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Abstract

Background

The pattern of myocardial fibrosis differs significantly between different cardiomyopathies.

Fibrosis in hypertrophic cardiomyopathy (HCM) is characteristically as patchy and regional

but in dilated cardiomyopathy (DCM) as diffuse and global. We sought to investigate if tex-

ture analyses on myocardial native T1 mapping can differentiate between fibrosis patterns in

patients with HCM and DCM.

Methods

We prospectively acquired native myocardial T1 mapping images for 321 subjects (55±15

years, 70% male): 65 control, 116 HCM, and 140 DCM patients. To quantify different fibrosis

patterns, four sets of texture descriptors were used to extract 152 texture features from

native T1 maps. Seven features were sequentially selected to identify HCM- and DCM-spe-

cific patterns in 70% of data (training dataset). Pattern reproducibility and generalizability

were tested on the rest of data (testing dataset) using support vector machines (SVM) and

regression models.

Results

Pattern-derived texture features were capable to identify subjects in HCM, DCM, and con-

trols cohorts with 202/237(85.2%) accuracy of all subjects in the training dataset using 10-

fold cross-validation on SVM (AUC = 0.93, 0.93, and 0.93 for controls, HCM and DCM,

respectively), while pattern-independent global native T1 mapping was poorly capable to

identify those subjects with 121/237(51.1%) accuracy (AUC = 0.78, 0.51, and 0.74)

(P<0.001 for all). The pattern-derived features were reproducible with excellent intra- and

inter-observer reliability and generalizable on the testing dataset with 75/84(89.3%)

accuracy.
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Conclusion

Texture analysis of myocardial native T1 mapping can characterize fibrosis patterns in HCM

and DCM patients and provides additional information beyond average native T1 values.

Introduction

Myocardial tissue characterization via tissue relaxometry has emerged as a powerful cardiovas-

cular magnetic resonance (cardiac MR) imaging tool to investigate myocardial tissue composi-

tion[1]. In the presence of interstitial fibrosis, native myocardial T1 time will change and can

be measured using T1 mapping sequences. T1 mapping has been used to distinguish between

healthy and diseased myocardium in a wide variety of cardiac diseases[2–5], showing elevated

native T1 values in patients with hypertrophic cardiomyopathy (HCM)[3,5] and dilated car-

diomyopathy (DCM)[6,7] including a strong correlation with extracellular collagen deposition

in the latter[6]. Furthermore, recent studies demonstrated the prognostic role of abnormal

native T1s in HCM and DCM patients[7–10]. Despite differences in global native T1 values

among cohorts with different cardiomyopathies, there is considerable overlap in global T1s

[2,4,11] although myocardial fibrosis patterns differ significantly. For example, although myo-

cardial fibrosis in DCM patients is predominantly diffuse[12] and in HCM patients more

regional and patchy[13,14], current T1 mapping techniques based on the mean T1 value[8,10]

do not capture these differences. Therefore, there is an unmet clinical need for novel imaging

biomarkers to better quantify differences in fibrosis patterns.

Cardiac MR images may contain information that is not being extracted by the current

standard image analysis workflow. For example, signal variation in cardiac MR images may

contain additional information reflecting underlying pathophysiology[12–14] that is not being

quantified. Radiomics[15] and texture image analysis have been recently applied to cardiac

MR images[16–20] to extract new quantitative features that may provide diagnostic informa-

tion. That is, radiomics quantitatively extract high-dimensional feature to differentiate images

beyond mean signal value such as signal heterogeneity[17]. This process is usually followed by

a selection of independent descriptors that best describe the features. Baessler et. al.[18] dem-

onstrates that texture analysis on non-contrast T1-weighted images can detect myocardial tis-

sue alterations in HCM patients with excellent accuracy at differentiating between normal and

HCM. Shao et. al.[19] also shows that texture analysis of native T1 maps can differentiate

between DCM and control subjects. Similarly, Neisius, et. al. demonstrates that texture analysis

can differentiate between HCM and hypertensive heart disease patients where a set of six tex-

ture features extracted from cardiac T1 maps can provide an accuracy of 80% in an indepen-

dent testing dataset using support vector machines classifier[16]. While these studies

demonstrate the potential of texture analysis to diagnose different cardiomyopathies, they do

not indicate whether texture analysis can be used as an alternative analysis approach to eluci-

date differences in tissue compositions.

