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Here we present functional neuroimaging-based network data
(focused on the default mode network) collected from a cohort of
US Veterans with history of combat exposure, combined with
clinical assessments for PTSD and other psychiatric comorbidities.
The data has been processed and analyzed using several network
construction methods (signed, thresholded, normalized to phase-
randomized and rewired surrogates, functional and multimodal
parcellation). An interpretation and discussion of the data can be
found in the main NeuroImage article by Akiki et al. [51]
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 Psychiatry
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 Neuroimaging, Posttraumatic Stress Disorder

ype of data
 Tables, graphs, figures, text

ow data was acquired
 Siemens TIM Trio 3.0T magnet (32-channel head coil): Structural and

functional MRI; clinical assessments

ata format
 Analyzed

xperimental factors
 Resting state acquisitions

xperimental features
 US Veterans with history of combat exposure were assessed for PTSD

symptoms and underwent MRI scans

ata source location
 West Haven, Connecticut, USA

ata accessibility
 Analyzed results are included
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Value of the data

� Robustness of neuroimaging graph theory measures were assessed in a real-world sample of the
combat-exposed population and can inform future studies.

� The default mode network was thoroughly examined in PTSD.
� The default mode network findings in PTSD can be compared to other disorders to further assess its

utility as a biomarker.
� The variability due to different network construction methods from fMRI can be assessed.
� The effect of psychiatric comorbidities on brain network metrics can be assessed.
1. Data

1.1. Intro

Using a network-restricted approach graph theoretical approach, we found and reported evidence
of altered functional connectivity within the default mode network (DMN) in posttraumatic stress
disorder (PTSD). Briefly, overall connectivity strength (S) and global efficiency (E) were found to be
negatively correlated with PTSD symptom severity, while the overall clustering coefficient was
positively correlated with PTSD symptom severity (see main article in NeuroImage [51]). Here we
provide additional data, including details of clinical assessments and robustness analyses using
alternate processing methods.

1.2. Justification for using a dimensional approach

To date, the PTSD literature has largely used a binary diagnostic approach comparing patients
with DSM diagnosis of PTSD to control groups with and without trauma history; often excluding
subjects with subthreshold PTSD. A strength of this approach is the creation of large contrast
between groups. However, it also creates a potentially artificial dichotomization, especially if
trauma-related pathophysiological effects are on a continuum of biological abnormalities and
clinical severity. In addition, the extent of subthreshold PTSD pathophysiology is often missed.
A dimensional approach based on PTSD symptom severity in a trauma exposed population
regardless of diagnosis may potentially better map to underlying circuitry alterations. It will also
maintain high clinical relevance to Veterans suffering from PTSD symptoms without necessarily
meeting all DSM criteria. As a continuous measure of symptom severity, we adopted the Clinician
Administered PTSD Scale for the DSM-IV (CAPS) [1], which is a structured standardized interview
and has been demonstrated to have a highly robust validity and inter-rater reliability [1–3].
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1.3. Justification for selecting the default mode network

The DMN is highly relevant for disease states [4–9]. Further, unlike other ICNs, the DMN is active at
rest during internally-focused tasks and suppressed during goal-directed tasks [6,9]. This makes the
DMN a prime target for biomarker development, since the resting-state functional paradigm is
convenient to recreate, and likely to be consistent, across studies. Despite its apparent importance,
the DMN has not been fully investigated in PTSD, where previous studies were mostly limited to a
small number of seeds. In this study, our primary aim was to establish a DMN-restricted approach
that will systemically investigate the DMN-specific network characteristics in relation to PTSD
symptoms.

1.4. Introduction to graph theory in neuroimaging

The emergence of complex network analyses of brain connectivity has sparked an interest in
trying to explain psychopathology in terms of neuronal network dysfunction [5,10]. In graph theory
terms, each ROI is referred to as a node, and each connection (functional or anatomical) is referred to
as an edge. In functional networks, edge weights often represent magnitudes of correlations. Net-
works are then constructed from these basic units, and numerous metrics can be used to describe
their configuration [11].

One commonly used nodal metric is known as nodal strength, which consists of the sum of all
neighboring edge weights (analogous to functional connectivity strength from the seed-based lit-
erature). Nodal strength can also be averaged across the whole network to characterize the overall
within-network connectivity strength, or wiring investment (here referred to as S) [12].

