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Periodontitis is an inflammatory disease involving complex interactions between oral microorganisms and the host immune
response. Understanding the structure of the microbiota community associated with periodontitis is essential for improving
classifications and diagnoses of various types of periodontal diseases and will facilitate clinical decision-making. In this study,
we used a 16S rRNA metagenomics approach to investigate and compare the compositions of the microbiota communities from
76 subgingival plagues samples, including 26 from healthy individuals and 50 from patients with periodontitis. Furthermore, we
propose a novel feature selection algorithm for selecting features with more information from many variables with a combination
of these features and machine learning methods were used to construct prediction models for predicting the health status
of patients with periodontal disease. We identified a total of 12 phyla, 124 genera, and 355 species and observed differences
between health- and periodontitis-associated bacterial communities at all phylogenetic levels. We discovered that the genera
Porphyromonas, Treponema, Tannerella, Filifactor, and Aggregatibacter were more abundant in patients with periodontal disease,
whereas Streptococcus, Haemophilus, Capnocytophaga, Gemella, Campylobacter, and Granulicatella were found at higher levels in
healthy controls. Using our feature selection algorithm, random forests performed better in terms of predictive power than other

methods and consumed the least amount of computational time.

1. Introduction

The human mouth harbors a complex microbial community,
with estimates of up to 700 or more different bacterial species,
most of which are commensal and required to maintain the
balance of the mouth ecosystem [1]. However, some of the
bacteria in the mouth microbiota play important roles in
the development of oral diseases, including dental caries and
periodontal disease [2]. Periodontal disease and dental caries
initiate with the growth of the dental plaque, a biofilm formed
by the accumulation of bacteria together with various human
salivary glycoproteins and polysaccharides secreted by the
microbes [3]. The subgingival plaque, located within the
neutral or alkaline subgingival sulcus, is typically inhabited

by anaerobic gram-negative bacteria and is responsible for
the development of gingivitis and periodontitis. The compo-
sition of oral microorganisms depends on multiple factors,
includinglifestyle (e.g., diet, oral care habits), health (e.g., oral
diseases, host immune responses, and genetic susceptibility),
and physical location in the oral cavity (tongue or tooth
surfaces, as well as supragingival or subgingival sites) [4].
Periodontitis is an inflammatory disease involving a complex
interaction between oral microorganisms organized in a
biofilm structure and the host immune response. Clinically,
periodontitis results in the destruction of tissues that support
and protect the tooth and is a major cause of tooth loss in
adults [5]. Moreover, periodontitis can also affect systemic
health by increasing the risk of atherosclerosis, adverse
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pregnancy outcomes, rheumatoid arthritis, aspiration pneu-
monia, and cancer [6-11].

In the past half century, numerous studies have char-
acterized the community composition of the oral micro-
biota and described the association between periodonti-
tis and pathogenic microorganisms. For example, Aggre-
gatibacter actinomycetemcomitans, Porphyromonas gingivalis,
Tannerella forsythia, Treponema denticola, Fusobacterium
nucleatum, and Prevotella intermedia have traditionally been
considered pathogenic bacteria contributing to periodontitis
[5, 12, 13]. Socransky et al. [14] described the role of 5
main microbial complexes in the subgingival biofilm. They
reported that red complex species Porphyromonas gingivalis,
Treponema denticola, and Tannerella forsythia exhibited a
very strong relationship with periodontitis. Subsequently,
other association and elimination studies have confirmed the
involvement of the three members of the red complex and
some members of the orange complex, such as Prevotella
intermedia, Parvimonas micra, Fusobacterium nucleatum,
Eubacterium nodatum, and Aggregatibacter actinomycetem-
comitans, in the etiology of different periodontal conditions
[15]. Additionally, during the past decade, researchers using
culture-independent molecular techniques have shown that
some representatives of the genera Megasphaera, Parvimonas,
Desulfobulbus, and Filifactor are more abundant in patients
with periodontal diseases, whereas members of Aggregatibac-
ter, Prevotella, Selenomonas, Streptococcus, Actinomyces, and
Rothia are more abundant in healthy patients [16-19].

Machine learning is data method that involves finding
patterns and making predictions from data based on multi-
variate statistics, data mining, and pattern recognition. This
technology had been used to solved many metagenomic
problems, such as operational taxonomic unit (out) clustering
[20-24], binning [25-30], taxonomic profiling and assign-
ment [31-35], comparative metagenomics [36-38], and gene
prediction [39-42]. In addition to the learning algorithm
and the model, the most important component of a learning
system is how features are extracted from the domain data, a
process known as feature selection. The purposes of feature
selection include improving the prediction performance of
the predictors, providing faster and more cost-effective pre-
dictors, and providing a better understanding of the underly-
ing process that generated the data [43-45]. Feature selection
methodology can be categorized into three classes (filter,
wrapper, and embedded methods) according to how the
feature selection search is combined with the construction of
the classification mode. Filter methods estimate the relevance
of features by analysis of the intrinsic properties of the data.
These methods are computationally simple and fast, can scale
to very high-dimensional datasets easily, and are independent
of the classification algorithm.