In this study, we propose to characterize fibrosis patterns via texture analysis on native T1

mapping to establish disease-specific features that reflect phenotypic differences of interstitial

diffuse fibrosis among HCM, DCM, and control cohorts. We hypothesize that textural analysis

of native T1 maps can highlight differences in interstitial diffuse fibrosis patterns between

HCM and DCM regardless of their functional or morphological parameters.
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Materials and methods

Study population

We prospectively recruited 321 subjects (55±15 years, 70% male) between July 2014 and

March 2018 at Beth Israel Deaconess Medical Center and retrospectively performed radiomic

image analyses. The study participants consisted of consecutive patients referred for a clinical

cardiac MR exam with suspected or known cardiac disease and healthy volunteers (n = 21)

that both meet the criteria described below. The study was approved by the Beth Israel Dea-

coness Medical Center’s Institutional Review Board (Protocol Number: 2001P-000793). Writ-

ten consent was obtained. Patients were consented during their CMR scan appointment and

research subjects were additionally contacted via advertisement.

The inclusion criteria for the three patient groups were based on established diagnostic crite-

ria and cardiac MR measurements[21–25]. HCM was diagnosed by one of two ways: normal LV

cavity size with wall thickness�15 mm[21], or a wall thickness above the normal range (�12

mm for men and�11 mm for women[22]) in the presence of high clinical suspicion (i.e. gene

carrier and/or HCM family history + LV wall thickness�13 mm, etc.), both not explained by

loading conditions[21]. DCM was defined as an increase in LV volume (LV end-diastolic vol-

ume/body surface area>105 ml/m2 for men and>96 ml/m2 for women[23]) with coexisting

reduction in LV systolic function (LV ejection fraction<53%[25]), and absence of subendocar-

dial-based late gadolinium enhanced (LGE) patterns[24]. Control group subjects (n = 65) had

normal cardiac dimensions/volumes, normal cardiac function, and absence of late gadolinium

enhancement in common consisted of 21 healthy adult subjects free of cardiovascular disease/

intervention and 44 subjects referred for a clinical cardiac MR exam for suspected cardiovascular

disease. In the latter group, a review of medical records showed no diagnosis of cardiac disease.

Subjects were excluded from analyses secondary to an established diagnosis of amyloidosis,

iron deposition or Anderson-Fabry disease, evidence of inflammatory processes in the myo-

cardium or pericardium, and history of ST-segment elevation myocardial infarction. Part of

this dataset (~55%) was previously reported[4,5,16,26,27].

The dataset was randomly divided into two groups: training and testing subsets (237 and 84

subjects with a ratio of ~3:1, respectively). Feature selection and validation were performed on

the training dataset, while the testing dataset was used to assess the generalizability of the final

selected features for other subjects (Fig 1).

Image acquisition and pre-processing

Imaging was performed on a 1.5T Philips Achieva system (Philips Healthcare, Best, The Nether-

lands) with a 32-channel cardiac coil. In each subject, T1 maps were acquired at 5 slice locations

covering the LV from the base to apex using a free-breathing slice-interleaved T1 (STONE)

sequence with the following parameters: TR/TE = 2.7/1.37 ms, FOV = 360×351 mm2, acquisi-

tion matrix = 172×166, pixel-size = 2.1×2.1 mm2, linear ordering, SENSE factor = 1.5, slice

thickness = 8 mm, slice gap = 4 mm, bandwidth = 1845 Hz/pixel, diastolic imaging, and flip

angle = 70˚. The T1 map of each scan was estimated by pixel-wise curve fitting using a 2-param-

eter fit model. Motion correction was performed using the Adaptive Registration of Varying

Contrast-Weighted Images for Improved Tissue Characterization (ARCTIC) method[28].

