and R? decreases smoothly

because of the epidemic progress with a progressively lower

effective reproductive number.

N If R0rbƒ1, (i.e., the black solid line in Figure 14) the

individuals that populate the SF compartment keep the spread

of the epidemic below the threshold. In principle, the state

Figure 14. Model III Reduction of the epidemic size as a function of RF and R0. Fixing rb~0:4, m~0:4 day{1 , mF ~0:5 day{1 , N~106 , and
a~0:05. The three lines are curves of R?=N as a function of RF , keeping R0 constant. We select three different values of R0 : 1:5,2:5,3 which
correspond to solid black, red, and dashed lines, respectively. The value R0~2:5 is a special case that leads to R0rb~1. It divides the phase space in
two different regions. All the values of R0 below are characterized by R0rbv1. In this case for large values of RF the model is reduced to an SIR with
reproductive number R0rb below 1 and the epidemic is halted. Interestingly, this behavior starts in an intermediate regime of RF . There is a critical
value R�F of RF above which (i.e., RF wR�F ) the epidemic size is zero. This transition happens with a jump, as shown by the solid black line. All the
values of R0 above 2:5 are instead characterized by R0rbw1. Also in this case the model is reduced to an SIR with reproductive number R0rb for large
values of RF , but in this case this value is above 1. This results in a epidemic size that is always non-zero. In this region of parameters no jumps are
present (see the dashed line). The values shown in the plot are computed through numerical integration of the equations.
doi:10.1371/journal.pone.0023084.g014
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R?~0 and SF ~N would be possible. In general, the process

needs to start with infectious individuals that trigger the first

transitions S?SF and therefore a small number of R?

individuals are generated. However, there will be a R�F at

which the growth of the fear contagion process is faster than

the growth of the epidemic with a small R?. At this point the

fear contagion process is accelerated by the growth of

individuals in SF while the epidemic spread is hampered by

it. The SF is quickly populated by individuals while the

epidemic stops, generating a very small number of R?. This

generates a jump in the amount of individuals that experience

the infection as a function of RF . This is clearly illustrated by

Figure 15 where the behavior of both quantities R? and SF is

plotted close to the transition point. The value at which the

transition occurs also depends on the other parameters of the

model including R0 and rb.

The extremely rich phase space of this model is important for

two reasons: i) we have a strong reduction in the cumulative

number of infected individuals associated with discontinuous

transition; ii) in the case of a second epidemic the memory of the

system shifts the reproductive number towards smaller values.

These are very interesting properties of the model due to the self-

reinforcing mechanism that clearly creates non-trivial behaviors in

the dynamics. We have tried different analytical approaches to get

more insight into the phase transition. Unfortunately, the

discontinuous transition is triggered by model behavior out of

the simple linearized initial state and it is extremely difficult to

derive any closed analytical expression. An analytic description is

beyond the scope of the present classification of behavior-disease

models and is the object of future work on the model.

Discussion

We introduced a general framework with different mechanisms

in order to consider the spread of awareness of a disease as an

additional contagion process. Three mechanisms were proposed.

In the first, basic model the social distancing effects and behavioral

changes are only related to the fraction of infected individuals in

the population. In the second we modeled the spread of awareness

considering only the absolute number of infected individuals as

might happen in the case that the information the individuals rely

on is mostly due to mass media reporting about the global

situation. Finally, in the third model we added the possibility that

susceptible people will initiate behavioral changes by interacting

with individuals who have already adopted a behavioral state

dominated by the fear of being infected. This apparently simple

interaction allows for the self-reinforcement of fear. We have

found that these simple models exhibit a very interesting and rich

spectrum of dynamical behaviors. We have found a range of

parameters with multiple peaks in the incidence curve and others

in which a disease-free equilibrium is present where the population

acquires a memory of the behavioral changes induced by the

epidemic outbreak. This memory is contained in a stationary

(endemic) prevalence of individuals with self-induced behavioral

changes. Finally, a discontinuous transition in the number of

infected individuals at the end of the epidemic is observed as a

function of the transmissibility of fear of the disease contagion. At

this stage the study of these properties has been mostly

phenomenological and we have focused on minimal models that

do not include demographic changes and spontaneous changes in

the behavior of individuals such as the fading out of an epidemic

over a long time. We should also note that the behavior-disease

models we have suggested do not take into account the associated

costs of social-distancing measures adopted by individuals, such as

societal disruption and financial burden. A game theoretical

approach [29,30] would be well suited in order to account for

factors in the decision making process for self-initiated behavioral

changes. However, more features added to increase the realism of

the models inevitably increase their complexity. Moreover, the

non-trivial dynamic behavior of the models emphasizes the

importance of calibrating those features by appropriate choices

of parameter values. Unfortunately, in many cases we lack the data

necessary for calibrating the behavioral models. The availability of

real-world, quantitative data concerning behavioral changes in

populations affected by epidemic outbreaks is therefore the major

roadblock to the integration of behavior-disease models. Any

progress in this area certainly has to target novel data acquisition

techniques and basic experiments aimed at gathering these data.
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