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A taxonomic signature of obesity in 
a large study of American adults
Brandilyn A. Peters   1, Jean A. Shapiro2, Timothy R. Church3, George Miller4,5,6, Chau Trinh-
Shevrin1,6, Elizabeth Yuen7, Charles Friedlander7, Richard B. Hayes   1,6 & Jiyoung Ahn1,6

Animal models suggest that gut microbiota contribute to obesity; however, a consistent taxonomic 
signature of obesity has yet to be identified in humans. We examined whether a taxonomic signature 
of obesity is present across two independent study populations. We assessed gut microbiome from 
stool for 599 adults, by 16S rRNA gene sequencing. We compared gut microbiome diversity, overall 
composition, and individual taxon abundance for obese (BMI ≥ 30 kg/m2), overweight (25 ≤ BMI < 30), 
and healthy-weight participants (18.5 ≤ BMI < 25). We found that gut species richness was reduced 
(p = 0.04), and overall composition altered (p = 0.04), in obese (but not overweight) compared to 
healthy-weight participants. Obesity was characterized by increased abundance of class Bacilli and its 
families Streptococcaceae and Lactobacillaceae, and decreased abundance of several groups within 
class Clostridia, including Christensenellaceae, Clostridiaceae, and Dehalobacteriaceae (q < 0.05). These 
findings were consistent across two independent study populations. When random forest models were 
trained on one population and tested on the other as well as a previously published dataset, accuracy 
of obesity prediction was good (~70%). Our large study identified a strong and consistent taxonomic 
signature of obesity. Though our study is cross-sectional and causality cannot be determined, 
identification of microbes associated with obesity can potentially provide targets for obesity prevention 
and treatment.

The World Health Organization estimates that global obesity prevalence has more than doubled since 1980, clas-
sifying >600 million adults as obese in 2014. Obesity increases risk for many diseases, including cancer, ather-
osclerosis, and diabetes1–3. While the fundamental cause of obesity is an imbalance between energy intake and 
expenditure, other factors may modify susceptibility, such as genetics4, epigenetics5, and gut microbial composi-
tion6. Because of the potential to modify bacterial communities, the microbiome is an enticing candidate to target 
for obesity prevention and treatment. Reaching this goal requires identification of specific taxa and/or microbial 
functions associated with obesity in humans; once identified, further downstream experimentation can establish 
whether these taxa and/or functions are causative agents7, and, if so, suggest interventions.

Experiments in germ-free mice colonized with gut microbiota from wild-type mice8, obese mice9, or obese 
humans10, demonstrate that microbiota play a critical role in adiposity in test systems. Moreover, these experi-
ments have demonstrated transmissibility of obese phenotypes via gut microbes. These findings lead to the ques-
tion of whether gut microbial composition confers susceptibility to obesity in humans. An early report in a small 
human sample (n = 14)11 was consistent with findings in mice that obesity, whether genetic12 or diet-induced13,14, 
is associated with an increase in relative abundance of the Firmicutes phylum, and a decrease in relative abun-
dance of the Bacteroidetes phylum. However, more recent studies in humans have not corroborated this pat-
tern15–21. Recent meta-analyses of studies with 16S rRNA gene data have not found consistent obesity-related 
taxonomic signatures across studies22–24. Small sample sizes, heterogeneous populations, insufficient confounder 
control, and different methodologies may contribute to disagreement between studies.

Using data from two independent cross-sectional studies of older American adults (n = 599), we aimed to: 
(1) examine whether within-person microbial diversity (α-diversity) and between-person differences in over-
all microbial composition (β-diversity) are associated with obesity, and (2) identify specific taxa and inferred 
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metagenomic functions associated with obesity. The latter aim may provide targets for research on obesity treat-
ment and prevention.

Results
Participant characteristics.  Descriptive characteristics of healthy-weight, overweight, and obese participants 
are presented in Table 1. Participants were initially recruited for a colonoscopy-screening study, and approximately 
half (48%) had asymptomatic colorectal polyps detected at study screening or a previous screening. Participants 
were predominantly white (94%) and above middle-age (62 ± 7 years old). The overweight and obese groups had 
higher percentages of men than the healthy-weight group (p < 0.0001), while race and age distributions did not dif-
fer significantly across BMI categories. Data on energy intake and exercise were available in the New York University 
(NYU) study only. Daily energy intake did not differ significantly across BMI categories, although a weak positive 
correlation was detected between energy intake and continuous BMI (Spearman r = 0.17, p = 0.02). Additionally, 
overweight and obese participants exercised less frequently than healthy-weight participants (p = 0.01).

