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Background: This study aimed to investigate the feasibility of using circulating tumor cells (CTCs), 
peripheral blood cells (PBCs), and circulating cell-free DNA (cfDNA) as biomarkers of immune checkpoint 
inhibitor treatment response in patients with advanced non-small cell lung cancer (NSCLC).
Methods: We recruited patients diagnosed with advanced NSCLC who received pembrolizumab or 
atezolizumab between July 2019 and June 2020. Blood was collected before each treatment cycle (C1–C4) to 
calculate absolute neutrophil count (ANC), neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), 
and platelet-to-lymphocyte ratio (PLR). CTCs, isolated using the CD-PRIMETM system, exhibited EpCAM/
CK+/CD45− phenotype in BioViewCCBSTM. The cfDNA was extracted from plasma at the beginning of C1 
and C4.
Results: The durable clinical benefit (DCB) rate among 83 response-evaluable patients was 34%. CTC, 
PBC, and cfDNA levels at baseline (C1) were not significantly correlated with treatment response, although 
patients with DCB had lower CTC counts from C2 to C4. However, patients with low NLR, dNLR, PLR, 
and cfDNA levels at C1 had improved progression-free survival (PFS) and overall survival (OS). Patients 
with decreased CTC counts from C1 to C2 had higher median PFS (6.2 vs. 2.3 months; P=0.078) and OS 
(not reached vs. 6.8 months, P=0.021) than those with increased CTC counts. Low dNLR (≤2.0) at C1 and 
decreased CTC counts were independent factors for predicting survival.
Conclusions: Comprehensive analysis of CTC, PBC, and cfDNA levels at baseline and during treatment 
demonstrated they might be biomarkers for predicting survival benefit. This finding could aid in risk 
stratification of patients with advanced NSCLC who are undergoing immune checkpoint inhibitor 
treatment.
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Introduction

Treatment with immune checkpoint inhibitors (ICIs) has 
improved the survival of patients with advanced non-small 
cell lung cancer (NSCLC), especially those without driver 
mutations (1-4). The combination of ICI and targeted 
therapeutic agents or cytotoxic chemotherapeutics has 
improved durable antitumor responses in a subset of 
patients with potentially refractory metastatic NSCLC 
(5-8). However, some patients do not respond to ICI. 
Programmed death-ligand 1 (PD-L1) on tumor cell 
surface, with a tumor proportion score (TPS) of ≥50%, is 
a reliable biomarker for ICI treatment response. However, 
the predictive value of PD-L1 may be poor among patient 
subgroups with TPS <50% (9). Therefore, studies are 
ongoing to identify additional predictive tumor-based 
markers for ICI response, such as tumor-infiltrating 
lymphocytes, microsatellite instability (MSI), mismatch-
repair deficiency, and tumor mutational burden (TMB) (10). 
However, PD-L1 expression on the tumor cell is the only 
biomarker for ICI response used in routine practice (11), 
and other potential candidates are not currently clinically 
relevant.

Several types of liquid biopsy have been considered as 
potential sources of biomarkers for ICI treatment response. 
Liquid biopsy is a minimally invasive and easily accessible 
method that can aid in early diagnosis, monitoring treatment 
responses, and predicting survival in patients with lung cancer. 
Circulating tumor cells (CTCs), which can promote cancer 
metastasis, can be either directly or indirectly associated 
with antitumor or pro-tumor cell populations of the 
immune system, including various lymphocyte subtypes (12).  
Furthermore, CTCs released from the primary tumor 
survive in the blood microenvironment by interacting with 
other peripheral blood cells (PBCs), including neutrophils, 
platelets, and macrophages (13). Inflammation contributes to 
cancer pathogenesis and progression (14). Peripheral blood 
markers of systemic inflammation such as absolute neutrophil 
count (ANC) (15), neutrophil-to-lymphocyte ratio (NLR) 
(16,17), derived NLR (dNLR) (15,17), and platelet-to-
lymphocyte ratio (PLR) (16), are considered potential 
biomarkers for predicting the survival of patients with cancer. 
Analysis of circulating cell-free tumor DNA (ctDNA) levels 
can provide real-time information regarding tumor cell 
death because ctDNA is released from dying cancer cells 
and is rapidly cleared from the blood (half-life of 2 h) (18). 
Additionally, ctDNA is a better cancer biomarker than serum 
protein biomarkers because tumor-specific mutations can be 

detected with it (19).
Previous studies on individual blood-based biomarkers 

for ICI response have yielded promising candidates with 
marked prognostic and predictive value. Despite liquid 
biopsy having several advantages compared with tumor 
biopsy, validated and consistent biomarkers in liquid biopsy 
samples have not yet been identified for cancer. This could 
be attributed to several factors: limited availability of robust 
technologies, decreased reproducibility, lack of standardized 
sample preparation methods, timing of sample collection, 
and types of liquid samples (20). Hence, there is a need 
to develop a comprehensive one-stop analysis method for 
various blood sources. This study aimed to investigate the 
potential of CTCs, PBCs, and circulating cell-free DNA 
(cfDNA) in liquid biopsy as predictive biomarkers for ICI 
treatment response in patients with advanced NSCLC. 
We present the following article in accordance with the 
STROBE reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-21-100). 