Endocardial and epicardial contours were drawn manually on T1 maps of all patients by a single

observer (HE with 5 years of experience). To assess intra- and inter-observer variability, the con-

tours were re-drawn by the same observer and an additional observer (UN with 10 years of experi-

ence) on a subset of images (84 subjects of the testing dataset) within 6 months from the original

drawings. Both observers were blinded to the clinical information and patient data.

PLOS ONE Texture analysis of cardiac native T1 mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0233694 June 1, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0233694


PLOS ONE Texture analysis of cardiac native T1 mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0233694 June 1, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0233694


For texture feature extraction, the delineated myocardial T1 maps at each slice were trans-

formed to polar coordinates with a standardized rectangular shape of 32×192 pixels. To main-

tain the same orientation and starting point of all rectangular maps, a landmark point was

manually inserted by the user at the inferior insertion point between the left and right ventri-

cles. The myocardial pixels were resampled into a rectangular form in the clock-wise direction

using linear interpolation; such that the bottom left corner of each rectangular map matches

the inserted landmark point location on the myocardium. Five rectangular T1 maps at differ-

ent slice levels were stacked per patient to provide a single map representative of the whole

heart (Fig 2A).

A three dimensional (3D) phase-sensitive inversion-recovery (PSIR) sequence with spectral

fat saturation pre-pulses during the end-diastolic phase approximately 15 minutes after admin-

istration of 0.1 mmol/kg body weight gadobenate dimeglumine (Multihance, Bracco Diagnos-

tics Inc., Monroe Township, New Jersey, US) was used to obtain LV LGE images. For the

control group, visual inspection was used to exclude the presence of LGE. For the HCM

group, LGE was quantified using an automated LV contour and LGE area quantification algo-

rithm specifically developed for LGE quantification in HCM patients[29]. For the DCM

group, LGE was quantified using a five standard deviation approach and CVi42 (Circle Car-

diovascular Imaging Inc. Calgary, Canada). For all groups, the assessment was performed by

experienced (level 3 trained) reader and blinded to clinical and laboratory data. Accurate mea-

surements were assured by visual review of all contours and corrected when necessary.

Texture features extraction and selection

Four sets of texture descriptors were utilized to extract texture features from the rectangular

myocardial T1 maps. These descriptors capture spatially-dependent and independent pixel sta-

tistics, as well as locally-repeated patterns. Features include: histogram-based features, gray-

level run-length matrix (GLRLM)[30,31], gray-level co-occurrence matrix (GLCM)[32], and

local binary patterns (LBP)[33] sets of feature descriptors (Table 1). A total number of 152 fea-

tures were extracted. To reduce redundant information and irrelevant patterns, a feature selec-

tion strategy based on the sequential forward selection of the extracted features[34] was

employed. In this strategy, features that maximize the characterization of disease-patterns

among the different cohorts are iteratively included; where 10-fold cross-validation was uti-

lized to calculate the classification accuracy at each iteration. In this step, 7 features were

selected to be most representative of disease-specific patterns in the three cohorts.

Data analysis

Selected texture features were combined in one index, the Texture index (Tx), using the linear

regression equation: Tx = β0 + β1x1 + . . . βnxn; where x1,. . .xn represents the selected features,

and β0,. . .βn are regression coefficients calculated from the dataset. The texture index was used

to test the capacity of the quantified patterns to identify subjects in binary comparisons (i.e.

one-vs-one). The t-distributed stochastic neighbor embedding (t-SNE) method was employed

to visualize the ability of the quantified patterns to cluster each cohort on a 2D plane[35].