Although much is known about individual species asso-
ciated with pathogenesis, the global structure of the bacterial
community and the microbial signatures of periodontal
disease are still poorly understood. In this study, we explored
the microbial diversity in the subgingival plaque of healthy
patients and patients with periodontal disease using culture-
independent molecular methods based on 16S ribosomal
DNA cloning. We also compared the bacterial community
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compositions between healthy patients and patients with
periodontal disease and determined the core microbiomes
present in these patients. Furthermore, we proposed a novel
algorithm for feature selection, and microbes with significant
differences were extracted as features and provided to gen-
erate feature combinations by applying our algorithm. Using
machine learning methods, we built prediction models and
found that the health status of patients with periodontal dis-
ease could be identified accurately using only a few features.

2. Materials and Methods

2.1. 16S rRNA Sequence Dataset. In total, 76 samples used
for this study were collected from subgingival plaques of
76 unrelated individuals, including 10 patients with severe
periodontal disease, 40 patients with moderate periodontal
disease, and 26 healthy controls. This study was approved
by the Institutional Review Board of Chang Gung Memo-
rial Hospital, Taiwan (approval no. 102-4239B). All patients
provided informed consent prior to their enrolment in
the study. The oral health statuses of all individuals were
determined by a dentist who performed a full-mouth clinical
examination that included clinical parameters of periodontal
pocket depths, gingival recession, clinical attachment loss,
bleeding on probing, tooth mobility, and furcation involve-
ment. These clinical parameters were measured at 6 sites
per tooth (mesiobuccal, buccal, distobuccal, distolingual,
lingual, and mesiolingual) at all teeth. Table 1 summarizes
the parameters of periodontal pocket depths, bleeding on
probing and clinical attachment loss for all of the samples. The
classification of periodontitis as slight, moderate, or severe
was based on the guidelines of the American Academy of
Periodontology [46]. Subjects who had received previous
periodontal therapy within two years and recent history of
antibiotics taking within last 6 months were excluded.

After sampling, DNA extraction and polymerase chain
reaction (PCR) were performed based on methods described
by Tang et al. [47]. Following extraction, barcoded PCR
amplification was performed with 382-bp amplicons flanking
the highly variable V1-V2 region of the 16S rRNA gene
sequence [48]. Next-generation sequencing evaluation of oral
microbial communities was carried out using an Illumina
MiSeq Desktop Sequencer after 30 cycles of PCR to enrich
the adapter-modified DNA fragments.

2.2. Sequence Processing. Paired-end reads sequenced by the
[Mumina Sequencer were assembled with PEAR software
[49]. Using split_libraries.py in QIIME with default param-
eters [50], assembled reads were demultiplexed, and low-
quality reads were filtered. The GoldG database containing
the ChimeraSlayer reference database in the Broad Micro-
biome Utilities [51] was used with UCHIME software [52]
for chimera detection and removal. The remaining reads were
clustered into OTUs using a de novo OTU selection protocol
at the 97% identity level with a USEARCH algorithm [21].
Before clustering sequences, we filtered out all reads that
occurred fewer than three times. This reduced the number of
unique sequences to a computationally manageable level and
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TaBLE 1: Clinical characteristics of studied subjects. Clinical attachment loss and probing depth were measured in mm and represent the

mean for all collected sites in the oral cavity of studied subjects.

Characteristics Healthy Moderate periodontitis Severe periodontitis
Probing depth (mean + s.d.) 1.3+0.6 50+13 79 +0.7
Clinical attachment loss (mean + s.d.) 1.6 + 0.7 57+15 8.6+11

% sites with bleeding on probing (mean =+ s.d.) 2.8+18 68.3 +23.2 79.7 175

potentially reduced the number of errors from sequencing
and contamination. The taxonomy associated with each OTU
was assigned by blasting a representative sequence of each
OTU against the Human Oral Microbiome Database [53]
(HOMD). The sequence processing was carried out using our
metagenomic analysis platforms [45].

2.3. Diversity and Significance Analysis. Sample data stored
in the biological observation matrix format were subjected
to statistical analysis using R language. We analyzed the
sequencing depth of samples prior to downstream analysis
using the Shannon index. The main microbes and taxo-
nomic composition of the microbiota in each sample were
also estimated. Abundance differences of microbes between
sample groups were evaluated using the Kruskal-Wallis test.
Four non-phylogeny-based metrics, namely, the observer
species, chao 1 metric [54], Ace richness, and Shannon index,
were used to evaluate alpha diversity, which represented
the amount of diversity contained within communities, by
applying the phyloseq R package. UniFrac is a distance
metric used for comparing biological communities. Principal
coordinate analysis (PCoA) with weighted UniFrac distances
was applied to evaluate beta diversity, which represented the
amount of diversity shared among communities. Principal
component analysis (PCA) was used to characterize the
primary microbes contained within communities.