Methods

Patients and study design

This study utilized a prospective design and involved 
collection of blood samples from patients receiving anti-
PD-1 or anti-PD-L1 treatment for advanced NSCLC. The 
inclusion criteria were as follows: patients aged >18 years 
with stage IIIB–IV NSCLC receiving pembrolizumab or 
atezolizumab at the Chonnam National University Hwasun 
Hospital between July 2019 and June 2020. Patients were 
included irrespective of the number of previous therapies or 
PD-L1 expression levels (Figure 1A). An additional inclusion 
criterion was the presence of at least one measurable lesion 
that was not previously irradiated; the lesion was defined 
using the Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1 (21).

The trial was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the institutional review board of the relevant 
institution (No.: CNUHH-2019-108) and informed 
consent was taken from all individual participants.

Blood sample collection, processing, treatment, and 
assessment

The study flowchart is shown in Figure 1A. Complete blood 
cells were analyzed to record the number of PBCs such as 
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Figure 1 Enrolled patients, study design (blood sample collection), and CTC enrichment and identification. (A) Flow chart of the study. (B) 
CTCs were enriched from the PBMC layer using the CD-PRIMETM system. CTCs can be captured using a specific immunofluorescence 
staining system (BioViewCCBSTM). CTCs were identified as EpCAM/CK+ (epithelial cell surface markers) and CD45− cells. (C) CTCs 
can form a cluster with CD45+ leukocytes. CTC, circulating tumor cell; NSCLC, non-small cell lung cancer; PBC, peripheral blood cell; 
cfDNA, circulating cell-free DNA; ICI, immune checkpoint inhibitor; C, cycle; CT, computed tomography; PBMC, peripheral blood 
mononuclear cell; FAST, fluid-assisted separation technology; DAPI, 4',6-diamidino-2-phenylindole; EpCAM, epithelial cell adhesion 
molecule; CK, cytokeratin; WBC, white blood cell.
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white blood cells (WBCs), ANC, NLR, dNLR, and PLR 
before each ICI administration cycle [cycles 1–4 (C1 to 
C4)]. Additional blood samples were prospectively collected 
in K2-EDTA tubes (BD, NJ, USA) to analyze CTCs and 
cfDNA after C1–C4. Whole blood samples (20 mL) were 
collected and centrifuged to obtain plasma and peripheral 
blood mononuclear cells (PBMCs). Plasma and PBMC 
samples were stored to extract cfDNA and enrich CTCs, 
respectively, until the samples were transported to central 
laboratories (Clinomics, Daejeon, South Korea for CTC 
and Asan Medical Center, Seoul, South Korea for cfDNA).

Blood samples were subjected to centrifugation at 
1,000 g for 10 min to obtain plasma. Next, the plasma was 
transferred to a new 2 mL centrifuge tube and subjected to 
centrifugation at 16,000 g and 4 ℃ for 10 min to remove 
cellular debris. The clear plasma was stored in 1 mL 
aliquots at −80 ℃ until use. To prevent DNA contamination 
from blood cells, the plasma was isolated within 2 h of 
blood collection. PBMCs were isolated using density-
gradient centrifugation with Ficoll-PaqueTM PLUS (GE 
Healthcare, Chicago, USA) (d =1.077 g/mL) following 
the manufacturer’s instructions. In brief, an equal volume 
of Ficoll-PaqueTM PLUS solution was added to the blood 
sample after removing the plasma. The mixture was 
centrifuged at 800 g for 20 min. The PBMC fraction was 
recovered from the separated blood cell fraction. PBMCs 
were cryopreserved in liquid nitrogen with fetal calf serum 
(Invitrogen) containing 10% dimethyl sulfoxide (Thermo 
Fisher Scientific) and stored at −80 or −140 ℃ (liquid 
nitrogen) until further analyses.

Patients received ICI once every three weeks. They 
were intravenously administered with pembolizumab 
and atezolizumab at fixed doses of 200 and 1,200 mg, 
respectively. Treatment continued until the patient either 
experienced a serious adverse event, had confirmed disease 
progression, or withdrew informed consent. Computed 
tomography (CT) was performed to analyze the tumor at 
baseline and every three cycles thereafter. Clinical responses 
to the treatment were defined according to RECIST 
(version 1.1) (21). In cases where the investigator expected 
further clinical benefits, patients could continue treatment 
beyond radiological disease progression.