α- and β-diversity in relation to obesity.  Globally, BMI category was associated with richness (i.e. 
number of OTUs) (p = 0.002) and the Shannon index (p = 0.03), but not with evenness (p = 0.14), at a rare-
faction depth of 1,490 sequence reads/sample (Supplemental Table 1). In pairwise comparisons, richness was 
reduced in obese compared to healthy-weight participants (b = −9.87, p = 0.04, pHolm = 0.08); this pattern was 
apparent, though not statistically significant, for the Shannon index (b = −0.11, p = 0.11, pHolm = 0.22) and even-
ness (b = −0.01, p = 0.22, pHolm = 0.44) (Fig. 1a–c; Supplemental Table 1). Overweight participants did not dif-
fer significantly from healthy-weight participants for any of these α-diversity indices (Supplemental Table 1). 
Partial constrained analysis of principal coordinates (CAP) of the weighted UniFrac distance revealed separa-
tion of obese from both healthy-weight and overweight participants on the main axis, with overweight sepa-
rated from healthy-weight participants on the secondary axis (Fig. 1e), although principal coordinate analysis 
(PCoA) did not reveal clustering by BMI category (Fig. 1d). In permutational multivariate analysis of variance 
(PERMANOVA) analysis of the weighted UniFrac distance, BMI category was not associated globally with overall 
microbiome composition (p = 0.14). In pairwise comparisons, overall microbiome composition differed between 
obese and healthy-weight participants (p = 0.04, pHolm = 0.07), while overweight and healthy-weight participants 
did not differ significantly (p = 0.64, pHolm = 0.64) (Supplemental Table 1). When further classifying obese par-
ticipants as class I (30 < BMI ≤ 35 kg/m2; n = 90) or class II-III (BMI > 35 kg/m2; n = 52), we observed that both 
classes of obesity tended to differ from healthy-weight participants in richness and overall microbiome composi-
tion, though not with statistical significance (Supplemental Fig. 1; Supplemental Table 1).

The relationship of obesity with overall microbiome diversity and composition was consistent in both the 
Centers for Disease Control and Prevention (CDC) and NYU studies, and in those with and without asymp-
tomatic colorectal polyps (Supplemental Fig. 2a,b; Supplemental Table 2). We observed a significant reduction 
in richness in obese vs. healthy-weight women (p = 0.03), however this was not observed in men (p = 0.47) 
(Supplemental Fig. 2a; Supplemental Table 2). In the NYU study, availability of diet (n = 171) and exercise 
(n = 175) data allowed us to assess whether exercise or intake of total energy, fiber, fat, or protein confounded the 
association of obesity with microbiome diversity and composition. We observed that adjustment for these varia-
bles did not attenuate differences in diversity and composition between obese and healthy-weight participants in 
the NYU study (Supplemental Table 3).

Taxa associated with obesity.  We examined differential abundance of taxa by BMI at the phylum 
through OTU levels (Supplemental Table 4). Contrary to several previous reports, abundances of the two most 
prevalent phyla, Firmicutes and Bacteroidetes, were not associated with BMI category (p = 0.40 and p = 0.49, 
respectively). The Firmicutes/Bacteroidetes ratio was also not associated with BMI category (Kruskal-Wallis 
test p = 0.94). However, several sub-taxa within Firmicutes were associated with obesity. The Bacilli class (fold 
change [FC] = 2.93) and its Streptococcaceae (FC = 2.42), Lactobacillaceae (FC = 6.23), and Gemellaceae 
(FC = 2.3) families were elevated in obese compared to healthy-weight participants. Within class Clostridia, 
the Christensenellaceae (FC = 0.57), Clostridiaceae (FC = 0.58), Dehalobacteriaceae (FC = 0.34), and SHA-98 
(FC = 0.49) families were depleted, and the Veillonellaceae family enriched (FC = 1.46), in obese compared to 
healthy-weight participants. Greater abundances of family Actinomycetaceae of phylum Actinobacteria, and 
family Enterobacteriaceae of phylum Proteobacteria, were also noted in obese participants, as were decreased 
abundances of family Rikenellaceae (Bacteroidetes phylum) and Pasteurellaceae (Proteobacteria phylum) (Fig. 2; 
Supplemental Table 4). Similar to findings in obese participants, overweight participants had increased abun-
dance of Lactobacillaceae and Streptococcaceae, and decreased abundance of Christensenellaceae, Clostridiaceae, 
and Dehalobacteriaceae, compared to healthy-weight participants (Fig. 2; Supplemental Table 4).

At OTU level, 90 OTUs were identified as differentially abundant globally by BMI category at q < 0.05 
(Fig. 3; Supplemental Table 4). OTUs in Streptococcus and Proteobacteria (Enterobacteriaceae and Bilophila) 
were enriched in obese compared to healthy-weight participants. Within Clostridia, several patterns emerged 
when comparing obese to healthy-weight participants, including enrichment of Blautia OTUs, and depletion 
of Coprococcus, Oscillospira, Clostridiaceae, Christensenellaceae, and Dehalobacterium OTUs, in the obese. 
Additionally, many unclassified OTUs within Clostridia (Ruminococcaceae and unclassified families) were 
depleted in the obese. Fewer OTUs were differentially abundant between overweight and healthy-weight partici-
pants, though findings were similar to those in obese participants (Supplemental Table 4).