Beyond connectivity strength, the brain develops under environmental pressure to maximize
computational power given the restricted available resources; and it is theorized that an optimal level
of integration—efficiency of information transfer across the network; and segregation—ability for
specialized processing to occur within a highly interconnected region, is crucial in maintaining cost-
effective and efficient information processing in the brain [12–14]. Indeed, a disrupted pattern of
integration and segregation has been described in numerous psychopathologies. To index network
integration, a graph measure known as global efficiency can be calculated directly at the level of the
whole network, which measures efficiency of overall network communication across the network
[12,15,16]. A common way to index network segregation is by calculating a nodal metric known as
the clustering coefficient, which measures the tendency of nodes to cluster together [17,18]. Like the
nodal strength, the nodal clustering coefficient can be averaged across the network to characterize
whole-network segregation (see [12] for a review of graph theory in neuroimaging).
2. Experimental design, materials and methods

2.1. Participants and clinical assessments

Full description of the study sample and assessments were previously reported [19–21]. Briefly, 65
combat-exposed US Veterans with successful scans were included in this study. Inclusion criteria
required at least one combat deployment. Exclusion criteria included: psychotic disorder or bipolar
disorder, attention-deficit/hyperactivity disorder, learning disorder, moderate or severe traumatic
brain injury (TBI), brain tumor, epilepsy or other neurological disorders, current benzodiazepine use,
and MRI contraindication. Depression, anxiety, and substance/alcohol use disorders as well as stable
antidepressant regimens were not considered as basis for exclusion in order to improve external
validity and generalizability of the findings to the target population. We employed a single-group
dimensional approach to capture a continuous spectrum of PTSD symptoms.

The Clinician Administered PTSD Scale for the DSM-IV (CAPS) was used to assess PTSD diagnosis
and symptom severity [1]. The Combat Exposure Scale (CES) was used to assess combat exposure [22].
The Structured Clinical Interview for the DSM-IV (SCID-IV) was used to assess psychiatric comor-
bidities [23]. The Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI) were used to



Table 1
Demographic and clinical characteristics.

Mean 7 SEM or %

N 65
Age (years) 34.8 7 1.2
Sex (% female) 11%
WTAR Standard Score 103.4 7 1.0
Education (years) 14.0 7 0.2
CAPS 43.4 7 3.7
CES 17.8 7 1.3
BDI 19.1 7 1.5
BAI 13.1 7 1.3
DSM-IV Axis I 69%

PTSD 54%
MDD 20%
SUD 20%
Anxiety Disorder 7%

Psychotropic Medication 37%
Mild TBI 63%
Handedness (% left handed) 17%

Abbreviations – SEM: Standard Error of Means; WTAR: Wechsler Test of Adult Reading; CAPS: Clinician
Administered PTSD Scale for the DSM-IV; CES: Combat Exposure Scale; BDI: Beck Depression Inven-
tory; BAI: Beck Anxiety Inventory; PTSD: Posttraumatic Stress Disorder; MDD: Major Depressive Dis-
order; SUD: Substance/Alcohol Use Disorder; Anxiety: Panic
Disorder, Generalized Anxiety Disorder, Obsessive Compulsive Disorder; TBI: Traumatic Brain Injury.
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assess depressive and anxiety symptoms, respectively [24,25]. The Wechsler Test of Adult Reading
(WTAR) was used to estimate pre-exposure/pre-morbid intellectual functioning [26]. Sample char-
acteristics are presented in Table 1.

2.2. Neuroimaging acquisition and processing

Details relevant to neuroimaging acquisition and processing have been reported in the main
NeuroImage manuscript [51], but a copy is made available in Box 1 for the convenience of the reader.

2.3. Accounting for connectedness

Our results revealed that strength (S), non-normalized global efficiency (Eo) and clustering coefficient
(Co), were all negatively associated with CAPS [S: r(64) ¼ � 0.329, p ¼ 0.0075; Eo: r(64) ¼ � 0.299,
p ¼ 0.0157; Co: r(64) ¼ � 0.296, p ¼ 0.0168] (Fig. 1).

It is expected that a biologically-relevant varying level of connectedness exists across participants,
here captured using S. However, the changes in global efficiency and clustering coefficient may be an
artifactual consequence of changes in S. in order to enable a meaningful comparative analysis of
integration and segregation measures across participants, the difference in node connectedness needs
to be accounted for [38,39]. To ensure that the higher order network metrics of were not an artifact
driven by different level of connectedness, we attempted several strategies based on normalization
with null model networks [12,38,40,41]. The results are summarized in Table 2.

For each participant, the global efficiency and mean clustering coefficient were calculated for the
original and a corresponding random surrogate networks, and the normalized variants of these
measures which were used in the statistical analysis were defined as Enorm ¼ Eo/Erand and Cnorm ¼
Co/Crand, respectively [12]. Erand and Crand were calculated as the mean global efficiency and mean
overall clustering coefficient values for these metrics over the 100 random surrogates. Linear
regressions were used to examine the relationship between CAPS scores and the DMN topological
measures. In both cases, we conducted regressions with Snorm (Snorm ¼ S/Srand) and CAPS to verify that
the effect of weight has been mitigated.



Box 1–Neuroimaging acquisition and processing. Adapted from the main article in NeuroImage [51].

1. Neuroimaging Acquisition

Imaging data were collected using a Siemens TIM Trio 3.0 T magnet with a 32-channel head coil.