Four classifiers: linear support vector machine (SVM), radial basis function kernel SVM, k-

nearest neighbor (KNN), and ensemble decision trees[36], were utilized to perform multiclass
classifications[37] for the quantified patterns among the three cohorts using stratified 10-fold

Fig 1. Patient flowchart for the training and testing datasets. The feature selection process was performed only on the training dataset

to produce 7 selected features. The selected features were validated on the training datasets using a 10-fold cross-validation strategy on the

SVM classifier. In testing, the whole training dataset was used to train an SVM classifier to identify all subjects in the testing dataset.

https://doi.org/10.1371/journal.pone.0233694.g001
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cross-validation[38]. All feature vectors were normalized by the mean and variance before

training the classifiers. Receiver operating characteristic (ROC) curves were calculated to

assess the classification performance. Areas under the ROC curves were compared using the

DeLong method[39]. Normality of data distribution was determined using the Kolmogorov-

Smirnov test and visual inspection of the Q-Q plots. The two-sided Student’s t-test or the

Mann-Whitney U-test was conducted as appropriate for comparison of continuous variables

between groups. Analysis of variance or Kruskal-Wallis tests were used as appropriate for com-

parison of several groups. For comparison of categorical data, the Chi-squared test was

employed. Significance was declared at two-sided P-values <0.05. For pairwise comparisons

following a three-group inferential test that was significant, a Bonferroni correction was used.

Intra- and inter-observer reproducibility of the selected features was tested using intraclass

correlation coefficients (ICC) with a two-way mixed-effect model and Bland-Altman analyses.

Fig 2. Myocardial native T1 maps. (a) 5 slices, from base to apex, stacked in a rectangular shape to represent one control, one HCM, and one DCM patient, respectively.

Control T1 maps are characterized by a smooth homogeneous profile, while HCM T1 maps can be identified by patchy patterns in areas with increased wall thickness,

reflecting histological changes of the myocardium. DCM T1 maps are recognized by irregular scattered patches of increased T1 values. (b) Myocardial global native T1

values measured over 5 slices for the three cohorts: control (green), HCM (blue), and DCM (red) from the training dataset. Each dot represents data from an individual

subject with the corresponding mean and standard deviation for each cohort.

https://doi.org/10.1371/journal.pone.0233694.g002
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To test the generalizability of the quantified patterns at identifying subjects from T1 maps, the

same analyses were conducted on the testing dataset.

All described methods and statistical analyses in this work including motion correction,

image reshaping, texture feature extraction[40], and classifiers, were implemented on Matlab

(version 2014b, The MathWorks Inc., Natick, Massachusetts, United States). Patient character-

istics and standard cardiac MR parameters (listed in Table 2) were analyzed using SPSS (ver-

sion 18.0; International Business Machines Corp., Armonk, New York, USA).

Results

Global native T1 values varied significantly among the control, HCM, and DCM cohorts (1071

±32 vs. 1096±38 vs. 1123±38 ms, respectively; P<0.001); however, there was significant overlap

among T1 values of subjects from different cohorts (Fig 2B). The number of extracted pattern-

derived texture features was optimized to reduce overlap among cohorts since most features

were highly correlated. Feature selection reduced the original 152 extracted features to only 7

features: 4 LBP histogram features (at indices 8, 21, 26 and 36), 2 GLRLM features (RLN

(135˚), SRHGE(0˚)), and variance of the pixels’ histogram. Selected features were found to

capture significantly different patterns among cohorts (S1 Table). We visually compared the

selected texture features and global native T1 values of the myocardium in all patients, and

graphically represented the correlation strength between selected features (Fig 3A and 3B).

Box-and-whisker plots show the behavior of 6 selected features to capture specific patterns

from different cohorts; each feature either compresses or shifts the data range in one or more

cohorts for better identification of fibrosis patterns in each cohort (Fig 3C).