2.4. Feature Selection and Machine Learning. In this study,
we proposed a method of feature selection for selecting
the informative microbes to predict whether an individual
suffered from periodontal disease. First, the microbes present
at less than 0.5% relative abundance in all samples were
ignored, and nonparametric Kruskal-Wallis tests were used
to detect microorganisms with significantly differential abun-
dance between healthy patients and patients with periodontal
disease. Microbes with more significant differential scores
were considered features with more information. Then, the
prioritized feature combination-generated algorithm shown
in Algorithm 1 was adopted to produce the feature combina-
tions composed by these more informative features.

In prioritized order, the feature combinations were
applied to build classifiers with machine learning algorithms,
such as deep learning, support vector machine (SVM),
random forests, and logistic regression. We picked 80% of
samples from both healthy and disease cases to train the
prediction model, and the remaining cases were used for test-
ing. The prediction ability of each feature combination was
evaluated by calculating the average accuracy from 10 pre-
dictions with different training and testing sample sets. Here,

we selected 10 of the most significant features having p values
between 3.27E-11 and 7.77E-9. In total, 1,023 feature combi-
nations were evaluated for their prediction ability using deep
learning, SVM, random forest, and logistic regression meth-
ods. These machine learning algorithms were supported by
the R packages H,O, e1071, randomForest, and stats, respec-
tively. We considered the radial basis function kernel for
SVM. Parameters for each machine learning algorithm were
tuned using grid search, and the parameters that obtained
better accuracy were adopted for training prediction models.

3. Results and Discussion

3.1. Sample Sequencing and Identification. In total, 76 sub-
gingival plaque samples from 76 unrelated individuals were
divided into three classes according to their periodontal
health status, i.e., healthy (H), severe periodontitis (SP), and
moderate periodontitis (MP). Following DNA extraction and
barcoded PCR amplification, these samples were sequenced,
generating a total of 7,530,767 sequences. After filtering and
trimming, 6,170,984 sequences remained, and there were 481
OTUs in all samples (481 and 429 in diseased and healthy
samples, respectively). Due to variations in the number of
sequences among samples, the total sequence reads within
a sample was normalized to the relative abundance for
subsequent analyses.

3.2. Taxonomic Composition of the Human Oral Micro-
biota. Table 2 summarizes the dominant microbes in the
human oral microbial communities. In the experimental
results, the microbial communities included 12 different
phyla: Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria,
Spirochaetes, Actinobacteria, Candidate division TM7, Syner-
gistetes, Fusobacteria, Candidate division SR, Gracilibacteria,
and Chloroflexi. Bacteroidetes (37%) was the most abundant
phylum in the human oral microbiota. The major genera
consisted of previously characterized oral bacteria, including
Prevotella (13.56%), Fusobacterium (11.30%), Porphyromonas
(10.94%), Treponema (8.86%), Streptococcus (6.52%), Lep-
totrichia (4.76%), and Capnocytophaga (3.64%). In summary,
there were 25 classes, 40 orders, 66 families, 124 genera, and
355 species at each taxonomic level.

In comparison of the compositions of microbial commu-
nities between healthy patients and patients with periodonti-
tis, we found that the spectra of microbial communities dif-
fered. In healthy samples, the dominant genera were Strepto-
coccus (13.09%), Prevotella (12.43%), Fusobacterium (11.70%),
Capnocytophaga (6.25%), Leptotrichia (5.60%), Alloprevotella
(4.26%), Campylobacter (3.94%), Porphyromonas (3.78%),
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GenPFC((ay,ay,...a,))
Input: (a,, a,, . .

C Generate prioritized feature combinations.
.a,) alist with n features in prioritized order.
Output: a queue Q used to store 2" — 1 feature combinations.

C Generate attribute combinations according to features in the list.

1Q — (0) C Enqueue empty set @ into queue Q

2fori«— 1tondo

3 T—Q C Copy Q into T which is a temporary queue.
4 foreachsinT do

5 Enqueue(Q,s U {a;})

6 Dequeue(Q) C Delete first empty set 0 from queue Q

7 return Q

ALGORITHM 1: The prioritized feature combination-generated algorithm was used to generate all combinations of selected features in
prioritized order. As an example, when 7 equals four, the generated list will be (1000, 0100, 1100, 0010, 1010, 0110, 1110, 0001, 1001, 0101,
1101, 0011, 1011, 0111, 1111). Each element is a combination and denotes whether the four features were selected in that combination (e.g., the
combination containing the first and third features is represented as 1010).

TABLE 2: Dominant microbes of the human oral microbiota at each taxonomic level.