Three high-resolution structural MRI (sMRI) scans were used to improve surface delineation and

enable subject-specific coregistration: 2 � T1-weighted MPRAGE (voxel size ¼ 1 � 1 � 1mm;

TR ¼ 2530ms; TE ¼ 2.71ms; Flip ¼ 7˚); 1 � T2-weighted (voxel size ¼ 1 � 1 � 1mm;

TR ¼ 3200ms; TE ¼ 419ms; Flip ¼ 120˚). Whole-brain functional data were acquired using two

5-min T2*-weighted BOLD resting-state runs (voxel size ¼ 3.4 � 3.4 � 3.4mm; TR ¼ 25ms;

TE ¼ 419ms; Flip ¼ 80˚; 145 frames).

2. First-level Processing

The preprocessing of resting-state fMRI consisted of correcting for motion and time-slice

acquisition, brain extraction, spatial smoothing with 5mm FWHM isotropic Gaussian kernel,

high-pass temporal filtering (100 s), nonlinear registration of structural images to a standard

Montreal Neurological Institute (MNI) template (2 � 2 � 2mm), boundary-based registration

(BBR) to high-resolution T1 images. In addition, we also performed motion scrubbing [27] and

regressed motion parameters, cerebrospinal fluid (CSF), white matter, the global brain signal,

and their 1st derivatives [28]. Quality control criteria for each BOLD run were as follows: 1) no

motion scrubbing greater than 50% of the run; and 2) no frame movement larger than

1 functional voxel. CAPS scores were not correlated with head motion in the scanner during the

fMRI [relative motion: r(64) ¼ � 0.0497, p ¼ 0.6989; absolute motion: r(64) ¼ � 0.1232,

p ¼ 0.3361] or dMRI [translation motion: r(60) ¼ 0.0445; p ¼ 0.7355; rotation motion:

r(60) ¼ 0.1324; p ¼ 0.309] scans.

3. Network Construction

Using a meta-analytically derived functional brain atlas from Power et al. (which we refer to

throughout as the functional atlas), we partitioned the brain into 264 cortical and subcortical ROIs

[29]. To construct a DMN-specific network—and in order to avoid a potential bias in selecting the

DMN component(s) post-signal decomposition—we decided to adopt a validated and reliable

DMN mask established by Yeo et al. [30]. Of the original 264 ROIs, 64 ROIs were found to belong

to the DMN map and were subsequently used for the analyses. We extracted and averaged time

series from all voxels within each ROI. We then generated pairwise Pearson correlation

coefficients from each ROI and proceeded to apply a Fischer z-transformation (Fz) to stabilize the

correlation coefficient variance, resulting in a DMN-specific 64 � 64 Fz matrix. Each of the two 5-

min runs were processed separately until this point and then averaged prior to further analyses.

Since it has been shown that regressing the global BOLD signal may induce anticorrelations, the

interpretation of which remains unclear [31,32], negative weights were initially discarded from

analyses. However, the analyses were in part repeated with the complete networks (where both

positive and negative weights are retained), on a post hoc basis to ensure consistency. Since

certain graph theoretical measures such as the clustering coefficient require that weights fall

between 0 and 1 [18], Fz matrices were then rescaled by maximal weight (Fzscaled ¼ Fz/max(abs

(Fz))); between 0 and 1 for the positive-only networks, and between � 1 and 1 for the full

networks.

Concerns have been raised with regards to the reliability of weighted networks, namely that they

are prone to noise [33,34]. To ascertain that our main results were not driven by this influence,

we attempted two alternative approaches. In the first approach, we used stringent thresholding

criteria (retaining the top 15% of the edges with the strongest weight) to attenuate the effect of

such false positives. The second approach avoids such an arbitrary threshold and uses statistical

significance to determine the presence of edges between nodes [33]. In addition to having the

advantage of sparsifying the network in a principled way, such an approach may also reduce

false negatives compared to highly stringent (arbitrary) cutoffs [33].

All analyses that follow were applied to the weighted matrices, using the weighted-variants of the

functions included in the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet) [12,35],

GenLouvain [36] (http://netwiki.amath.unc.edu/GenLouvain), and the Community Detection Toolbox
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(http://commdetect.weebly.com), under MATLAB 2016b (MathWorks Inc., Massachusetts, United

States). Brain maps were generated using BrainNet Viewer (https://www.nitrc.org/projects/bnv) [37].

4. Connectivity Strength, Integration, and Segregation

As a primary outcome measure, we used the overall connectivity strength (S). We first calculated

the nodal strength—the weighted variant of nodal degree, calculated as the sum of all

neighboring link weights. When averaged across the network, it provides information about the

overall connectivity strength or wiring investment of the network [12]. We calculated two

secondary global measures to further characterize information transfer across the network:

global efficiency and clustering coefficient. Global efficiency measures network integration, the

efficiency of overall network communication across the network. Mathematically, it is inversely

related to the distance between nodes (i.e., the number of edges separating them, taking into

account the weight of these edges) [15]. The clustering coefficient measures network segregation

by quantifying local interconnectivity. It is mathematically related to the number and weight of

triangles formed by nodes and edges [17,18]. While the clustering coefficient is calculated on a

nodal basis, an average across all nodes can be calculated and interpreted as a measure of

overall network segregation—the capacity of specialized processing. All subsequent mentions of

the clustering coefficient refer to the mean clustering coefficient across all nodes. Weighted

generalizations of the clustering coefficient [18], and the global efficiency [12,15], were adopted

for the calculations.
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We used two different methods to build random surrogates: phase randomization and rewiring
[35,42–44], and tested the ability of each to mitigate the effect of individual differences in varying
level of connectivity.