Combining selected features into one index (i.e. Texture index, Tx) significantly improved

differentiating fibrosis patterns in HCM and DCM subjects of the training and testing datasets

(Table 3), relative to pattern-independent global native T1 mapping values (P<0.001 for all

comparisons) (Fig 4A and 4B).

The performance of the texture analysis to identify fibrosis patterns in a multi-cohort compari-

son (i.e. one-vs-all) showed the following accuracy: 202/237 (85.23%), 196/237 (82.70%), 193/237

(81.43%), and 192/237 (81.01%) for linear SVM, radial basis function SVM, KNN, and the ensem-

ble tree using 10-fold cross-validation on the training dataset. Based on our preliminary study of

different classifiers, linear SVM was used to perform the rest of the comparisons. ROC curves of

the texture features showed significant improvement at differentiating fibrosis patterns between

cohorts in comparison to pattern-independent global and segmental native T1 values (P< 0.001

Table 1. Summary of the extracted and selected texture features.

Texture Feature Group All features Total #
features

Selected features

Histogram-based features Mean, variance, skewness, kurtosis, 5th to 10th high-order central moments 10 Variance

Grey-level run-length

matrix (GLRLM)

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Grey-Level Non-uniformity

(GLN), Run-Length Non-uniformity (RLN), Run Percentage (RP), Low Gray-Level

Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE), Short Run Low

Gray-Level Emphasis (SRLGE), Short Run High Gray-Level Emphasis (SRHGE),

Long Run Low Gray-Level Emphasis (LRLGE), and Long Run High Gray-Level

Emphasis (LRHGE) in 4 Directions

44 Grey-Level Non-uniformity, Short

Run High Gray-Level Emphasis

Grey-level co-occurrence

matrix (GLCM)

Angular Second Moment, Contrast, Homogeneity 2, Entropy, Correlation, Sum of

Squares; for 10 displacements in 4 direction

60 -

Local Binary Patterns

(LBP)

LBP Histogram features from 1 to 38. 38 LBP(8), LBP(36), LBP(26), LBP(21)

https://doi.org/10.1371/journal.pone.0233694.t001
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for all) on linear SVM (Fig 4 and Table 4). When only global native T1 was used, the classifier

failed to correctly classify the fibrosis pattern in HCM cases, instead of interpreting them as either

control or DCM due to extensive overlap in global T1 values between control-HCM and

HCM-DCM cohorts. Both sensitivity and specificity of the pattern-derived features were higher

than global and segmental T1 at correctly identifying subjects in all cohorts (Table 4).

There were no significant differences between training and testing datasets regarding

patient characteristics and relevant measurements with the exception of maximal wall thick-

ness (HCM, 19 [17; 23] vs. 16 [14; 21] mm, P = 0.001; DCM, 11 [9; 14] vs. 9 [8; 11] mm,

P<0.001). In the testing dataset, the pattern-derived features were generalizable to accurately

identify new subjects based on their T1 mapping patterns with high sensitivity and specificity

values (Fig 5 and Table 4). 2D t-SNE visualization showed the ability of the derived features to

separate patients from different cohorts into different clusters with minimal overlap (Fig 5C

and 5D). All selected features showed excellent intra- and inter-observer reproducibility

(Table 5), and narrow limits of agreement (S1 Fig) except with the exception of T1 variance

(ICC = 0.7)[41]. T1 variance, however, had the smallest contribution in identifying disease-

specific patterns among the selected features.

To investigate the effect of T1 map spatial resolution on the texture features, the same tex-

ture features were extracted from 2 simulated spatial resolutions; where the myocardium in

Table 2. Cohort characteristics and standard cardiac MR measures of function and anatomy.