Phylum Class Order

Bacteroidetes 37.41% Bacteroidia 31.71% Bacteroidales 31.71%
Firmicutes 20.82% Fusobacteria 16.06% Fusobacteriales 16.06%
Fusobacteria 16.06% Spirochaetia 8.86% Spirochaetales 8.86%
Proteobacteria 9.30% Bacilli 7.83% Lactobacillales 7.06%
Spirochaetes 8.86% Clostridia 6.78% Clostridiales 6.78%
Actinobacteria 2.38% Negativicutes 5.21% Selenomonadales 5.21%
Family Genus Species

Prevotellaceae 16.39% Prevotella 13.56% Porphyromonas gingivalis 7.30%
Porphyromonadaceae 12.96% Fusobacterium 11.30% Fusobacterium nucleatum _subsp._vincentii 5.23%
Fusobacteriaceae 11.30% Porphyromonas 10.94% Prevotella intermedia 4.62%
Spirochaetaceae 8.86% Treponema 8.86% Streptococcus sp._oral_taxon_423 2.62%
Streptococcaceae 6.52% Streptococcus 6.52% Bacteroidales sp._oral_taxon_274 2.18%
Veillonellaceae 5.21% Leptotrichia 4.76% Prevotella loescheii 2.15%

Veillonella (3.49%), and Neisseria (3.27%); however, in
patients with periodontal disease, the dominant genera were
Porphyromonas (14.67%), Prevotella (14.16%), Treponema
(11.90%), Fusobacterium (11.09%), Leptotrichia (4.32%), and
Streptococcus (3.10%). At the species level, Streptococcus sp.
oral taxon 423 (0.2-36%) was the most abundant species in
healthy patients, whereas Porphyromonas gingivalis (0-31%)
was the most abundant species in patients with periodontitis.
Table 3 compares the dominant microbes between healthy
patients and patients with periodontitis at each taxonomic
level. The genus and species level taxonomic compositions
between healthy patients and patients with periodontitis are
shown in Figures 1 and 2. Streptococcus was more abun-
dant in samples from all healthy individuals but decreased
in samples from patients with periodontitis. Additionally,
Porphyromonas and Treponema were more abundant in
patients with periodontitis but decreased significantly in
samples from healthy individuals. In total, 25 species were
identified with significantly different abundances between
sample groups; Porphyromonas gingivalis was the species
with the most significantly differential abundance between
samples from healthy patients and patients with periodontitis
(p value = 2.41E-9).

Opverall, our findings were largely comparable to those
of previous studies [14, 55-61], indicating that species such
as Porphyromonas gingivalis, Treponema denticola, Tannerella
forsythia, Filifactor alocis, Treponema socranskii, Aggregat-
ibacter actinomycetemcomitans, Treponema vincentii, and
Mycoplasma faucium were significantly enriched in samples
from patients with periodontitis. Furthermore, we found a
set of species, including Streptococcus sanguinis, Haemophilus
parainfluenzae, Capnocytophaga granulosa, Gemella morbil-
lorum, Campylobacter showae, and Granulicatella adiacens,
were significantly enriched in samples from healthy individ-
uals.

Several studies have described the bacterial communities
in patients with periodontitis and healthy control participants
using metagenomics [16-19, 61-63]. The dominant microor-
ganisms associated with periodontitis and the healthy state
were largely consistent in those studies; however, we observed
several discrepancies. First, in addition to common diseased-
associated microorganisms, such as Porphyromonas gingi-
valis, Treponema denticola, Tannerella forsythia, Filifactor
alocis, and Aggregatibacter actinomycetemcomitans, we also
found that the species Mycoplasma faucium was significantly
enriched in samples from patients with periodontal disease.
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TABLE 3: Dominant microbes of the oral microbiota between healthy patients and patients with periodontitis at each taxonomic level.

Healthy patients

Patients with periodontitis

Phylum
Bacteroidetes
Firmicutes
Fusobacteria
Proteobacteria
Actinobacteria
Saccharibacteria
Class
Bacteroidia
Fusobacteria
Bacilli
Negativicutes
Flavobacteriia
Clostridia
Order
Bacteroidales
Fusobacteriales
Lactobacillales
Selenomonadales
Flavobacteriales
Clostridiales
Family
Prevotellaceae
Streptococcaceae
Fusobacteriaceae
Veillonellaceae
Flavobacteriaceae
Leptotrichiaceae
Genus
Streptococcus
Prevotella
Fusobacterium
Capnocytophaga
Leptotrichia
Alloprevotella
Species
Streptococcus sp._oral_taxon_423
Fusobacterium nucleatum_subsp._vincentii
Fusobacterium nucleatum_subsp._polymorphum
Veillonella parvula
Bacteroidales sp._oral_taxon_274
Fusobacterium nucleatum_subsp._animalis

31.93% Bacteroidetes 40.26%
26.90% Firmicutes 17.66%
17.31% Fusobacteria 15.42%
11.81% Spirochaetes 11.90%