CTC enrichment, isolation, and identification

The CD-PRIMETM system (Clinomics Inc., Ulsan, 
Korea), comprising CD-FASTTM solo (disc) and CD-
OPR-1000TM (disc operating machine), was used for CTC 

enrichment (22-25). CTCs were isolated on the membrane 
by rotating the disc using a programmed spin program. 
Immunofluorescent (IF) staining and CTC identification 
were performed on the fluid-assisted separation technology 
(FAST) disc membrane (Figure 1B). Isolated CTCs on the 
FAST disc membrane were fixed with 4% formaldehyde for 
20 min at room temperature (15–25 ℃) and permeabilized 
with 0.1% Triton-X 100 in phosphate-buffered saline 
(PBS, pH 7.4) for 5 min. Next, CTCs were washed and 
blocked with 10 μg/mL IgG in PBS. The CTCs were then 
stained with the following antibody mixture: fluorescein 
isothiocyanate (FITC)-conjugated anti-cytokeratin (CK) 
(CAM5.2; BD, NJ, USA), Alexa 488-conjugated anti-
pan-CK (AE1/AE3; eBioscience, CA, USA), and FITC-
conjugated anti-epithelial cell adhesion molecule (EpCAM) 
(9C4; BioLegend, CA, USA). The cells were incubated 
in the antibody mixture, which was added to the filter, for 
20 min. The CTCs were washed with 0.01% Tween 20 
in PBS, and the nuclei were stained with 4,6-diamidino-
2-phenylindole (DAPI). To visualize CTCs on the filter, 
fluorescent images were captured using a fluorescence 
microscope (Bioview, Rehovot, Israel) at 40× magnification. 
The CTCs were identified according to the following 
criteria: phenotype, EpCAM/CK+, CD45–, and DAPI+; 
and diameter, >8 μm. The number of CTCs was counted 
(Figure 1B,C).

Preparation of cfDNA

The cfDNA was isolated from 2.8–6.0 mL (mean 4.4 mL; 
maximized plasma volume available) plasma via affinity-based 
binding to magnetic beads following the manufacturer’s 
instructions (QIAamp MinElute cfDNA kit, QIAGEN, 
Hilden, Germany). The cfDNA was eluted in 50 μL of 
ultraclean water, followed by measuring its quantity using 
a Qubit™ dsDNA HS Assay kit (Thermo Fisher Scientific, 
MA, USA) and quality using a Bioanalyzer 2100 (Agilent 
Technologies, CA, USA).

Statistical analyses

Baseline characteristics were analyzed in a response-
evaluable population, which was defined as patients who 
received at least one dose of ICI and for whom response 
evaluation was available (Figure 1A). The dNLR was 
calculated as follows: dNLR = ANC/(WBC − ANC) (26). 
The comparative analysis of continuous and categorical 
variables between groups was performed using the  
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Mann-Whitney U-test and Pearson’s chi-square or Fisher’s 
exact tests, respectively. The cut-off values for ANC, NLR, 
dNLR, PLR, and cfDNA at C1 were calculated based on 
analyses of receiver operating characteristic (ROC) curves 
and area under the curve (AUC). The optimal cut-off value 
was determined as the point at which the Youden index was 
maximized by the ROC curve. 

The study endpoints were durable clinical benefit (DCB), 
progression-free survival (PFS), and overall survival (OS). 
DCB was defined as survival without disease progression 
[complete response (CR) + partial response (PR) + stable 
disease (SD)] at six months (27). PFS was defined as the 
time (in months) from the first day of ICI treatment to the 
day of objective disease progression or death, irrespective 
of whether the patient was withdrawn from therapy or 
received another anticancer therapy before progression. OS 
was measured from the day of the first ICI administration to 
the day of death or the last day of follow-up. Survival times 
were estimated for each group using the Kaplan-Meier 
method. Univariable and multivariable analyses of survival 
were performed using a Cox proportional hazards model. 
All statistical analyses were performed using SPSS ver. 25 
(IBM Corp., NY, USA) and MedCalc ver. 19.6 (MedCalc 
Software Ltd., Ostend, Belgium). The differences were 
considered significant at P<0.05.

Results

Patient characteristics and efficacy of ICI treatment

Clinical characteristics of the patients and classification of 
patients based on ICI treatment response are summarized 
in Table 1. The objective response and DCB rates in 
83 response-evaluable patients were 19% and 34%, 
respectively. Patients with DCB were associated with 
higher proportions of well-known favorable factors for 
immunotherapy, including male sex, smoking history, 
presence of wild-type EGFR, and PD-L1 TPS ≥50%, 
than patients without DCB (non-durable benefit, NDB). 
Treatment modalities before ICI treatment and duration 
between previous therapy and ICI treatment were similar 
between patients with DCB and those with NDB. Most 
patients were prescribed with ICI as second- or third-line 
treatment.