Control (65) HCM (116) DCM (140) P-Value
Age, years 53±15 55±14 55±15 0.533

Gender, m (%) 36 (55) 87 (75) 104 (74) 0.105

Systolic Blood Pressure, mmHg 124±15 129±16 116±18†§ <0.001

Diastolic Blood pressure, mmHg 75±10 77±14 71±13ǁ 0.008

Heart Rate, beats/min 67±11 67±10 75±16‡§ <0.001

Height, m 1.7±0.13 1.72±0.11 1.72±0.15

New York Heart Association Function Status

II 0 12 14 -

III 0 3 7 -

Caucasian, n(%) 54(83) 70(78) 99(71) -

Hypertension, n(%) 25(38) 61(53) 50(36) -

Dyslipidemia, n(%) 34(52) 69(59) 30(21) -

Diabetes Mellitus, n(%) 3(5) 17(15) 24(17) -

LVMI, g/ m2 44 [36; 54] 71 [57; 90] ‡ 68 [55; 84] ‡ <0.001

LVM/LVEDV, g/ml 0.60 [0.52; 0.71] 0.96 [0.80; 1.23]‡ 0.52 [0.44; 0.71] ‡§ <0.001

Maximal Wall Thickness, mm 9 [8; 11] 19 [16; 22]‡ 10 [9; 13] †§ <0.001

LVEDV, ml 134 [110; 167] 146 [125; 168] 267 [220; 317] ‡§ <0.001

LVEF, % 62±5 65±7‡ 32±11‡§ <0.001

LGE, n(%) 0(0) 86(74) 62(44) -

LGE/LV mass ratio �, % 0.0±0.0 2.0±4.2† 5.8±5.5‡§ <0.001

Gobal Native T1 time, ms 1071±32 1096±38‡ 1123±38‡§ <0.001

LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVM, left ventricular mass; LVMI, left ventricular mass index.

�When gadolinium quantification was available (n = 78).

‡ P<0.001 when compared with control subgroup

† P<0.01 when compared with control subgroup

§ P<0.001 when compared with HCM subgroup

ǁ P<0.01 when compared with HCM subgroup

https://doi.org/10.1371/journal.pone.0233694.t002
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Fig 3. Texture features analysis. (a) Visual comparison of the 7 selected texture features and global native T1. Each row represents the feature value for an individual

patient. (b) Correlation analysis of the selected texture features. Smaller/lighter-shaded circles indicate lower correlation compared to larger/darker circles. Most of the

features have low correlation (i.e. hold independent information). (c) Box-and-whisker plots for the 6 most effective texture features that differentiate disease-specific

patterns among 3 cohorts.

https://doi.org/10.1371/journal.pone.0233694.g003
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each T1 map was resampled to a rectangular form with resolutions of (R16 = 16×96 and R64 =

64×384 pixels per slice) compared to the current resolution (R32 = 32×192). The selected tex-

ture features from the three resolution maps were able to identify subjects in HCM, DCM, and

controls cohorts with accuracy of 83.6%, 85.2% and 85.7% for R16, R32, and R64 resolutions,

respectively, with 10-fold cross-validation on the training dataset and 86.3%, 89.3% and 87.8%

in the testing dataset for R16, R32, and R64, respectively. Reducing the resolution slightly

decreased the differential capacity of the features, while increasing the resampled spatial reso-

lution to 64×384 achieved similar accuracy as the used resolution of 32×192 pixels.

Discussion

We demonstrate that texture analysis of myocardial native T1 maps can elucidate differences

in fibrosis patterns between HCM and DCM patients. We extracted several texture features

from native T1 maps and subsequently selected independent features that best describe the

fibrosis patterns of each cohort in the training dataset. Various classification models were then

constructed using the independent information within each feature to improve the differentia-

tion of fibrosis patterns between HCM and DCM.