For phase randomization, we started with the BOLD time series, applied a Fourier transform,
scrambled the phase and inverted the transform, as described in [42,43]. The resultant null model
networks were not matched to the originals in terms of strength or degree, and the procedure did not
mitigate the effect of varying level of connectedness on CAPS (Fig. 2).

Thresholding strategies have been proposed to enhance the matching of the random surrogates to
the original networks in terms of edge connectedness [43]. Such methods are typically applied to
binary networks, where matching by binary density or degree is sufficient. Here we used proportional
thresholding to match network pairs for either degree or strength. In each case, the lowest degree and
strength were determined for each original-random pair, and a threshold was used to sparsify
the network with the higher degree or strength to ensure matching. This resulted in networks that
were either matched with respect to degree or strength, but not both. Further, the patterns found in
the non-normalized global efficiency and clustering coefficient metrics were preserved. See Figs. 3
and 4.

While, proportional thresholding of random networks may successfully ensure matching in binary
networks, this method did not appear to do so successfully in our weighted networks; further,
Fig. 1. Relationship between CAPS and non-normalized metrics. Scatter plots depicting the correlation between PTSD severity,
as measured by the Clinician Administered PTSD Scale (CAPS) and S [r(64) ¼ � 0.329, p ¼ 0.0075] (A), Eo [r(64) ¼ � 0.299,
p ¼ 0.0157] (B), and Co [r(64) ¼ � 0.296, p ¼ 0.0168] (C).

http://commdetect.weebly.com
https://www.nitrc.org/projects/bnv


Table 2
Summary of results of the different methods to account for connectedness in order to obtain a measurement of global efficiency and clustering coefficient.

Null model performance Resulting normalized measures

Correlation between Random and
original network strength (stronger
is better)

Correlation between Random and
original network density (stronger
is better)

Correlation between normal-
ized strength and CAPS
(weaker is better)

Correlation between var-
iants of the global efficiency
and CAPS

Correlation between variants
of the clustering coefficient
and CAPS

Non-normalized N/A N/A N/A Eo Co

r ¼ � 0.299 r ¼ � 0.296
p ¼ 0.0157 p ¼ 0.0168

Phase normalized r ¼ 0.083 r ¼ 0.090 r ¼ � 0.344 Enorm_phase Cnorm_phase

p ¼ 0.5087 p ¼ 0.7102 p ¼ 0.0050 r ¼ � 0.301 r ¼ � 0.313
p ¼ 0.0149 p ¼ 0.0113

Phase normalized –

matched strength
(but not density)

r ¼ 1.000 r ¼ 0.019 r ¼ � 0.239 Enorm_phase_match_S Cnorm_phase_match_S

p o 0.0001* p ¼ 0.8837 p ¼ 0.048 r ¼ � 0.265 r ¼ � 0.230
p ¼ 0.0360 p ¼ 0.0701

Phase normalized –

matched density (but
not strength)

r ¼ 0.080 r ¼ 1.000 r ¼ � 0.320 Enorm_phase_match_D Cnorm_phase_match_D

p ¼ 0.5245 p o 0.0001* p ¼ 0.0095 r ¼ � 0.300 r ¼ � 0.330
p ¼ 0.0150 p ¼ 0.0073

Rewired (preserving
strength and density)**

r ¼ 1.000 r ¼ 1.000 r ¼ 0.0597 Enorm_rewire Cnorm_rewire

p o 0.0001* p o 0.0001* p ¼ 0.6365* r ¼ � 0.299 r ¼ 0.334
p ¼ 0.0157 p ¼ 0.0065

Covarying for S at the
level of statistical
analysis

N/A N/A N/A Eo_partial Co_partial

r ¼ � 0.062 r ¼ 0.191
p ¼ 0.6255 p ¼ 0.1278

* Denotes satisfactory performance on benchmark.
** Denotes entry with satisfactory performance on all benchmarks.
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Fig. 2. The effect of phase randomization. Scatter plot depicting the correlation between S and Snorm_phase [r(64) ¼ 0.083,
p ¼ 0.5087] (A). Bar graphs depicting means and standard error of strength and binary density in original [mean strength ¼
9.72 7 0.22; mean density ¼ 0.71 7 0.0068] (B) and random surrogate networks [mean strength ¼ 6.94 7 0.093; mean
density ¼ 0.50 7 0.0013] (C). Scatter plots depicting the correlation between CAPS and Snorm_phase [r(64) ¼ � 0.344, p ¼
0.0050], Enorm_phase [r(64) ¼ � 0.301, p ¼ 0.0149], and Cnorm_phase [r(64) ¼ � 0.313, p ¼ 0.0113] (D-F).