When stratifying these analyses by sex, we observed some similarities between men and women 
(Supplemental Table 5). For example, obese men and women both had increased Bacilli, Streptococcus, and 
Gammaproteobacteria, and decreased Christensenellaceae, Clostridiaceae, and Dehalobacteriaceae, than 
healthy-weight men and women, respectively (though not always reaching pHolm < 0.05).
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Inferred metagenome pathways associated with obesity.  The KEGG pathway “alpha-Linolenic 
acid (ALA) metabolism” was differentially abundant globally by BMI category (q < 0.05); in pairwise compari-
sons, this pathway was enriched in obese compared to healthy-weight participants (p < 0.0001, pHolm < 0.0001) 
(Supplemental Table 6). We also investigated whether several a priori pathways, related to hypothesized 
mechanisms of microbial involvement in obesity (discussed later), were nominally associated with obesity 
(Supplemental Table 6). “Butanoate (butyrate) metabolism” was marginally depleted (p = 0.06, pHolm = 0.11), 
while “secondary bile acid biosynthesis” was marginally enriched (p = 0.08, pHolm = 0.17), in obese compared 
to healthy-weight participants. “Lipopolysaccharide biosynthesis”, “propanoate (propionate) metabolism”, and 
“methane metabolism” were not associated with obesity. Interestingly, several families depleted in obese com-
pared to healthy-weight participants (Christensenellaceae, Clostridiaceae, Dehalobacteriaceae, and SHA-98) were 
positively associated with butanoate and propanoate metabolism, and inversely associated with secondary bile 
acid biosynthesis (Fig. 4). We also explored whether OTUs associated with obesity contributed to abundance 
of KEGG orthologs for butyrate synthesis genes, butyrate kinase and butyryl-CoA:acetate CoA transferase25. 

Healthy-weight Overweight Obese pb

Combined (n = 599) n = 211 n = 246 n = 142

Men (%) 37.9 69.5 49.3 <0.0001

Age (y; mean ± SD) 62.7 ± 7.7 62.1 ± 7.0 61.7 ± 6.1 0.32

Race (%) 0.26

  White 95.3 93.9 93.7

  Black 1.4 3.3 4.2

  Other 3.3 2.0 0.7

  Missing 0 0.8 1.4

Colorectal polypsc (%) 42.7 50.8 51.4 0.15

BMI (kg/m2; mean ± SD) 22.6 ± 1.7 27.1 ± 1.4 35.0 ± 5.0 <0.0001

CDC (n = 423) n = 130 n = 173 n = 120

Men (%) 35.4 68.8 49.2 <0.0001

Age (y; mean ± SD) 62.8 ± 4.7 62.2 ± 5.1 62.4 ± 4.8 0.50

Race (%) 0.68

  White 96.9 97.7 96.7

  Black 1.5 0.6 2.5

  Other 1.5 1.7 0.8

  Missing 0 0 0

Colorectal polyps (%) 34.6 44.5 50.0 0.04

BMI (kg/m2; mean ± SD) 22.7 ± 1.6 27.1 ± 1.4 34.9 ± 5.0 <0.0001

NYU (n = 176) n = 81 n = 73 n = 22

Men (%) 42.0 71.2 50.0 0.001

Age (y; mean ± SD) 62.4 ± 10.8 61.8 ± 10.2 57.7 ± 9.9 0.18

Race (%) 0.06

  White 92.6 84.9 77.3

  Black 1.2 9.6 13.6

  Other 6.2 2.7 0

  Missing 0 2.8 9.1

Colorectal polyps (%) 55.6 65.8 59.1 0.43

BMI (kg/m2; mean ± SD) 22.3 ± 1.8 27.0 ± 1.4 35.5 ± 5.4 <0.0001

Daily energy intaked,e (kcal; mean ± SD) 1,703 ± 755 1,846 ± 723 1,830 ± 719 0.34

Exercised (%) 0.01

  None 7.4 16.4 27.3

  <1 hr/week 7.4 8.2 27.3

  1 hr/week 11.1 8.2 0

  2 hr/week 11.1 13.7 18.2

  3 hr/week 29.6 24.7 4.5

  4+ hr/week 33.3 28.8 18.2

  Missing 0 0 4.5

Table 1.  Characteristics of participants in the CDC and NYU studies by BMIa. aHealthy-weight: 
18.5 ≤ BMI < 25 kg/m2; Overweight: 25 ≤ BMI < 30 kg/m2; Obese: BMI ≥ 30 kg/m2. bP-value for difference 
between BMI categories from Kruskal-Wallis test for continuous variables and X2 test for categorical variables. 
cHad one or more colorectal polyps currently or previously identified. dVariable only available in NYU study 
(n = 171 for energy intake, n = 175 for exercise). eDetermined from food frequency questionnaire.
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While several obesity-depleted OTUs did contribute to butyrate synthesis KEGG orthologs (e.g. OTUs from 
Christensenellaceae, Oscillospira, SMB53, Clostridiales, Rikenellaceae), obesity-enriched OTUs also contributed 
to these orthologs (Supplemental Fig. 3).