The median PFS and OS of the study cohort were  
2.2 months [95% confidence interval (CI): 1.7–2.6] and 
9.2 months (95% CI: 7.2–11.1), respectively. The median 
follow-up duration was 7.3 months (95% CI: 5.5–9.1). 

Immune-related adverse events developed in 13 patients 
[thyroiditis (n=7), skin eruption (n=2), adrenal insufficiency 
(n=2), and pneumonitis (n=2)]. At the cut-off date,  
15 patients (18%) were receiving ICI treatment and two 
discontinued ICI treatment because of adverse events (grade 
3 pneumonitis and adrenal insufficiency).

CTC count as a predictive biomarker for ICI treatment 
response

The median CTC count per 7.5 mL at baseline (C1) was 4.6 
(range, 0.0–58.9) in the study cohort. The median CTC count 
at C1 was not significantly different based on tumor stage (4.8 
for stage IVA vs. 5.4 for stage IVB; P=0.390), brain metastasis 
(4.6 for absent vs. 5.2 for present; P=0.568), and ICI 
treatment response (5.0 for DCB vs. 4.6 for NDB; P=0.935). 
However, patients with DCB had lower CTC counts 
from C2 to C4 of ICI treatment. In contrast, patients with 
NDB had higher CTC counts from C2 to C4 (Figure 2A).  
Additionally, the highest differences in median CTC counts 
between the DCB and NDB groups were observed at the 
initiation of C2 (Figure 2B). The number of patients with 
decreased CTC counts at C2 (compared with those at C1) 
was higher in the DCB group than in the NDB group (57% 
vs. 34%, P=0.081; Table S1).

The median PFS (1.9 vs. 2.3 months; P=0.373) and OS 
(9.1 vs. 10.6 months; P=0.353) were similar between the two 
groups classified based on median CTC counts at C1 (below 
vs. above). However, the median PFS (6.7 vs. 2.3 months; 
Figure 2C) and OS [not reached (NR) vs. 6.8 months;  
Figure 2D] of patients with decreased CTC counts at C2 
(compared with those at C1) was significantly higher than 
that of those with increased CTC counts at C2 was.

PBC counts at baseline and during treatment as a potential 
biomarker for ICI treatment response

The values of ANC, NLR, dNLR, and PLR at C1 were not 
significantly different between the DCB and NDB groups. 
However, patients with DCB had significantly lower values 
of ANC, NLR, dNLR, and PLR from C2 to C4 than those 
with NDB (Figure 3A,B,C,D).

Patients were divided into two groups based on the cut-
off value for each component of PBCs at C1, as determined 
from the ROC analysis (ANC, count =4.3×103, AUC 
=0.608, P=0.102; NLR, count =4.0, AUC =0.603, P=0.105; 
dNLR, count =2.0, AUC =0.637, P=0.028; PLR, count 
=210, AUC =0.613, P=0.087). Patients with lower values 

https://cdn.amegroups.cn/static/public/TLCR-21-100-Supplementary.pdf
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Table 1 Patient characteristics and classification based on immune checkpoint inhibitor treatment response

Variables Total (n=83) NDB (n=55) DCB (n=28) P value

Age (years) 65 [42–82] 64 [42–81] 65 [54–82] 0.368

Sex (female/male) 21 [25]/62 [75] 17 [31]/38 [69] 4 [14]/24 [86] 0.100

Smoking  
(never/current/previous) 

17 [21]/29 [35]/37 [45] 15 [27]/16 [29]/24 [44] 2 [7]/13 [46]/13 [46] 0.071

Pack years 35 [1–105] 30 [3–105] 40 [1–100] 0.343

Histology [ADC/SQC/
NSCLC (NOS)/SQC+SCLC]

52 [63]/24 [29]/6 [7]/1 [1] 36 [66]/16 [29]/3 [6]/0 [0] 16 [57]/8 [29]/3 [11]/1 [4] –

Stage (IIIB/IVA/IVB) 8 [10]/34 [41]/41 [49] 4 [7]/25 [46]/26 [47] 4 [14]/9 [32]/15 [54] –

Brain metastasis 22 [27] 14 [26] 8 [29] 0.761

EGFR mutation (Ex19del/
L858R/S768I/wild-type/NA)

8 [10]/7 [8]/1 [1]/50 [60]/17 [21] 8 [15]/6 [11]/1 [2]/28 [51]/12 [22] 0 [0]/1 [4]/0 [0]/22 [79]/5 [18] –

Activating mutation/ 
wild-type 

16 [24]/50 [76] 15 [35]/28 [65] 1 [4]/22 [96] 0.006

ALK translocation [positive/
negative/NA]

3 [4]/61 [74]/19 [23] 2 [4]/40 [73]/13 [24] 1 [4]/21 [75]/6 [21] 0.850

PD-L1 IHC (TPS)