3.36% Proteobacteria 7.99%
3.20% Synergistetes 2.50%
24.76% Bacteroidia 35.32%
17.31% Fusobacteria 15.42%
15.23% Spirochaetia 11.90%

6.71% Clostridia 7.93%
6.67% Negativicutes 4.43%
4.57% Bacilli 3.98%

24.76% Bacteroidales 35.32%

17.31% Fusobacteriales 15.42%

13.94% Spirochaetales 11.90%
6.71% Clostridiales 7.93%

6.67% Selenomonadales 4.43%

4.57% Lactobacillales 3.48%

16.69% Porphyromonadaceae 17.19%

13.09% Prevotellaceae 16.24%

11.70% Spirochaetaceae 11.90%

6.71% Fusobacteriaceae 11.09%

6.67% Veillonellaceae 4.43%

5.61% Leptotrichiaceae 4.32%

13.09% Porphyromonas 14.67%

12.43% Prevotella 14.16%

11.70% Treponema 11.90%

6.25% Fusobacterium 11.09%

5.60% Leptotrichia 4.32%

4.26% Streptococcus 3.10%

5.88% Porphyromonas gingivalis 11.01%

4.22% Prevotella intermedia 6.02%

3.52% Fusobacterium nucleatum_subsp._vincentii 5.76%
3.33% Treponema denticola 2.68%

3.11% Fusobacterium nucleatum_subsp._nucleatum 2.34%
3.09% Tannerella forsythia 2.32%

There were 26 samples that contained this species at greater
than 0.5% abundance, and only one of these samples was
derived from a healthy patient. The average relative abun-
dance of Mycoplasma faucium was 0.59% in all samples
(0.04% and 0.87% in samples from healthy patients and
patients with periodontal disease, respectively) and was up
to 4.85% in one diseased sample. Although this is a rare

bacterium in the normal microbiota of the human orophar-
ynx, some reports have identified this pathogen in brain
abscesses [64, 65]. Additionally, Liu et al. [61] characterized
the genomes of key players in the subgingival microbiota
in patients with periodontitis, including an unculturable
TM?7 organism. They also demonstrated that TM?7 organisms
were significantly enriched in samples from patients with
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FIGURE 1: Microbial compositions of samples from healthy patients and patients with periodontitis at the genus level. The abundances were
calculated by averaging the relative abundances in samples from healthy patients and patients with periodontitis. Only genera with > 0.5%
abundance in at least one sample were included. Genera with significant differences in abundance between sample groups are indicated with

asterisks () (p value < 0.0001).

periodontitis. In our study, 49 of 76 samples contained TM7
bacteria at greater than 1% abundance (average abundance
of 2.1% in all samples). In samples from healthy patients
and patients with periodontitis, the average abundances
were 3.2% and 1.49%, respectively. However, significant
enrichment was not observed in samples from patients with
periodontitis. Furthermore, we found that the subspecies
Fusobacterium nucleatum subsp. polymorphum, which is
related to periodontal disease and is the member of the orange
cluster described by Socransky et al. [14], is more abundant in
healthy patients. In our results, the average abundances were
3.52% and 1.13% in samples from healthy patients and patients
with periodontitis, respectively. This situation also can be
observed in other three species, including Campylobacter
gracilis, Campylobacter rectus, and Campylobacter showae.
This discrepancy could be explained by geographic variability
[66] or by differences in the depths of the pockets sampled
[14], as well as the sample size and the DNA analytic bias [67].
Finally, Spearman’s rank correlation coefficient was computed

to assess association between each pair of species associated
with periodontal disease. Figure 3 shows that a very strong
relationship exhibited among species Porphyromonas gingi-
valis, Treponema denticola, and Tannerella forsythia.

In our study, there are 25 bacterial species with signif-
icantly different abundances between healthy patients and
patients with periodontitis. The relationships of these species
to pocket depth and clinical attachment loss were examined.
Figure 4 shows that three species, Porphyromonas gingivalis,
Treponema denticola, and Tannerella forsythia, exhibited a
very strong relationship with pocket depth and clinical
attachment loss. For instance, the three species increased
in abundance with increasing pocket depth and clinical
attachment loss. The abundances of those species among
different level of pocket depth and clinical attachment loss
were different significantly. However, it should be noted that
not only oral microorganisms but also others factors, such
as supragingival plaque, would affect the pocket depth and
clinical attachment loss [68].
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* Streptococcus sanguinis
Alloprevotella tannerae
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* Fusobacterium sp._HOT_204
Porphyromonas catoniae

* Capnocytophaga granulosa
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Streptococcus cristatus
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« Gemella morbillorum
Streptococcus dentisani

* Campylobacter showae
Alloprevotella sp._oral_taxon_473
Corynebacterium matruchotii
Dialister invisus