Homogeneity of results across two independent populations.  We observed consistencies in taxa 
associated globally with BMI category (q < 0.05) between the CDC and NYU studies (Supplemental Table 7; 
Fig. 2), despite the much smaller sample size of the NYU study. In pairwise comparisons in both studies, 
obese participants had increased abundance of Bacilli (Streptococcaceae and Lactobacillaceae families) and 
Gammaproteobacteria, and decreased abundance of Christensenellaceae, compared to healthy-weight partici-
pants (pHolm < 0.05). At the OTU level, we observed substantially more OTUs associated globally with BMI cat-
egory (q < 0.05) in the CDC study than in the NYU study, likely due to the substantially smaller sample size of 
the NYU study, and the large number of tests. We therefore explored similarities between the studies at the OTU 
level using nominal p-values. 17 OTUs were associated with obesity (p < 0.05) in the same direction in both 
studies, while only 2 OTUs were associated with obesity (p < 0.05) in the opposite direction between the studies 
(Supplemental Table 8; Fig. 5). The OTUs overlapping across the studies in significance and direction included 
Gemellaceae, Streptococcus, and Blautia OTUs (increased in the obese), and Parabacteroides, Clostridiaceae, 
Lachnospiraceae, Ruminococcaceae, Clostridiales, and Oscillospira OTUs (decreased in the obese).

Microbiome-based classification of obesity.  We generated a random forest model based on 1,825 OTUs 
in the CDC study (training set) to predict obesity in the NYU and Baxter et al.26 studies (testing sets). We used the 
area under the curve-random forest (AUC-RF) algorithm to perform a backward elimination process based on 
the initial ranking of OTUs in a random forest model; this algorithm identifies the optimal random forest model 
(and optimal set of predictive OTUs) as the model with the highest AUC. Our optimal model included 49 OTUs 
and had an AUC of 0.81 (Fig. 6). We then performed repeated cross-validation of the AUC-RF process to more 
accurately determine the model’s predictive accuracy; the mean AUC from repeated cross-validation was 0.65. 
We used the Youden’s index of the ROC curve as the probability threshold above which a subject was classified as 

Figure 1.  α-diversity and β-diversity in relation to BMI. (a–c) Richness, Shannon diversity index, and Evenness 
rarefaction curves in healthy-weight, overweight, and obese participants. Rarefaction curves were estimated by 
taking the mean of the α-diversity indices averaged for each participant over 100 iterations at each rarefaction 
sequencing depth. (d) Principal coordinate analysis of the weighted UniFrac distances. Shapes outlined in black 
represent centroids for healthy-weight, overweight, and obese participants. (e) Partial constrained analysis 
of principal coordinates (CAP) based on the weighted UniFrac distance. BMI category was the constraining 
variable, and sex, age, polyp status, and study were conditioning variables.
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obese in the testing sets. The accuracy of the model in correctly classifying subjects as obese or non-obese when 
applied to the NYU and Baxter et al. testing sets was 0.72 and 0.68, respectively.

Discussion
In this large study of older American adults, we observed that obesity was associated with reduced gut microbial 
richness and alterations in overall gut microbial composition. These findings point to a possible effect of gut 
microbial composition on energy balance or storage. The homogeneity of our results in two independent study 
populations, and the good accuracy of obesity classification with a microbiome-based machine learning model, 
reveals an emerging taxonomic signature of obesity which may have implications for obesity prevention and 
treatment.

Several mechanisms have been hypothesized through which gut bacteria may affect host energy balance or 
storage. The “energy harvest” hypothesis posits that bacteria contribute to obesity by extracting energy from 
otherwise indigestible dietary fiber, through production of digestible short-chain fatty acids (SCFAs)9. The “met-
abolic endotoxemia” hypothesis posits that plasma lipopolysaccharide (LPS, or endotoxin) derived from the cell 
wall of Gram-negative bacteria elicits low-grade inflammation, promoting adiposity27,28. A final broad category 
of mechanisms is that of microbial metabolites or products modulating energy balance7. Notably, SCFAs, in addi-
tion to being energy sources to the host, are important signaling molecules with beneficial effects for host energy 
metabolism29, and protect against diet-induced obesity in animal models30,31. Other bacterial metabolites, such 
as methane32 and secondary bile acids33, may also modulate host energy balance. Here, we observed many taxo-
nomic composition alterations associated with obesity. Whether and by what mechanism these bacterial groups 
impact obesity remains unclear, but we discuss some potential mechanisms in relation to our findings below.

Decreases in putative SCFA-producing bacteria in the obese may lend support to the hypothesis that SCFAs 
beneficially modulate host energy metabolism. The Christensenellaceae family is known to produce SCFAs, 
primarily acetate and butyrate34, and was identified as the most heritable taxon in a study of 416 twin pairs; 
in that study, Christensenellaceae, Dehalobacteriaceae, SHA-98, Methanobacteriaceae, RF39, and Oscillospira 
were depleted in obese subjects compared to healthy-weight35, much in agreement with our findings. Higher 
Christensenellaceae abundance in mice that received human fecal transplants was correlated with reduced weight 
gain, and transplant of obese donor stool amended with Christensenella minuta to recipient mice led to reduced 
adiposity35. Findings of depleted Christensenellaceae in obese individuals have since been replicated in other 
large studies21,36, indicating that Christensenellaceae may be important for promoting leanness. Oscillospira has 
also been suggested to promote human leanness; it was enriched in healthy-weight subjects in several human 
studies36,37, and may contribute to leanness by degrading host glycans and producing SCFAs37. We also observed 
that other Clostridiales OTUs (Ruminococcaceae, Lachnospiraceae, and unclassified families) were depleted in 
the obese; although functions of these bacteria are unknown, many members of these families produce SCFAs25. 
An important caveat is that multitudes of gut bacteria produce SCFAs, making it unclear whether this mecha-
nism is actually responsible for patterns observed. Our inferred metagenome analysis, however, revealed that the 