22C3 (n=67): ≥50%/<50% 28 [42]/39 [58] 12 [27]/32 [73] 16 [70]/7 [30] 0.001

SP263 (n=74): 
≥50%/<50% 

20 [27]/54 [73] 6 [12]/44 [88] 14 [58]/10 [42] 0.000

SP142 (n=31): ≥5%/<5% 7 [23]/24 [77] 2 [10]/18 [90] 5 [46]/6 [54] 0.067

Steroid: Yes 7 [8] 6 [11] 1 [4] 0.414

Antibiotics: Yes 12 [15] 9 [16] 3 [11] 0.743

Previous treatment  
(just before ICI)

0.255

Chemotherapy 56 [68] 35 [64] 21 [75]

TKI (EGFR or ALK) 5 [6] 5 [9] 0 [0]

RT  
(radical/CCRT/palliative)

21 [25] 15 [27] 6 [22]

Previous RT within 6 
months 

35 [42] 24 [44] 11 [39] 0.704

Previous RT dose (Gy) 30 [15–97] 30 [15–72] 30 [15–97] 0.625 

None 1 [1] 0 [0.0] 1 [4] 

Duration between previous 
therapy and ICI (months)

1 [0–15] 1 [0–7] 1 [0–15] 0.644

Treatment line 2 [1–11] 3 [2–11] 2 [1–4]

First/second/third/ 
fourth–eleventh

2 [2]/42 [51]/18 [22]/21 [25] 0 [0]/25 [46]/10 [18]/20 [36] 2 [7]/17 [61]/8 [29]/1 [4] 

First–third/fourth or higher 62 [75]/21 [25] 35 [64]/20 [36] 27 [96]/1 [4] 

Drugs 

Pembrolizumab 18 [22] 6 [11] 12 [43]

Atezolizumab 65 [78] 49 [89] 16 [57]

Values are presented as median [range] or number [%]. NDB, non-durable benefit; DCB, durable clinical benefit; ADC, adenocarcinoma; 
SQC, squamous cell carcinoma; NSCLC, non-small cell lung carcinoma; NOS, not otherwise specific; SCLC, small cell lung carcinoma; 
NA, not applicable; IHC, immunohistochemistry; TPS, tumor proportional score; ICI, immune checkpoint inhibitor; TKI, tyrosine 
kinase inhibitor; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; RT, radiotherapy; CCRT, concurrent 
chemoradiotherapy.
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Figure 2 CTC count as a predictive biomarker for ICI treatment response. (A,B) Dynamic changes in CTC counts from C1 to C4. (C,D) 
PFS and OS analyses based on changes in CTC counts from C1 to C2. CTC, circulating tumor cell; ICI, immune checkpoint inhibitor; 
NDB, non-durable benefit; DCB, durable clinical benefit; PFS, progression-free survival; OS, overall survival; C, cycle.

Figure 3 Dynamic changes in the four components of PBCs during ICI treatment. (A) ANC, (B) NLR, (C) dNLR, and (D) PLR. PBCs, 
peripheral blood cells; NDB, non-durable benefit; DCB, durable clinical benefit; ANC, absolute neutrophil count; NLR, neutrophil-to-
lymphocyte count; dNLR, derived neutrophil-to-lymphocyte count; PLR, platelet-to-lymphocyte count; ICI, immune checkpoint inhibitor. 

of NLR, dNLR, and PLR at C1 had a significantly higher 
median PFS (NLR, 3.5 vs. 2.0 months; dNLR, 4.3 vs. 1.9 
months; PLR, 4.3 vs. 1.9 months; Figure 4A,B,C,D) and OS 

(NLR, 10.3 vs. 8.1 months; dNLR, 10.6 vs. 7.1 months; 
PLR, 10.6 vs. 7.7 months; Figure 5A,B,C,D). The values 
of ANC at C1 did not aid in distinguishing patients with 
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Figure 4 PFS analysis based on PBC count at baseline. (A) ANC, (B) NLR, (C) dNLR, and (D) PLR. PBC, peripheral blood cells; ANC, 
absolute neutrophil count; NLR, neutrophil-to-lymphocyte count; dNLR, derived neutrophil-to-lymphocyte count; PLR, platelet-to-
lymphocyte count; PFS, progression-free survival. 

Figure 5 OS analysis based on PBC counts at baseline. (A) ANC, (B) NLR, (C) dNLR, and (D) PLR. PBC, peripheral blood cell; OS, 
overall survival; ANC, absolute neutrophil count; NLR, neutrophil-to-lymphocyte ratio; dNLR, derived neutrophil-to-lymphocyte ratio; 
PLR, platelet-to-lymphocyte ratio.

survival benefit (PFS and OS) from the total population.