Standardizing the myocardium in rectangular shape was necessary to allow stacking T1

maps from different slices, performing simultaneous feature extraction from multiple slices,

and extracting features that are less affected by myocardial geometry and morphology. How-

ever, myocardial reshaping could change the shape of the fibrosis pattern and hence affect the

capacity of the extracted features to identify different fibrosis patterns. To further investigate

this possibility, we conducted additional experiments using an alternative representation that

maintains the original myocardial shape for stacking different slices (S1 File). Application of

the same feature extraction and selection processes showed a similar capability to identify

fibrosis patterns in different cohorts as the reshaped myocardium. The consistent myocardial

reshaping maintains the relative differences among different fibrosis patterns and hence did

not affect the differential capacity of the features. In addition, correlation analysis showed a

low correlation between extracted texture features from the reshaped myocardium and wall

thickness (S1 File) indicating that no extracted texture feature from the reshaped myocardium

captures geometrical information induced by the reshaping process.

The size of the rectangular myocardium (32x192) was determined based on 6-segments per

slice with a segment size of 32x32 pixels. Although this resampling may introduce consistent

stretching in the radial direction, the relative differences of texture elements among different

cohorts are maintained and should not affect the discriminatory capacity of the extracted

features.

Four texture features from the LBP set demonstrated an excellent potential to capture fibro-

sis-specific patterns. LBP(8) captures DCM-specific patterns on T1 maps and its high values

significantly distinguish DCM from control and HCM subjects. Two LBP features at histogram

indices 36 and 21 capture the distinctive local patchy pattern of HCM and shows significantly

increased values in HCM subjects relative to control and DCM subjects. Lastly, the LBP(26)

Table 3. Texture index (Tx) values calculated using a linear regression model for binary comparisons (one-vs-one)

among 3 cohorts (control, HCM, and DCM) in training and testing datasets.

Features Control vs. HCM Control vs. DCM HCM vs. DCM
Training Dataset 2.99±2.87 vs. -5.55±4.03‡ 3.31±2.7 vs. -4.95±4.08‡ 2.9±2.15 vs. -4.42±3.1‡

Testing Dataset 2.38±2.51 vs. -6.23±4.27‡ 3.48±1.88 vs. -3.21±1.79‡ 3.26±1.78 vs. -2.89±2.05‡

‡ P<0.001 when compared with global native T1 values.

https://doi.org/10.1371/journal.pone.0233694.t003
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feature had significantly lower values for control T1 maps, mainly due to its homogeneous

intensity profile.

Furthermore, GLRLM features also captured independent information from native T1

maps. GLN(135˚) and SRHGE(45˚), in particular, added incremental value to identifying dif-

ferent cohorts. GLN(135˚) measures the non-uniformity of T1 maps and strongly correlated

with global native T1 values (ρ = 0.98, P < 0.001). Similarly, SRHGE(45˚) measured the joint

distribution between run length and the pixel value of native T1 maps. Despite using GLRLM

directional features, the same features calculated at different directions were highly correlated

and tended to measure the same pattern.

Similar to LGE scar pattern, texture information of native T1 mapping could provide differ-

ential diagnosis or prognostic information beyond mean T1 values. The current study was not

designed to assess the incremental value of texture analysis for the diagnosis of HCM and

DCM. A clinical model that includes baseline clinical characteristics, wall thickness, and LGE

pattern can already discriminate between DCM and HCM with high accuracy and it is unlikely

that the addition of texture information will provide additional diagnostic information. But

rather, we demonstrate that differences in diffuse fibrosis distribution and patterns between

the two cohorts reflect on T1 mapping images and quantifying these fibrosis patterns in form

of texture features can differentiate among patients from different cohorts regardless of their

functional or geometrical parameters. In addition, differences in interstitial fibrosis pattern

may provide additional prognostic information beyond global T1 values. For example, patients

with more heterogeneous scarring and interstitial fibrosis are more susceptible to ventricular

Fig 4. Performance of texture features at identifying fibrosis patterns. (a) Global myocardial native T1 values in patients from DCM (blue) and HCM (red)

cohorts in the training dataset. (b) The texture index (Tx) calculated by a linear combination of the 7 selected texture features using a regression model on the

training dataset. Each dot represents data from an individual subject. The corresponding mean and standard deviation for each cohort are shown as a line next to

its cohort. The texture feature index shows improved differentiation of fibrosis between HCM and DCM when compared to global native T1. ROC curves of multi-

cohort classification outcomes for (c) global native T1 and (d) selected texture features using 10-fold cross-validation on linear SVM in the training dataset.

https://doi.org/10.1371/journal.pone.0233694.g004

Table 4. Sensitivity and specificity of global native T1 value and pattern-derived texture features to identify subjects in the three cohorts (i.e. control, HCM, and

DCM) using multiclass linear SVM.