Fig. 3. The effect thresholding original-surrogate pairs to match the strength. Scatter plot depicting the correlation between:
S and Srand_phase [r(64) ¼ 1.000, p o 0.0001] (A), binary density of the original and random surrogates [r(64) ¼ 0.019, p ¼ 0.8837]
(B), CAPS and Enorm_phase [r(64) ¼ � 0.265, p ¼ 0.0360] (C), and CAPS and Cnorm_phase [r(64) ¼ � 0.230, p ¼ 0.0701] (D).
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Fig. 4. The effect thresholding original-surrogate pairs to match the binary density. Scatter plot depicting the correlation
between: S and Srand_phase [r(64) ¼ 0.080, p ¼ 0.5245] (A), binary density of the original and random surrogates [r(64) ¼ 1.000,
p o 0.0001] (B), CAPS and Enorm_phase [r(64) ¼ � 0.300, p ¼ 0.0150] (C), and CAPS and Cnorm_phase [r(64) ¼ � 0.330,
p ¼ 0.0073] (D).
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thresholding has been shown to have a direct effect on graph metrics [38].
For rewiring, edges of the original networks were randomized (number of edge swaps ¼ 10,

weight sorting frequency ¼ 1) [35,44], resulting in a null model network with a preserved degree and
strength distribution [strength and binary density matched between original and surrogates: r ¼
1.000, p o 0.0001]. Recent concerns have been raised regarding the adequacy of null models based
on rewiring algorithms when used with correlation-based networks [43]. Correlation-based networks
(such as those derived from fMRI/BOLD) have an intrinsic transitive nature that is lost after random
rewiring [43]. The implication being that this will result in artificially inflated small-world properties,
due to transitive qualities in the original but not randomized networks. However, despite their
inadequacy to represent the intrinsic small-world properties of individual networks (e.g., when used
to make empirical observation in observed network organization vs. random organization), they may
still be useful for the cross-subject comparative purposes when the desired effect is attenuating the
effect of connectivity difference, and have indeed been used as such [40,45]. This process successfully
mitigated the effect of varying level of connectedness on CAPS (Fig. 5).

Finally, attempts were made to correct for this varying level of connectivity at the level of sta-
tistical analysis by conducting regressions between CAPS and Eo and Co while covarying for S,
although this approach has been known to be strict and may discard true higher-order topological
properties [40]. See Fig. 6.



Fig. 5. The effect of rewiring randomization. Scatter plots depicting the correlation between: S and Snorm_rewire [r(64) ¼ 1.000,
p o 0.0001] (A), CAPS and Snorm_rewire [r(64) ¼ 0.0597, p ¼ 0.6365], Enorm_rewire [r(64) ¼ � 0.299, p ¼ 0.0157], and Cnorm_rewire

[r(64) ¼ 0.334, p ¼ 0.0065] (B-D).

Fig. 6. The effect of controlling for S at the level of statistical analysis. Scatter plots depicting the correlation between PTSD
severity, as measured by the Clinician Administered PTSD Scale (CAPS), and DMN integration and segregation. (A-B) represent
the Eo, Co, and CAPS residuals after controlling for S [Eo_residual: r(62) ¼ � 0.062, p ¼ 0.6255; Co_residual: r(62) ¼ 0.191, p ¼ 0.1278].
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2.4. Alternate edge definition

Our first-level processing pipeline included regressing the global BOLD signal—a procedure known
to induce artificial anticorrelations in constructed functional correlation-based networks. The inter-
pretability of these anticorrelations remains uncertain [31,32]. Due to these factors, we discarded
negative weights from the main analyses. Here we repeat the analyses in part to assess whether
similar results would be found with the full signed (positive and negative) networks. Here also total
strength (S) was calculated as the sum of all neighboring link weights (positive and negative), and the
mean calculated across the network. For the clustering coefficient, we adopted a generalization for
signed networks that takes both positive and negative weights into account simultaneously [46]. The
global efficiency was calculated by using absolute value of the weights.

The construction of networks from time series based on Pearson correlations are prone to false
positive connections [33,34]. To assess the extent to which our main results were influenced by this
noise, we attempted two approaches: in the first one, we used stringent thresholding criteria
(retaining the top 15% of the edges with the strongest weight) to attenuate the effect of such false
positives.

The second approach avoids such an arbitrary threshold and uses statistical significance to
determine the presence of edges between nodes [33]. In addition to having the advantage of spar-
sifying the network in a principled way, such an approach may also reduce false negatives compared
to highly stringent (arbitrary) cutoffs [33]. Here we follow the analytic (extremum) method described
in [33], while controlling for false discovery rate (FDR) with q ¼ 0.001 [33,47]. This yielded networks
with a mean density of 0.55 (range ¼ 0.45,0.61).

The results are presented in Table 3.