Figure 2.  Count boxplots of families that were differentially abundant by obesity. Families associated globally 
with BMI category in the DESeq2 analysis (LRT q < 0.05) were included in the plot. Green, blue, and orange 
boxplots represent healthy-weight, overweight, and obese participants, respectively. Counts were normalized for 
DESeq2 size factors and log2 transformed after adding a pseudocount of 1. Stars to the left-hand side of boxplots 
indicate significant difference in abundance from healthy-weight (pHolm < 0.05 for pairwise comparison).
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KEGG pathway related to the SCFA butyrate (“butanoate metabolism”) was marginally depleted in obese com-
pared to healthy-weight participants, supporting the beneficial SCFA hypothesis.

Increases in Enterobacteriaceae in the obese may lend support to the “metabolic endotoxemia” hypothesis, as 
LPS from Enterobacteriaceae exhibits high endotoxin activity27; however the “LPS biosynthesis” pathway was not 
associated with obesity in our inferred metagenome analysis. Enterobacteriaceae species were also associated with 
obesity in other studies38,39, and have been shown to decrease following weight-loss interventions40,41.

Synthesis of secondary bile acids and methane represent other potential mechanisms by which gut microbi-
ota may modulate host energy balance. In our inferred metagenome analysis, we observed that “secondary bile 
acid biosynthesis” was marginally enriched in obese compared to healthy-weight participants, while “methane 
metabolism” was not associated with obesity. Some species in Clostridium and Eubacterium generate secondary 
bile acids42, which may modulate adiposity via farnesoid X receptor (FXR) or Takeda G-protein-coupled receptor 
5 (TGR5) signaling33,43. Methanogens may promote adiposity via conversion of hydrogen to methane gas32,44, 

Figure 3.  OTUs associated with obesity. OTU fold changes for obese vs. healthy-weight comparison in DESeq2 
analysis are plotted. All OTUs within the given taxonomic groups are plotted, and orange and green points 
represent OTUs significantly (pHolm < 0.05) higher or lower in abundance, respectively, in obese compared 
to healthy-weight participants. Only taxonomic groups with at least one differentially abundant OTU 
(pHolm < 0.05) are displayed. “NA” indicates a group that was unclassified at the family, genus, or species level.
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and have previously been associated with leanness by other studies16,35,45, or, in contrast, with obesity46–48. More 
research is needed in human populations to elucidate the roles of secondary bile acids and methane in obesity.

We also identified that the “ALA metabolism” KEGG pathway was enriched in obese compared to 
healthy-weight participants. ALA is a type of n-3 polyunsaturated fatty acid, which may be metabolized to conju-
gated linolenic acids by gut microbiota49; conjugated linolenic acids were shown to have anti-adipogenic proper-
ties in several studies50, in contradiction with this observed result.

We observed reduced microbial diversity in the obese, particularly for women. Obesity-related reductions in 
microbial diversity have been reported previously15,21,36,39,51, though not by all22,52. One study related the reduction 

Figure 4.  Correlations of bacterial families and inferred metagenomic functions. Family and KEGG pathway 
counts were DESeq2-normalized. Partial Spearman’s correlation coefficients were estimated for each pairwise 
comparison of family and KEGG pathway abundance, adjusting for age, sex, study, and polyp status. KEGG 
pathways included in the heatmap were identified a priori or were associated globally with BMI category (LRT 
q < 0.05); families included in the heatmap were associated globally with BMI category (LRT q < 0.05).

Figure 5.  Scatterplot of obesity-associated OTUs in the CDC and NYU studies. All of the OTUs tested 
(1,825) are plotted by their log2 fold changes (obese vs. healthy-weight) in the CDC and NYU studies. OTUs 
represented by black open circles were not significantly associated with obesity in either study. Red, blue, and 
purple circles represent OTUs associated with obesity (p < 0.05) in the CDC study only, NYU study only, or in 
both studies, respectively. OTU models with extreme outliers (maximum Cook’s distance >15) are not colored 
in the plot. R2 = 4.8%.
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in diversity to “abnormal energy input” in obesity15. Individuals with low microbial gene richness are more likely 
to be obese and have poorer metabolic health53. Additionally, a weight-loss intervention was less effective at 
improving inflammatory markers in those with low microbial gene richness54. Therefore, low microbial diversity 
may be a further factor conferring susceptibility to obesity. The reason for the sex difference in our microbiome 
diversity result is unclear; a possible mechanism may lie in the effect of sex hormones on the gut microbiota55, 
however replication of the result in other studies is warranted.