Leptotrichia sp._oral_taxon_225

* Capnocytophaga sp._oral_taxon_412
Capnocytophaga sputigena

« Granulicatella adiacens

Prevotella pallens

Streptococcus sp._oral_taxon_058

* Prevotella sp._oral_taxon_300
Aggregatibacter segnis
Capnocytophaga sp._oral_taxon_326
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Leptotrichia hongkongensis
Campylobacter concisus

Leptotrichia sp._oral_taxon_392

Species
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FIGURE 2: Microbial compositions of samples from healthy patients and patients with periodontitis at the species level. The abundances were
calculated by averaging the relative abundances in samples from healthy patients and patients with periodontitis. Only species with > 0.5%
abundance in at least one sample are shown. Species with significant differences in abundance between sample groups are indicated with

asterisks () (p value < 0.0001).



8 BioMed Research International
&
\)
S 0&0 &

o & s

& @ K 2

& & &b » @Q’ & gﬁ & o %9 \\ s‘*e'

& & qu S & 5 c}
> hS '0 QS/ QWX 6"
YO R AR o - < Q )
E nuc. ss nucleatum

C. rectus .. ‘ ‘ . o 08
P. intermedia . o . . 0.6
P. gingivalis .. ‘ . 0.4

T. forsythia .' . [ ) 0.2

T. denticola . . 0

E nuc. ss polymorphum .. .

C. showae . 02
P. micra . 04
E nuc. ss vincentu -0.6
C. grac111s 08

P. mgrescens

FIGURE 3: The relationships among species were evaluated using Spearman’s rank correlation coefficient.

Porphyrﬂmonas gmgwahs Treponema denticola Tannerella forsythlu
p<00001 "~ p<0.0001 p<00001 B
g 12%- 12% - - - - - 12%-
£ ! N -
'g 9% - 9% - -l - 9%~
2 ! IR
S 6%- 6% - 6%-
& .
o ! .
g 3%- 3% 3% .
2 - . - . . | - - . .
<3 <3
<3 >7 Pocket depth (mm)
Porphyromonas gingivalis Treponema dentzcola Tannerella forsythia
15% - - : 15% - - 15% o
. [ p<00001 - p<00001 _ p.<0.0001
312%-—‘ 12%-—‘——‘ 12% - « oot
3 - NS
g o e
§9%- 9% - - - 9% - - or - -
<
%6%- 6% it 6% =+ ettt Dl
e ! — -.. —~—mmBAR

<3

<3 3 4 5 6
Clinical attachment loss (mm)

>7

FIGURE 4: Relationships of the average abundance of three species to selected pocket depths and clinical attachment loss levels. Significance
of differences among pocket depth levels was tested using the Kruskal-Wallis test.

3.3. Diversity of Bacterial Community Profiles. To evaluate
the alpha diversity of the microbial communities, Shannon
index curves scores and richness metrics (Observed, Chaol,
and ACE) were applied, as shown in Figure 5. As depicted
in Figure 5(a), the Shannon diversity index curves clearly
reached plateau levels after the sequence number exceeded
5,000 in all three health statuses, indicating that the microbial

composition for each health status was well represented by
the sequencing depth. As shown in Figure 5(b), the average
richness measured by Observed, Chaol, and Ace indexes
was higher in samples from patients with periodontitis than
in samples from healthy individuals; however, these results
were in contrast to the results from the Shannon diversity
index. Thus, the relative abundance of each microbe was
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FIGURE 5: (a) The sequencing depths measured by average scores from the Shannon index reached a plateau when the sequence number
exceeded 5,000. (b) Alpha-diversity metrics (richness and Shannon index) were employed to measure the microbial communities of samples
from healthy patients and patients with periodontitis. The average richness of microbes was higher in patients with periodontal disease than
in healthy patients; however, the microbial communities of healthy patients exhibited higher Shannon indexes.

more balanced in samples from healthy individuals than in
samples from patients with periodontal disease, and there
were more microbes with low relative abundance in samples
from patients with periodontitis.

To further explore the relationships between bacterial
communities in healthy patients and patients with peri-
odontal disease, PCoA was performed (Figure 6(a)). Analysis
of beta diversity based on the weighted UniFrac distances
showed greater concentration in diseased samples than in
healthy samples. In other words, the microbial composi-
tions of diseased samples were more similar to each other.
As shown in Figure 6(b), PCA of microbial communities
revealed that the core genera in healthy samples included
Streptococcus, Capnocytophaga, Campylobacter, Veillonella,
Alloprevotella, TM7_[G-1], Leptotrichia, and Selenomonas,
whereas those in samples from patients with periodontitis
were Filifactor, Treponema, Fretibacterium, Porphyromonas,
and Tannerella.