2.5. Alternate parcellation atlas

In order to assess the robustness of our network-wide findings and ascertain that the detected
changes were not due the functionally-derived brain parcellation atlas, the analysis was repeated
using a novel multi-modal parcellation of the cerebral cortex by Glasser et al. adopted by the Human
Connectome Project (HCP) [48]. Briefly, under a volume-based version of this parcellation scheme, the
DMN map was found to comprise 83 brain parcels.

Consistent with the primary analysis using the functional parcellation atlas, the same pattern of
associations between increased PTSD symptom severity and S [r(64) ¼ � 0.299, p ¼ 0.0146],
Enorm_rewire [r(64) ¼ � 0.364, p ¼ 0.0026], and Cnorm_rewire [r(64) ¼ 0.276, p ¼ 0.0248] were found.

2.6. Alternate DMN definitions

For the primary analyses, the decision to avoid a sample-specific DMN extraction using decom-
position methods was motivated by several factors. 1) The potential utility of the measures as bio-
markers relies on sample-independence and easy replicability across studies; 2) it is known that the
spatial extent of different ICNs is altered by numerous factors—notably, psychopathology. We wanted
to capture this alteration statistically using connectivity strength, rather than spatial extent. Carrying
Table 3
Alternate edge definition.

S Enorm_rewire Cnorm_rewire

r p r p r p

Positive weighted (analysis in the main NeuroImage article [51]) � 0.329 0.0075 � 0.299 0.0157 0.334 0.0065
Signed weighted � 0.339 0.0058 � 0.159 0.2066 0.327 0.0078
Thresholded (edge density ¼ 15%) � 0.279 0.0245 � 0.228 0.0681 0.197 0.1164
Networks with statistical significance [33] (weighted thresholded) � 0.373 0.0022 � 0.054 0.667 0.252 0.0429
Networks with statistical significance [33] (binarized) � 0.303 0.0142 � 0.049 0.699 0.275 0.0267



Table 4
CAPS correlations with DMN network characteristics.

Covariate S Enorm_rewire Cnorm_rewire n

None � 0.329 � 0.299 0.334 65
Age � 0.334 � 0.299 0.338 65
Sex � 0.325 � 0.293 0.328 65
Age & Sex � 0.331 � 0.294 0.332 65
WTAR � 0.337 � 0.303 0.338 61
Education � 0.307 � 0.284 0.310 62
CES � 0.331 � 0.261 0.346 60
BDI � 0.235* (0.06) � 0.217* (0.08) 0.171* (0.18) 65
BAI � 0.299 � 0.274 0.223* (0.08) 65
Medication � 0.300 � 0.232* (0.06) 0.283 65
Mild TBI � 0.333 � 0.269* (0.07) 0.312 46
SUD � 0.271 � 0.229* (0.08) 0.275 59
Handedness � 0.318 � 0.283 0.319 65

Subgroup S Enorm_rewire Cnorm_rewire n
Exc. medications � 0.488 � 0.343 0.430 41
Exc. comorbidities � 0.221* (0.394) � 0.239* (0.356) 0.282* (0.273) 17

Values are the correlations coefficients between CAPS and each of the DMN connectivity measures, covarying for potential
confounds or in subgroups. All correlations were statistically significant with p o 0.05, except where p is otherwise noted in
parenthesis (denoted by *). The number of observations for each entry is provided. Abbreviations – CAPS: Clinician Admi-
nistered PTSD Scale for the DSM-IV; S: connectivity strength; Enorm_rewire: global efficiency normalized with rewired random
surrogates; Cnorm_rewire: clustering coefficient normalized with rewired random surrogates; WTAR: Wechsler Test of Adult
Reading; CES: Combat Exposure Scale; BDI: Beck Depression Inventory; BAI: Beck Anxiety Inventory; TBI: Traumatic Brain
Injury; SUD: Substance/Alcohol Use Disorder.
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out the analysis on DMN extracted from a mixed sample of non-PTSD combat-exposed and PTSD
participants may result in a reduced sensitivity when assessing DMN connectivity strength; 3) given
than functional imaging modalities are noise-prone, ICNs decomposed from small samples may yield
idiosyncratic results; 4) for the purpose of unifying definitions and consistency across neu-
ropsychiatric disorders, it is reasonable to adopt an established ICN map identified from a large
healthy sample.

From the available ICN maps, the one identified by Yeo et al. [30] is the most widely used, derived
from a large sample of healthy individuals (N ¼ 1,000), and most importantly, is atlas-independent,
i.e., it can be adopted irrespective of the ROI parcellation scheme (e.g., functional or multi-modal
parcellation in our case).

However, in order to verify that the results we obtained with the primary analysis were not due to
an intricate property of the adopted DMN definition, we repeated the analyses with a sample-specific
DMN decomposition, and with an alternate established DMN definition [29]. To identify a sample-
specific DMN definition, we applied a multi-iterative generalization of the Louvain community
detection algorithm on a sample-mean network (using the same parcellation atlas as the primary
analysis; total number of nodes ¼ 264) [12,29,49]. At γ ¼ 2, we obtained a non-fragmented com-
ponent with 67 nodes with the highest spatial overlap with the primary DMN consensus map. The
alternate consensus DMN definition was adopted from Power et al. [29] (and makes use of the same
functional parcellation atlas; under this definition, the DMN consists of 58 nodes).