The potential for manipulation of gut microbiota has generated interest in identifying a taxonomic signa-
ture for obesity that is responsible for the obesogenic mechanisms detailed above. Animal studies and some 
small human studies have demonstrated that the obese microbiome is characterized by a phylum-level signature 
of increased Firmicutes and decreased Bacteroidetes8,9,12,15. However, larger human studies have failed to rep-
licate this signature21–23, including the current study. It is possible that in humans, the taxonomic signature of 
obesity exists on a finer species (OTU) level, rather than at phylum level. Further, due to large between-person 
and between-population variability in the gut microbiome, large sample sizes are likely needed to detect such a 

Figure 6.  Random forest model of the training data set (CDC study). A random forest model was generated 
based on 1,825 DESeq2-normalized OTUs in the training data set (CDC study) using the AUCRF R package. (a) 
The optimal random forest model of 49 OTUs was selected by optimizing the area under the receiver operating 
characteristic (ROC) curve (AUC) of the random forest (optimal AUC = 0.81); the mean AUC of repeated (20 
times) 5-fold cross-validations of the random forest model was 0.65. (b) ROC curve of the optimal random 
forest model, highlighting Youden’s index (probability at maximum sum of sensitivity and specificity). (c) Top 
30 OTUs with highest probability of selection in repeated cross-validation of the optimal random forest model.
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signature. This signature may differ by population factors such as age, race, and geography. We have observed 
consistency of findings between our two independent study populations, which both consisted of older, mostly 
white Americans, suggesting that a taxonomic signature of obesity can be identified within homogeneous popu-
lations. In support of this, a recent meta-analysis robustly replicated eight obesity-associated OTUs across three 
large population-based cohorts of European descent36. Additionally, we observed good accuracy (~70%) of obe-
sity classification by a microbiome-based random forest model, trained on one study and tested on two studies 
with similar population characteristics to the training set. An analysis of 10 published datasets by another group 
observed overall poor accuracy of random forest models trained on one dataset and tested on the other nine 
(median accuracy 33–65% for 10 models)24. However these datasets differed substantially on population char-
acteristics such as age, race, and geography, which all may impact model performance; here we have focused on 
homogeneous populations, assuming there is no universal taxonomic signature of obesity across all populations. 
Additionally, the authors used genus-level information to develop the models, whereas here we used OTU-level 
information, which could also impact model performance. Regardless of whether high accuracy of obesity clas-
sification can be achieved with machine learning, it remains possible that specific taxa play a mechanistic role in 
obesity.

Strengths of this study include the large sample size, control of potential confounders, comprehensive bacterial 
profiling, and availability of dietary data in a subset of participants. The effect of diet on gut microbial compo-
sition has been demonstrated previously56–59; due to effects of diet on both microbiota and BMI, it is difficult to 
tease apart potential microbial contributions to obesity from effects of diet on microbiota. Here, adjustment for 
dietary factors did not impact the association of obesity with microbial composition. Although power of this 
analysis was limited due to the small subset with dietary information (n = 171) and measurement error inherent 
in food frequency questionnaires60, it suggests a relationship between microbial composition and obesity inde-
pendent of diet. Our study also has several limitations. The cross-sectional design does not allow us to establish 
temporality or causality of the microbiome-obesity relationship. Additionally, due to the older age and mostly 
white study population (96% 50 and over; 94% white), findings may not be generalizable to younger or more 
diverse populations. We also lacked antibiotic usage information in the CDC study which did not allow us to 
exclude individuals taking antibiotics, and we lacked dietary and exercise data in the CDC study which did not 
allow us to adjust for these potential confounders in the full study population. Finally, lack of shotgun-sequenced 
metagenome data did not allow us to actually characterize metagenomic functions.

In summary, in this large study of older American adults, we observed a significant relationship between 
the gut microbiome and obesity. The taxa identified may open new avenues for experimental research on causal 
microbial agents of obesity. Additional large-scale studies are warranted in humans to confirm a taxonomic sig-
nature of obesity (in a variety of populations, as the signature may vary by age, race, and geography). From there, 
interventions in animals and humans can identify obesity-promoting bacteria or lean-promoting bacteria, and 
the mechanisms of their action. Looking forward, precision medicine approaches based on an individual’s micro-
biome may eventually be used to effectively treat or prevent obesity.

Methods
Study population.  We included data from two independent study populations based at colonoscopy clinics: 
the Centers for Disease Control and Prevention Study of In-home Tests for Colorectal Cancer (CDC study)61, and 
the New York University Human Microbiome and Colorectal Tumor study (NYU study)62 (Supplemental Fig. 4). 
The CDC study was approved by the institutional review boards of University of Minnesota and the CDC, and the 
NYU study by the institutional review board of NYU School of Medicine. Methods were carried out in accord-
ance with relevant guidelines and regulations, and all participants provided informed consent.

The CDC study contributed 451 subjects at University of Minnesota/Minnesota Gastroenterology (12/2012-
7/2014). Eligible participants were 50–75 years old, scheduled to have a colonoscopy for routine screening, able 
to read English, and not currently taking anticoagulants. Additionally, participants must not have had >1 episode 
of rectal bleeding in the last six months, a positive FOBT in the past twelve months, a colonoscopy in the past 
5 years, a personal history of colorectal cancer, polyps, or inflammatory bowel disease, or a personal or family 
history of familial adenomatous polyposis or hereditary nonpolyposis colorectal cancer. We excluded participants 
that withdrew (n = 17), subjects for whom sequencing failed (n = 4), subjects missing BMI (n = 3), and under-
weight subjects (BMI < 18.5 kg/m2; n = 4), resulting in 423 subjects.