Correlation between clinical outcome and cfDNA levels at 
baseline and during treatment

Among 24 patients from whom DNA was extracted from 
the plasma, the median amount of extracted cfDNA at C1 

was 6.9 (range, 2.5–98.0) ng/mL. The median value of 
extracted cfDNA at C1 was not significantly different based 
on tumor stage (6.9 ng/mL for stage IVA vs. 6.9 ng/mL for 
stage IVB; P=0.558), brain metastasis (6.8 ng/mL for absent 
vs. 7.0 ng/mL for present; P=0.465), and ICI treatment 
response (4.4 ng/mL for DCB vs. 6.9 ng/mL for NDB; 
P=0.935; Figure 6A). However, patients with markedly 
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Figure 6 Correlation of cfDNA levels at baseline and during treatment, with clinical outcome. (A,B) cfDNA levels at baseline and during 
C1–C4 of treatment. (C,D) PFS and OS analyses based on cfDNA levels at C1. cfDNA, circulating cell-free DNA; NDB, non-durable 
benefit; DCB, durable clinical benefit; PFS, progression-free survival; OS, overall survival; C, cycle.

decreased cfDNA levels from C1 to C4 had DCB, whereas 
those with markedly increased cfDNA levels had NDB 
(Figure 6B).

The patients were classified into two groups based on 
the cut-off cfDNA value at C1 using the ROC analysis 
(5.8 ng/mL; AUC =0.694, P=0.089). The median PFS (4.0 
vs. 2.0 months; Figure 6C) and OS (NR vs. 6.8 months; 
Figure 6D) were higher in patients with a low cfDNA level 
at C1. However, the degree of relative change (increase or 
decrease) in cfDNA levels from C1 to C4 (ΔcfDNA) was 
not correlated with PFS or OS (Figure S1).

Multivariable analysis of survival and comprehensive 
monitoring of tumor response to immunotherapy

Multivariable analyses revealed that age, sex, smoking history, 
EGFR mutation status, PD-L1 expression, dNLR at C1, and 
CTC count change from C1 to C2 were significant factors 
for both PFS [hazard ratio (HR) =0.41, 95% CI: 0.18–0.92 
for dNLR; HR =0.33, 95% CI: 0.14–0.78 for CTC] and OS 
(HR =0.25, 95% CI: 0.07–0.92 for dNLR, and HR =0.27, 
95% CI: 0.08–0.93 for CTC) (Table S2).

The dNLR and CTC counts were used to stratify 
patients into the following three subgroups: Group 1 (n=12), 
dNLR at C1 ≤2.0 and CTC count decreased from C1 to 
C2 (C1 > C2); Group 2 (n=29), dNLR at C1 ≤2.0 and CTC 
count increased from C1 to C2 (C1 < C2) or dNLR at C1 

>2.0 and CTC count decreased from C1 to C2 (C1 > C2); 
and Group 3 (n=17), dNLR at C1 >2.0 and CTC count 
increased from C1 to C2 (C1 < C2). Multivariable analysis 
revealed that a lower dNLR at baseline and a decreased 
CTC count from C1 to C2 were associated with improved 
survival (Figure 7A,B). Kaplan-Meier analyses of PFS and 
OS revealed a clear difference among the three groups 
(Figure 7C,D).

Figure 7E,F shows representative examples of the 
comprehensive monitoring of tumor response using CTC 
and PBC count and cfDNA. These cases represent a linear 
correlation between blood-based biomarkers and tumor 
burden, especially extra-thoracic metastatic lesions (para-
aortic lymph nodes and liver in Figure 7E,F, respectively). 
Furthermore, CTC, PBC, and cfDNA exhibited dynamic 
and coherent changes from the early phase of treatment 
before CT response assessment.

Discussion

This study followed a prospective design and used blood 
samples obtained from patients receiving ICI treatment. 
We investigated the feasibility of comprehensive analysis of 
CTC, PBC, and cfDNA levels in a liquid biopsy sample as 
predictive biomarkers for ICI treatment response in patients 
with advanced NSCLC. In this study, patients with lower 
NLR, dNLR, and PLR values as well as those with lower 
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Figure 7 Multivariable analysis of survival and comprehensive monitoring of tumor response using blood-based biomarkers in patients treated 
with anti-PD-1/PD-L1 ICI. Group 1, dNLR at C1 ≤2.0 and CTC count decreases from C1 to C2 (C1 > C2); Group 2, dNLR at C1 ≤2.0 and 
CTC count increased from C1 to C2 (C1 < C2), or dNLR at C1 >2.0 and CTC count decreased from C1 to C2 (C1 > C2); Group 3, dNLR at 
C1 >2.0 and CTC count increases from C1 to C2 (C1 < C2). (A,B) Forest plots of multivariable analysis of PFS and OS. (C,D) Kaplan-Meier 
curves for PFS and OS of three subgroups. (E) A 78-year-old male patient with lung adenocarcinoma had para-aortic lymph node enlargement 
as the target lesions (left, arrows) and received ICI as the third-line treatment. Abdominal CT scans revealed a near-complete regression of 
intra-abdominal lymph nodes after three cycles (right, arrow). The values of CTC, dNLR, PLR, and cfDNA started to decrease even after 
the first cycle. (F) CT scans of a 76-year-old male patient with NSCLC (NOS) revealed a rapid progression of liver metastases after ICI (red 
arrows), while the intrathoracic lesion was stable (blue arrows). The CTC, dNLR, PLR and cfDNA values started to increase from the early 
phase of treatment along with tumor progression. ICI, immune checkpoint inhibitor; PFS, progression-free survival; OS, overall survival; CTC, 
circulating tumor cell; dNLR, derived neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; cfDNA, circulating cell-free DNA; 
CT, computed tomography; NSCLC, non-small cell lung carcinoma; NOS, not otherwise specific; C, cycle.
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cfDNA levels at C1 and decreased CTC counts at C2 had 
significantly improved PFS and OS. Multivariable analysis 
revealed that low dNLR (≤2.0) values at C1 and decreased 
CTC counts at C2 (compared with those at C1) were each a 
significant predictive factor for survival benefit.