In both cases, the pattern of results was similar to the primary analyses. Sample-specific DMN:
[S: r(64) ¼ � 0.278, p ¼ 0.0256; Enorm_rewire: r(64) ¼ � 0.207, p ¼ 0.0976; Cnorm_rewire: r(64) ¼ 0.289,
p ¼ 0.0162]. Alternate established DMN: [S: r(64) ¼ � 0.271, p ¼ 0.0312; Enorm_rewire: r(64) ¼ � 0.159,
p ¼ 0.2120; Cnorm_rewire: r(64) ¼ 0.249, p ¼ 0.0446].

2.7. Assessing for putative confounds

To assess the effect of putative confounds, we conducted partial correlations between CAPS and
the DMN measures, controlling for each of the following variables: age, sex, BDI, BAI, CES, TBI, alcohol
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or substance use disorder status, psychoactive medication status, WTAR, education, and handedness.
Since our sample consisted exclusively of combat-exposed individuals, the interaction between CES
and CAPS was also explored. Subgroup analysis excluding subjects taking psychotropic medications
and with psychiatric comorbidities were also conducted. Data can be found in Table 4.

A subgroup analysis excluding subjects taking psychotropic medications revealed the same pattern
across all measures [S: r(40) ¼ � 0.488, p ¼ 0.0012; E: r(40) ¼ � 0.343, p ¼ 0.028; C: r(40) ¼ 0.430,
p ¼ 0.005]. Another subgroup was attempted with subjects with no psychiatric comorbidities
(n ¼ 17). No statistically significant relationships were found, but directions of the correlations were
preserved: [S: r(16) ¼ � 0.221; E: r(16) ¼ � 0.239; C: r(16) ¼ 0.282, all p 4 0.3].
Table 5
Group characteristics.

CC (Mean 7 SEM or %) PTSD (Mean 7 SEM or %) p value

N 30 35 N/A
Age (years) 34.3 7 1.9 35.2 7 1.6 0.7
Sex (% female) 3/27 4/31 0.9
WTAR Standard Score 102.3 7 1.6 104.5 7 1.3 0.3
Education (years) 14.5 7 0.3 13.6 7 0.3 0.06
CAPS 15.9 7 2.8 66.9 7 2.7 o 0.001*
CES 14.1 7 1.5 20.9 7 1.8 0.007*
BDI 11.8 7 1.8 25.5 7 1.7 o 0.001*
BAI 7.1 7 1.1 18.2 7 1.7 o 0.001*
MDD 7/16 3/24 0.09
SUD 3/24 9/23 0.1
Anxiety Disorder 0/24 4/26 0.06
Psychotropic Medication 5/25 19/16 0.002*
Mild TBI 12/8 17/9 0.7
Handedness (% left) 3/27 8/27 0.2

Abbreviations – SEM: Standard Error of Means; WTAR: Wechsler Test of Adult Reading; CAPS: Clinician Administered PTSD
Scale for the DSM-IV; CES: Combat Exposure Scale; BDI: Beck Depression Inventory; BAI: Beck Anxiety Inventory; PTSD:
Posttraumatic Stress Disorder; MDD: Major Depressive Disorder; SUD: Substance/Alcohol Use Disorder; Anxiety: Panic
Disorder, Generalized Anxiety Disorder, Obsessive Compulsive Disorder; TBI: Traumatic Brain Injury.

* p o 0.05.

Fig. 7. Group comparisons of DMN characteristics. Bar graphs depicting means and standard error of S, E, and C across the CC
and PTSD groups. S [CC:mean ¼ 10.30 7 0.31; PTSD:mean ¼ 9.23 7 0.28; p ¼ 0.014, df ¼ 64], E [CC:mean ¼ 0.892 7 0.004;
PTSD: mean ¼ 0.877 7 0.004; p ¼ 0.01, df ¼ 64], and C [CC:mean ¼ 1.067 7 0.009; PTSD:mean ¼ 1.097 7 0.008; p ¼ 0.016,
df ¼ 64].



Table 6
Group comparisons with DMN network characteristics.

S (Mean 7 SEM) Enorm_rewire (Mean 7 SEM) Cnorm_rewire (Mean 7 SEM) n

Subgroup CC PTSD p CC PTSD p CC PTSD p

All 10.30 7 0.31 9.23 7 0.28 0.014 0.892 7 0.004 0.877 7 0.004 0.01 1.067 7 0.009 1.097 7 0.008 0.016 65
Exc. medications 10.537 7 0.322 8.938 7 0.402 0.004 0.894 7 0.004 0.880 7 0.006 0.069 1.064 7 0.009 1.093 7 0.011 0.045 41
Exc. comorbidities 9.526 7 0.407 8.932 7 0.383 0.305 0.885 7 0.011 0.870 7 0.011 0.344 1.079 7 0.014 1.104 7 0.014 0.232 17
All – covarying for CES, BDI, BAI,
medications and TBI

10.522 7 0.544 8.913 7 0.423 0.047 0.892 7 0.008 0.876 7 0.006 0.178 1.069 7 0.015 1.093 7 0.12 0.300 42

Abbreviations – SEM: Standard Error of Means; CES: Combat Exposure Scale; BDI: Beck Depression Inventory; BAI: Beck Anxiety Inventory; TBI: Traumatic Brain Injury.
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Table 7
Edges associated with increased PTSD severity.