The NYU study enrolled 239 participants from Kips Bay Endoscopy Center in New York City (6/2012-8/2014). 
Eligible participants were 18 years or older (range: 29–86), recently underwent colonoscopy, able to read English, 
and not on long-term antibiotics. We excluded participants missing colonoscopy reports (n = 2), missing BMI 
(n = 9), or underweight (n = 1), and further excluded participants with rectal bleeding (n = 18) or with personal 
history of colorectal cancer (n = 10), inflammatory bowel disease (n = 22), anastomosis (n = 6), or familial ade-
nomatous polyposis (n = 1), in order to conform the NYU study to the CDC study; exclusion based on these 
non-mutually exclusive criteria resulted in 176 subjects.

Stool samples.  Subjects collected stool onto Beckman Coulter Hemoccult II SENSA® cards (Beckman 
Coulter, CA) at home. This method produces reproducible and accurate 16S rRNA gene-derived microbiota 
data63,64, and exhibits stability at room temperature up to 8 weeks65. CDC samples were mailed to a laboratory 
for fecal occult blood testing within several days of stool collection; this testing does not impact microbiota 
composition62,63. After testing, CDC samples were refrigerated at 4 °C until shipment to NYU, and upon arrival 
were stored at −80 °C (range: 7–183 days from sample collection to receipt by NYU). NYU samples were mailed 
directly to NYU following at-home collection and stored immediately at −80 °C.



www.nature.com/scientificreports/

1 0SCiENtifiC REPOrTS |  (2018) 8:9749  | DOI:10.1038/s41598-018-28126-1

Microbiome assay.  DNA was extracted from stool using the PowerLyzer PowerSoil Kit (Mo Bio Laboratory 
Inc., CA) following manufacturer’s protocol, as described previously62. Barcoded amplicons were generated cov-
ering the V4 region of the 16S rRNA gene using the F515/R806 primer pair66. The PCR reaction, using FastStart 
High Fidelity PCR system, dNTP pack (Roche, IN), was run as follows: initial denaturing at 94 °C for 3 min, 
followed by 25 cycles of 94 °C for 15 s, 52 °C for 45 s and 72 °C for 1 min, and a final extension at 72 °C for 8 min. 
PCR products were purified using Agencourt AMPure XP (Beckman Coulter Life Sciences, IN) and quantified 
using the Agilent 4200 TapeStation (Agilent Technologies, CA). Amplicon libraries were pooled at equal molar 
concentrations and sequenced on Illumina MiSeq with a 300-cycle (2 × 151 bp) kit.

Sequence read processing.  Forward and reverse reads were joined using join_paired_ends.py in QIIME 
with default parameters67. Sequences were demultiplexed, and poor-quality sequences excluded, using default 
parameters of QIIME script split_libraries_ fastq.py; median sequence length was 253 base pairs. Chimeric 
sequences were excluded using USEARCH 6.1, with the “gold” reference database (Broad Institute Microbiome 
Utilities microbiomeutil-r20110519). Sequence reads were clustered into operational taxonomic units (OTUs) 
against the Greengenes 13_8 reference sequence collection, using QIIME pick_closed_reference_otus.py script 
(results were highly similar using de novo OTU picking, data not shown). The final dataset of 599 participants 
included 15,098,120 sequence reads (mean ± SD: 25,206 ± 15,616 reads/sample) and 8,902 OTUs. Quality control 
data showing excellent reproducibility for this data has been published previously62.

Covariates.  Only limited demographic information (age, sex, BMI, race) was collected during CDC study 
enrollment. The NYU study collected more extensive information (e.g. data on exercise, smoking, health his-
tory, and dental health) and food frequency questionnaires. The food frequency questionnaire used in the NYU 
study was the 137-item DQX from the National Cancer Institute Prostate, Lung, Colorectal, and Ovarian Cancer 
screening trial (PLCO), available at https://biometry.nci.nih.gov/cdas/datasets/plco/97/. Nutrient variables were 
calculated following the PLCO protocol; briefly, the frequency for each line item was multiplied by a nutrient 
amount (derived from the USDA CSFII database) which was dependent on the gender of the subject as well as the 
response to serving size, when applicable. Healthy-weight was defined as BMI ≥ 18.5 and <25 kg/m2, overweight 
as BMI ≥ 25 and <30 kg/m2, and obese as BMI ≥ 30 kg/m2. Colorectal polyps were identified at colonoscopy 
and confirmed by pathology; cases were defined as those with ≥1 polyp of non-normal histology, or those with 
history of polyps.

α-diversity.  α-diversity (within-subject species diversity) was assessed using richness, Shannon diversity 
index, and evenness, calculated in 100 iterations for rarefied OTU tables (minimum: 50 reads/sample, maximum: 
1,490 reads/sample [lowest participant sequencing depth]) using QIIME script alpha_rarefaction.py. We exam-
ined whether α-diversity (at 1,490 sequence reads/sample) differed across BMI categories using linear regression, 
adjusting for age, sex, polyp status, and study. Statistical significance of the global BMI category variable was 
determined using an F-test comparing the full vs. reduced model (i.e. without BMI category). P-values for the 
two pairwise comparisons of interest (obese vs. healthy-weight and overweight vs. healthy-weight) were adjusted 
with the Holm method68.