Features Control HCM DCM
Global Native T1 Accuracy (one-vs-all) 121/237 (51.1%)

Sensitivity 0.38 0.31 0.72

Specificity 0.90 0.70 0.62

AUC (95% CI) 0.78 (0.71–0.87) 0.51 (0.44–0.59) 0.74 (0.68–0.81)

Segmental Native T1 Accuracy (one-vs-all) 124/237 (52.3%)

Sensitivity 0.59 0.4 0.58

Specificity 0.81 0.73 0.73

AUC (95% CI) 0.8 (0.74–0.88) 0.62 (0.55–0.70) 0.74 (0.68–0.81)

Pattern-derived Texture Features

10-fold cross-validation on Training Dataset Accuracy (one-vs-all) 202/237 (85.2%)

Sensitivity 0.79 0.90 0.85

Specificity 0.95 0.90 0.92

AUC (95% CI) 0.93 (0.89–0.98) 0.93 (0.90–0.97) 0.93 (0.90–0.97)

Testing Dataset Accuracy (one-vs-all) 75/84 (89.3%)

Sensitivity 0.69 0.89 0.97

Specificity 0.97 0.90 0.96

AUC (95% CI) 0.96 (0.92–1.00) 0.93 (0.89–1.00) 0.97 (0.97–1.00)

https://doi.org/10.1371/journal.pone.0233694.t004
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Fig 5. The capacity of the pattern-derived texture features to identify subjects from different cohorts in the testing dataset. (a) the texture index (Tx) for patients in

HCM and DCM cohorts (i.e. calculated by combining the select features using a linear regression model). Each dot represents the Tx value for one patient. (b) ROC curves

for multi-cohort classification performance of selected features to identify subjects in control, HCM and DCM cohorts in the testing dataset by SVM. The t-SNE

visualization of the selected features for all cohorts in (c) the testing and (d) training dataset. Each dot represents pattern-derived features of one subject.

https://doi.org/10.1371/journal.pone.0233694.g005
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arrhythmia[4,42,43], which may be better quantified via texture analysis of T1 maps. Further

studies are warranted to investigate the prognostic value of texture analysis of T1 maps.

Our study has several limitations. All native T1 mappings were acquired at a single center

using a STONE sequence on a 1.5T Philips system. Other studies employing different T1 map-

ping sequences, vendors, and field strengths are warranted to assess generalizability. Our pop-

ulation was predominantly male and of Caucasian origin, however, based on consecutive

recruitment the cohort was representative for referrals to a tertiary CMR center of a region

with a predominantly white population. In HCM histological confirmation of the association

between diffuse fibrosis and increased native T1 time is required, whilst in DCM the latter is

well correlated with the extent of extracellular collagen accumulation[6]. Also, the fixed inter-

slice distance between acquired T1-maps leads to altered heart coverage given a disease cohort

with altered heart dimensions such as DCM, and its impact on radiomic tissue characteriza-

tion requires further investigation. Furthermore, our control subjects were partially selected

among those referred for a clinical cardiac MR with normal cardiac MR parameters. Further

studies should assess the prognostic value of new pattern-derived texture features.

Conclusion

Texture analysis can extract new reproducible imaging markers from myocardial T1 mapping

images that have the potential to identify different cardiomyopathies by characterizing dis-

ease-specific fibrosis patterns.
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