Edge

Node 1 Node 2 Test Stat.

Right Angular Gyrus (S096) Left Inferior Orbitofrontal (S137) � 3.90*
Left Anterior Cingulum (S111) Left Inferior Orbitofrontal (S137) � 4.29*
Left Anterior Cingulum (S113) Left Inferior Orbitofrontal (S137) � 3.56
Left Superior Frontomedial (S115) Left Inferior Orbitofrontal (S137) � 3.75
Left Superior Frontomedial (S115) Right Supramarginal Gyrus (S204) � 4.47*
Left Middle Temporal Gyrus (S084) Left Inferior Orbitofrontal (S137) � 3.56

* Denotes edges that were also statistically significant with FDR in place of NBS as the method to control for family-wise
error. Labels are based on Automated Anatomical Labeling (AAL) atlas. “S[—]” in parenthesis denote the index labels given in
the original Power et al. atlas, and were included for reference.
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2.8. Group comparison

While we opted for a single group dimensional analysis for our primary analyses, here we compare
the global measures between PTSD and non-PTSD subjects. This analysis was conducted to ensure the
robustness of the results beyond the correlation analyses, and to enable more meaningful compar-
isons between our results and those of in other studies that adopt a group approach.

To this aim, we divided our sample into two groups: those who met DSM-IV criteria for PTSD
(PTSD; n ¼ 35) and those who did not, i.e., combat exposed controls (CC; n ¼ 30), and general linear
models were used for the statistical analysis. Group characteristics can be found in Table 5.

Consistent with the dimensional analysis, there was a statistically significant difference between
the two groups across the 3 assessed global measures, namely, that in PTSD compared to CC, there's
lower S, lower E, but higher C. See Fig. 7 and Table 6.

Subgroup analyses were conducted for individuals who were not taking psychotropic medications
(n ¼ 41), and for individuals without psychiatric comorbidities (n ¼ 17). Numerical relationships
largely held, although statistical significance was not always present. Results can be found in Table 6.
2.9. Non-ICN restricted global efficiency and overall strength

One of the goals of our contribution was to establish an ICN-restricted approach to the study of
psychopathology, notably for practical use in biomarker development. Such approach discards con-
nections exterior to the ICN that is being investigated. This limitation is particularly salient for the
calculation of global efficiency, which is based on the shortest path lengths. For example, the shortest
path length between 2 nodes in the DMN may not be entirely within the DMN. However, we made
the implicit assumption that an ICN-restricted weighted calculation—where only paths that are part
of the ICN are included in the networks—would approximate all important (i.e., high-weight) paths,
by virtue of lower between-ICN connectivity compared to within-ICN.

To ascertain the validity of this assumption, we attempted an alternate calculation of DMN effi-
ciency that is not ICN-restricted in paths. Here, whole-brain networks were constructed (264 nodes),
in an analogous fashion to the DMN networks. The connection-length matrices necessary for the
global efficiency calculation were calculated between all nodes—irrespective of ICNs. The mean of
the inverse shortest path length for nodes belonging to the DMN was calculated and normalized using
the rewiring-based null model. A similar pattern compared to the ICN-restricted global efficiency was
found when a linear regression with CAPS was attempted [r(64) ¼ � 0.321, p ¼ 0.0092].

Similarly, nodal strength was calculated as the sum of all neighboring link weights—irrespective of
ICNs and averaged across the nodes belonging to the DMN. Here, the non-ICN restricted DMN
strength was not found to be significantly correlated with CAPS [r(64) ¼ � 0.103, p ¼ 0.4154],
indicating that in PTSD, the disturbance is mainly driven by changes within the DMN.
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2.10. Edge statistical testing

Results of network-based statistical testing (connection threshold t ¼ 3.5; permutations ¼ 10,000;
corrected α o 0.05) and edge-wise FDR (permutations ¼ 100,000; corrected α o 0.05) revealed
subnetworks with edges that are weakened with increasing PTSD symptom severity (Table 7) [50].

To increase statistical power and increase sensitivity, NBS leverages the extent to which abnormal
edges are interconnected [50]. Therefore, this method results in one or more connected components
of significantly differing edges. To ascertain that the identified edges are not idiosyncratic as a result
of this bias, we used a confirmatory approach with FDR as the link-based controlling method for
family-wise error, although this method is known to be less sensitive [50]. Again, the DMN con-
nectivity matrices of each participant were entered as dependent variables and the total CAPS score as
predictor variable (permutations ¼ 100,000; corrected α o 0.05) [50].
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