3.4. Machine Learning and Feature Selection. Before applying
the machine learning algorithm to classify samples, it is
necessary to select the features from the samples and train
prediction models. Table 4 lists features with difference scores

p < LE-07. Based on significant differences between healthy
patients and patients with periodontitis, we selected the top
10 microbes with more information as features. In total,
1,023 combinations of selected features were generated by our
algorithm. All feature combinations were evaluated by SVM,
random forest, logical regression, and deep learning machine
learning methods, and the average accuracies were 0.88, 0.93,
0.85, and 0.90, respectively. Figure 7 shows the performance
of each machine learning method. In general, the accuracy
of prediction increased slightly with the number of features
used, except in logistic regression. From our results, we
found that random forests had better predictive ability than
the other methods. Applying combinations consisting of
Peptoniphilaceae sp. oral taxon 113, Streptococcus sanguinis,
Mollicutes sp. oral taxon 906, Aggregatibacter actinomycetem-
comitans, Porphyromonas gingivalis, Peptostreptococcaceae sp.
oral taxon 950, and Lachnospiraceae sp. oral taxon 500
or Stomatobaculum sp. oral taxon 373, Desulfobulbus sp.
oral taxon 041, Peptoniphilaceae sp. oral taxon 113, Strep-
tococcus sanguinis, Aggregatibacter actinomycetemcomitans,
Porphyromonas gingivalis, and Leptotrichia sp. oral taxon 218
showed that random forests could predict the health status of
samples accurately. The feature combinations having average
accuracies of more than 0.94 are reported in Table 5.
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FIGURE 6: (a) Principal coordinate analysis (PCoA) with weighted UniFrac distance matrixes for bacterial communities associated with the
three health statuses. (b) Principal component analysis (PCA) of the dominant genera between samples from healthy patients and patients
with periodontitis. Only genera with > 1% mean relative abundance across all samples are shown.

TABLE 4: Features with significant differences between healthy patients and patients with periodontitis. Correlation coefficients and p values
were determined by Spearman’s rank correlation coefficient and Kruskal-Wallis tests, respectively. Negative correlations indicated that the
features were observed more often in patients with periodontitis than in healthy patients.

No Feature (Species) Correlation coefficient p

1 Stomatobaculum sp._oral_taxon_373 -0.766029754 3.27E-11
2 Desulfobulbus sp._oral_taxon_041 -0.74877058 8.90E-11
3 Peptoniphilaceae sp._oral_taxon_113 -0.723418056 3.73E-10
4 Streptococcus sanguinis 0.71684624 5.36E-10
5 Mollicutes sp._oral_taxon_906 -0.709369416 8.08E-10
6 Aggregatibacter actinomycetemcomitans -0.686608198 2.74E-09
7 Porphyromonas gingivalis -0.683993685 3.15E-09
8 Peptostreptococcaceae sp._oral_taxon_950 -0.681489164 3.59E-09
9 Lachnospiraceae sp._oral_taxon_500 -0.670324546 6.43E-09
10 Leptotrichia sp._oral_taxon_218 -0.666642231 7.77E-09
1 Bosea vestrisii 0.665468802 8.26E-09
12 Filifactor alocis -0.656797473 1.29E-08
13 Mycoplasma faucium -0.641322841 2.79E-08
14 Prevotella sp._oral_taxon_304 -0.638587976 3.20E-08
15 Fretibacterium sp._oral_taxon_359 -0.632290825 4.36E-08
16 Bergeyella sp._oral_taxon_322 0.630961524 4.65E-08
17 Tannerella forsythia -0.628346704 5.28E-08
18 Peptostreptococcus indolicus -0.626504998 5.77E-08
19 Johnsonella sp._oral_taxon_166 -0.622396393 7.04E-08
20 Peptostreptococcaceae [Eubacterium]_saphenum -0.616735679 9.24E-08
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TABLE 5: Feature combinations and their predictive accuracies with different machine learning methods. Only feature combinations with
more than 0.94 average accuracy are shown. DL, RF, and LR represent deep learning, random forests, and logistic regression, respectively.

Feature combination DL RF SVM LR Average accuracy

Stomatobaculum sp._oral_taxon_373
Peptoniphilaceae sp._oral_taxon_113
Desulfobulbaceae sp._oral_taxon_041
Peptoniphilaceae sp._oral_taxon_113
Aggregatibacter actinomycetemcomitans 0.933 0.960 0.973 0.947 0.953
Lachnospiraceae sp._oral_taxon_500

Leptotrichia sp._oral_taxon_218

0.967 0.973 0.960 0.933 0.958

Stomatobaculum sp._oral_taxon_373
Streptococcus sanguinis 0.933 0.973 0.960 0.947 0.953

Aggregatibacter actinomycetemcomitans

Desulfobulbaceae sp. _oral_taxon_041

Mollicutes sp._oral_taxon_906

Porphyromonas gingivalis 0.973 0.967 0.933 0.927 0.950
Aggregatibacter actinomycetemcomitans