Recent technological advances have contributed to 
improvements in CTC detection methods (28). However, 
only a few methods have been approved for clinical use, 
and only a few methods are utilized in the research field 
because of limitations in method standardization as CTCs 
exhibit heterogeneity and diverse metastatic potential. Most 
studies on CTCs in lung cancer have used the CellSearchTM 
system (Menarini Silicon Biosystems, PA, USA) (29), which 
is the only United States Food and Drug Administration-
approved method for detecting CTCs in metastatic 
colorectal, prostate, and breast cancers. This method 
utilizes an immunomagnetic separation technique with 
anti-EpCAM antibody-based positive selection (DAPI+/
CK8,18+/CD45−). However, these surface markers enable 
the detection of only a subpopulation of epithelial cells and 
not tumor or mesenchymal cells. The present study utilized 
the CD-PRIMETM system (Clinomics) with CD-FASTTM 
solo, a lab-on-a-disc platform using FAST, that enables 
rapid size-based isolation of CTCs. CTCs are isolated 
based on size, irrespective of the antigen expression status. 
This system overcomes the limitations of inconsistency 
arising from CTC heterogeneity. The other advantages of 
CD-FASTTM solo (compared with the immunomagnetic 
separation method) include high-throughput isolation using 
centrifugal force, label-free isolation, high detection rate 
(22,23), and minimal loss of mesenchymal and stem cell-
like tumor cells with low EpCAM expression. CD-FASTTM 
also provided uniform, clog-free, ultrafast cell enrichment 
with pressure drops much less than conventional size-based 
filtration (24,25).  

CTC counts determined using the CellSearchTM 
system at baseline and during or after treatment have been 
considered prognostic and predictive biomarkers in several 
studies on lung cancer (30-32). High numbers (≥5) of CTCs 
before and after chemotherapy in untreated patients with 
advanced NSCLC are prognostic factors for poor clinical 
outcomes (30,31). However, the ability of CTC count to 
predict ICI treatment response in lung cancer has only 
been examined in limited studies. Tamminga et al. recently 
examined patients with NSCLC receiving ICI mainly as a 
second-line treatment (84%) (32). They demonstrated that 
the presence of CTC at baseline (32%) and after four weeks 
(27%) of ICI treatment was an independent predictive 

factor of poor treatment response, PFS, and OS in patients 
with advanced NSCLC. In the present study, dynamic 
changes in CTC counts (in 7.5 mL of whole blood) from 
baseline to C2 (three weeks) were significant predictive 
factors for survival. However, CTC counts at baseline 
were poor biomarkers of treatment response and survival, 
possibly because CTC detection in high proportions of 
patients at baseline (88%) and after three weeks (53%) of 
treatment was attributed to patients previously receiving 
two or more therapies (47%). Additionally, the CD-
PRIMETM system could have been responsible for higher 
CTC detection rates than CellSearchTM. Therefore, CTC 
analysis after initiating treatment, rather than at baseline, 
might aid in predicting ICI treatment response in patients 
with NSCLC who previously underwent therapy.