β-diversity.  β-diversity (between-subject species diversity) was assessed using the weighted UniFrac dis-
tance69. Principal coordinate analysis (PCoA)70 and partial constrained analysis of principal coordinates (CAP)71 
were used to visually explore the relationship between BMI and overall bacterial composition. In partial CAP 
analysis, BMI category was the constraining variable, and sex, age, polyp status, and study were conditioning 
variables. Permutational multivariate analysis of variance (PERMANOVA)72 was used to examine statistically 
whether overall bacterial composition differed by BMI category, adjusting for age, sex, polyp status, and study. 
Statistical significance was determined as described above for α-diversity.

Differential abundance testing.  To examine differences in abundance of bacterial taxa across BMI catego-
ries we used negative binomial generalized linear models (DESeq2)73. This method models raw counts with a neg-
ative binomial distribution, adjusting internally for “size factors” which normalize for differences in sequencing 
depth between samples. The raw counts of 8,902 OTUs were agglomerated to 14 phyla, 30 classes, 56 orders, 115 
families, 302 genera, and 413 species. Prior to analysis, we filtered the data to include only taxa with ≥2 sequence 
reads in ≥5% of participants (30 participants), resulting in inclusion of 11 phyla, 20 classes, 25 orders, 52 families, 
100 genera, 133 species, and 1,825 OTUs. DESeq2 models were adjusted for age, sex, polyp status, and study. 
DESeq2 default outlier replacement, independent filtering of low-count taxa, and filtering of count outliers were 
turned off. We used likelihood-ratio tests (LRT) to determine statistical significance of the global BMI category 
variable in DESeq2 models; we adjusted the p-values for taxa at each level (i.e. class, genus) for the false discovery 
rate (FDR)74, with models with maximum Cook’s distance >15 removed prior to p-value adjustment. For models 
that were significant (LRT FDR-adjusted p-value [q-value] < 0.05), Wald test p-values for the two pairwise com-
parisons of interest (obese vs. healthy-weight and overweight vs. healthy weight) were adjusted with the Holm 
method68. This methodology controls the mixed directional FDR75.

Inferred metagenomes.  PiCRUST76 was used to infer metagenomic content from 16S rRNA gene-based 
microbial compositions. The 5,753 observed KEGG77 gene orthologs were grouped into 276 KEGG pathways. We 
filtered the data to include only pathways with ≥2 reads in ≥30 participants, and removed unclassified pathways 
and pathways related to “Human Diseases” or “Organismal Systems”, resulting in inclusion of 185 pathways. We 
used DESeq2 (as described above) to test differences in pathway abundance across BMI categories. Statistical sig-
nificance was determined as described above for differential abundance testing. We considered nominal p-values 

https://biometry.nci.nih.gov/cdas/datasets/plco/97/
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for a priori pathways of interest, and q-values for other pathways. We used partial Spearman’s correlations to 
examine associations between taxa and pathways, adjusting for age, sex, study, and polyp status. We also explored 
OTU contributions to a priori KEGG orthologs of interest using PiCRUST script metagenome_contributions.py.

Random forest machine learning.  We used a random forest model based on the CDC study (training 
set) to classify individuals in the NYU study and another human study26 (testing sets) as obese (BMI ≥ 30 kg/
m2) or non-obese (BMI < 30 kg/m2). We chose the Baxter et al. study due to its similarity with our study, as it was 
also colonoscopy-based and comprised of older, mostly white Americans. The Baxter et al. data was downloaded 
from the NCBI Sequence Read Archive (SRP062005) and processed identically to our data (see “Sequence read 
processing” in Methods), to facilitate comparison with our studies. After excluding participants with cancer, the 
Baxter et al. data comprised 402 subjects (age mean ± SD = 59.5 ± 11.7, 91% white, 50% men). The random forest 
model for the training set was generated using the AUCRF R package78, which performs variable selection based 
on optimizing the area under the receiver operating characteristic (ROC) curve (AUC) of the random forest. 
DESeq2-normalized counts of 1,825 OTUs were used in variable selection. We performed repeated (20 times) 
5-fold cross-validation of the random forest model. The probability threshold above which a subject was classified 
as obese in the testing sets was based on Youden’s index (probability at maximum sum of sensitivity and speci-
ficity) of the ROC curve of the training set model. Accuracy was calculated as (true positives + true negatives)/
(total subjects).

Diet and exercise sensitivity analysis.  In the NYU study, data on diet (e.g. total energy, fiber, protein, 
fat intake) and exercise were available, and we checked whether adjusting for these variables in the NYU study 
influenced our overall (α- and β-) diversity results. Models with fiber, protein, or fat intake were adjusted for total 
energy. Those with unrealistic total energy intake (<500 or >4000 kcal/day; n = 3) and those leaving blank >50% 
of the items on the 137-item food frequency questionnaire (n = 2) were considered missing and excluded from 
the dietary analysis. Those missing exercise data (n = 1) were excluded from the exercise analysis.

Data availability statement.  The datasets analyzed during the current study are available in the dbGaP 
repository (accession phs001381.v1.p1).
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