Peptostreptococcaceae sp._oral_taxon_950

Stomatobaculum sp._oral_taxon_373

Streptococcus sanguinis

Mollicutes sp._oral_taxon_906 0.947 0.953 0.907 0.987 0.948
Porphyromonas gingivalis

Aggregatibacter actinomycetemcomitans

Stomatobaculum sp._oral_taxon_373
Peptoniphilaceae sp._oral_taxon_113

0.960 0.967 0.947 0.913 0.947
Aggregatibacter actinomycetemcomitans
Leptotrichia sp._oral_taxon_218
Desulfobulbaceae sp._oral_taxon_041
Peptoniphilaceae sp._oral_taxon_113 0.933 0.973 0.933 0.947 0.947

Aggregatibacter actinomycetemcomitans
Leptotrichia sp._oral_taxon_218

Stomatobaculum sp._oral_taxon_373

Peptoniphilaceae sp._oral_taxon_113 0.967 0.933 0.953 0.933 0.947
Mollicutes sp._oral_taxon_906

Peptoniphilaceae sp._oral_taxon_113

Streptococcus sanguinis 0.960 0.987 0.867 0.967 0.945

Aggregatibacter actinomycetemcomitans

Stomatobaculum sp._oral_taxon_373
Aggregatibacter actinomycetemcomitans 0.920 0.947 0.967 0.947 0.945
Peptostreptococcaceae sp._oral_taxon_950

Stomatobaculum sp._oral_taxon_373
Peptoniphilaceae sp._oral_taxon_113

0.967 0.967 0.953 0.893 0.945
Porphyromonas gingivalis
Aggregatibacter actinomycetemcomitans
According to previous studies, Caruana et al. [69,70] pro-  times and large amounts of memory, particularly when the

posed that the random forest method showed better accuracy ~ hidden layer size was increased.

in high-dimensional and large-scale data than neural nets,

SVM, and logistic regression. In this study, we found that the 4, Conclusions

random forest method was more suitable for small-scale data

than other methods. In contrast, deep learning approaches =~ With the development of high-throughput DNA sequencing
led to good performance, but required long computation  technology, the limitations associated with difficult culture of
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many microbes that populate the oral cavity can be overcome,
facilitating the analysis of bacterial community composition.
Using 16S rRNA sequencing of subgingival samples from 50
individuals with periodontitis and 26 periodontally healthy
controls, we determined the diversity of and differences in
community compositions. Moreover, we identified microbes
associated with good health and periodontal disease and
provided a machine learning method for finding patterns
and making predictions for oral microbiota associated with
periodontal disease.

Our results showed that there was a higher diversity of
microbes in samples from patients with periodontal disease
than in samples from healthy patients. Importantly, the core
microbes in healthy patients were different significantly from
those in patients with periodontitis. We also found that
bacterial communities associated with healthy and diseased
states were highly different in PCA and PCoA, and the
compositions of microorganisms were more similar to each
other in samples from patients with periodontal disease than
in samples from healthy individuals.

We proposed a novel feature selection method and
investigated the potential of machine learning approaches
for determination of health status based on oral metage-
nomics data. By using nonparametric Kruskal-Wallis tests
to assess the significance of each microorganism, we selected
significant microbes to generate prioritized feature combina-
tions by our algorithm. The performances of four machine
learning approaches were evaluated with these feature com-
binations, and random forests showed the best performance
(average accuracy of 0.93 from 1,023 feature combinations),
followed by deep learning, SVM, and logistic regression.
Using machine learning methods, training models could
accurately predict the health status of samples by examining
fewer features. According to our observations, the accuracy
of prediction generally increased slightly with the number
of features used, except for logistic regression. Notably,
certain combinations composed of fewer features showed
better accuracy than combinations composed of all selected
features. These combinations of features may only apply to
our dataset. However, the results implied that a few related
features may have better predictive ability than multiple

BioMed Research International

independent features. Therefore, in order to improve the
prediction accuracy of the model, it is essential to identify
the most informative features. Due to limitations in funding,
time, and ethical considerations, it is not easy to obtain large
numbers of oral samples from patients with periodontitis.
Although insufficient and incomplete samples could easily
lead to bias and variance in training models, our study still
provided an important basis for further studies.

Periodontitis is a chronic inflammatory disease involving
complex interactions between the oral microorganisms and
the host immune response. In addition to the individual
species associated with pathogenesis, the system-level mech-
anisms underlying the transition from a healthy state to a
diseased state are key points for studying periodontal disease.
Thus, in our future studies, we aim to elucidate the global
genetic, metabolic, and ecological changes associated with
periodontitis and identify the pathogenic features of con-
structing machine learning models. Rapid molecular tech-
niques and machine learning methods capable of identifying
periodontal bacteria with great accuracy may eventually
provide improved classification and diagnosis of various
types of periodontal diseases and aid significantly in clinical
decision-making.
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