Several studies have analyzed CTC surface markers 
(including PD-L1) and CTC clusters, as well as absolute 
counts of CTCs. The presence of high numbers of PD-
L1-positive CTCs before treatment is associated with poor 
survival in patients with locally advanced and metastatic 
NSCLC (33-35). Additionally, Nicolazzo et al. demonstrated 
that PD-L1-positive CTCs can exhibit dynamic changes 
during ICI treatment. The absence of PD-L1-positive 
CTCs at follow-up (6 months) is a predictive marker for 
clinical benefit (36). In this study, limitations in performing 
simultaneous and multiple IF staining prevented the 
implementation of PD-L1 staining of CTCs. CTC clusters 
comprise immune cells, platelets, dendritic cells, cancer-
associated fibroblasts, and tumor stroma, and these types of 
microenvironments can protect CTC clusters from blood 
shear damage and immune attacks and consequently promote 
CTC survival and metastasis (37). The presence of CTC 
clusters is associated with poor outcomes in patients with 
lung cancer (38). CTC clusters can be subjected to molecular 
and genomic analyses to determine optimal therapeutic 
strategies (39,40). As shown in Figure 1C, clustered CTCs 
were surrounded by CD45-positive leukocytes. Furthermore, 
many cell clusters positive for all three markers (EpCAM/
CK+/CD45+) were observed using the BioViewCCBSTM 
system (not shown in the figures). The number of these cells 
in the NDB subgroup gradually increased after starting ICI 
treatment (Figure S2). Triple-positive cells are presumed 
to be circulating atypical cells (derived from cell fusion 
or interaction between cancer cells and macrophages or 
mesenchymal cells, or macrophages with phagocytosis of 
the apoptotic body from cancer cells) with both epithelial-
specific and myeloid-specific markers (41). However, further 
studies are needed to identify the origin of these cells.
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The ctDNA is a stratification biomarker for ICI 
treatment response (42). Detection of residual disease or 
recurrence in the adjuvant setting (43,44), and estimation 
of tumor load in the metastatic setting can be achieved by 
analyzing pre-treatment ctDNA levels (45). Furthermore, 
identification of specific mutations (46), TMB (47), and 
MSI (48), using ctDNA analysis can predict ICI treatment 
response. Additionally, longitudinal monitoring of 
quantitative changes in ctDNA levels can complement 
imaging in predicting tumor response, especially in the 
early phase of ICI treatment (19,45,49). The present study 
demonstrated that patients with low cfDNA levels at 
baseline had significantly improved survival. The kinetics 
of cfDNA levels were correlated with tumor burden. 
However, this analysis was performed in only 24 patients at 
C1 and C4, with a limited number of samples. The absolute 
changes in cfDNA level from C1 to C4 (ΔcfDNA) were not 
associated with survival. To utilize ctDNA as a biomarker, 
future studies must analyze blood-based TMB or somatic 
mutational profiles at baseline and the kinetics of ctDNA 
levels or variant allele frequency at the initial phase of ICI 
treatment (earlier than C4) in a large cohort.

The current understanding of the prediction of ICI 
treatment efficacy suggests that a single biomarker cannot 
identify the population that will benefit from ICI treatment. 
The predictive power can be improved by combining various 
factors representing immune status (50,51). The peripheral 
blood of patients with cancer comprises products derived 
from the primary tumor and metastatic sites including 
CTCs and immune cells of the tumor microenvironment 
as well as tumor-derived DNA, RNA, and proteins (52). 
Comprehensive analysis of blood-based biomarkers can 
provide real-time information on tumor-associated changes 
in an individual patient with cancer (51). Additionally, liquid 
biopsy analysis has several advantages compared with tumor 
biopsy (20), as it enables serial monitoring with repeated 
examination, detection of minimal residual disease, and 
prediction of disease progression in extra-thoracic lesions, 
which are difficult to analyze through routine inspection or 
chest radiography (Figure 7).

This study had several limitations. Most patients were 
treated with ICI as a second- or third-line treatment, while 
a quarter of patients received ICI as a fourth or higher line 
of treatment. The proportion of patients receiving ICI as 
a fourth or higher line of treatment was markedly greater 
in the NDB group than in the DCB group (36% vs. 4%). 
There is a need to comparatively analyze variables among 
homogenous populations in previous treatment lines. 

Additionally, a bias could have been introduced owing to 
ICI selection, possibly because the Korean Health Insurance 
System criteria for reimbursement of individual drug 
costs are set according to PD-L1 TPS (50% or more for 
pembrolizumab and all comers for atezolizumab in a second 
or higher line of treatment), although most patients (78%) 
received atezolizumab. The results of cfDNA analysis could 
be underpowered due to small numbers of cases (n=24). 
The integration of additional sources of liquid biopsy, such 
as exosomes, cytokines, soluble proteins, or immune cells, 
may be necessary for advanced comprehensive analysis.

Conclusions

The study findings provide novel insights regarding 
the comprehensive analysis of liquid biopsy in patients 
with advanced NSCLC who received anti-PD-1/PD-
L1 immunotherapy. This study results suggest several 
potential biomarkers (CTCs, PBCs, and cfDNA) to 
predict ICI treatment response. The simultaneous analysis 
of CTC, PBC, and cfDNA levels at baseline or during 
treatment could aid in stratifying patients at risk for 
progression and predict disease progression, especially the 
development of extra-thoracic metastasis. Furthermore, 
a bioinformatics-based predictive model integrated with 
an artificial intelligence system must be established for 
effective screening of populations that can benefit from ICI 
treatment.
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