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Abstract

We previously showed that some adipogenic transcription factors such as CEBPB and

PPARG directly and indirectly regulate autophagy gene expression in adipogenesis. The

order and effect of these events are undetermined. In this study, we modeled the gene

expression, DNA-binding of transcriptional regulators, and histone modifications during adi-

pocyte differentiation and evaluated the effect of the regulators on gene expression in terms

of direction and magnitude. Then, we identified the overlap of the transcription factors and

co-factors binding sites and targets. Finally, we built a chromatin state model based on the

histone marks and studied their relation to the factors’ binding. Adipogenic factors differen-

tially regulated autophagy genes as part of the differentiation program. Co-regulators asso-

ciated with specific transcription factors and preceded them to the regulatory regions.

Transcription factors differed in the binding time and location, and their effect on expression

was either localized or long-lasting. Adipogenic factors disproportionately targeted genes

coding for autophagy-specific transcription factors. In sum, a hierarchical arrangement

between adipogenic transcription factors and co-factors drives the regulation of autophagy

during adipocyte differentiation.

Introduction

Previous studies suggested one-to-one interactions between adipogenic transcription factors

and autophagy. CEBPB transactivates Atg4b, a key protein in the autophagy machinery [1].

The activation of autophagy through this pathway relieves the repression of adipogenic activa-

tors such as PPARG. FOXO1, a transcription factor with several autophagy targets, was sug-

gested to the repress Pparg gene in the presence of insulin sensitizers [2]. This repression is

likely to be lifted in early adipogenesis.

A previous study from our laboratory showed that autophagy gene products are regulated

as part of the transcription program of adipogenesis [3]. This regulation is achieved through

adipogenic transcription factors PPARG and CEBPB either directly or indirectly through

autophagy specific factors. The magnitude and the ordering of this regulation remain to be

investigated. The key questions in this regard are when and where the binding of those two
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factors occurs on the target genes in respect to each other and to their co-factors. In addition,

does these regulatory links favor particular kinds of autophagy sub-functions and/or down

stream effectors.

Here, we used gene expression and DNA-binding data to model the transcription factor

and co-factors binding events during differentiation and their effect on autophagy genes. We

used histone modification data to correlate these events with chromatin states. A hierarchical

arrangement of known adipogenic transcription factors and co-factors emerged in the regula-

tion of autophagy during adipogenesis. We evaluated the spatial and temporal aspects of this

arrangement. These included the factors’ contributions to gene expression, the dependency

between regulators, the reliance on chromatin states, and the type of binding targets.

Materials and methods

Expression & binding data in differentiating adipocytes

We collected two datasets of RNA-seq and ChIP-seq of 3T3-L1 pre-adipocytes, which were

induced to differentiate using 3-isobutyl-1-methylxanthine, dexamethasone, and insulin

(MDI) and sampled at different time points [4]. We curated the samples’ metadata using a uni-

fied language across the studies and processed the raw data using standard pipelines. The pro-

cessed gene expression data were made available as a Bioconductor data package

(curatedAdipoRNA). The data are presented as gene counts at different time points (0 to 240

hr) (Table 1). The processed DNA-binding data of transcription factors, co-factors, and his-

tone modifications were made available as a similar package (curatedAdipoChIP). Data are

presented in this package as the reads count in a consensus peak set (Tables 2 & 3). Moreover,

we provided links to the identified peaks as well as the signal tracks files. The packages also

document the pre-processing and processing pipelines.

Expression data of genetically perturbed adipocytes

We obtained two gene expression datasets of Cebpb (RNA-seq) and Pparg-knockdown (micro-

arrays) from matching MDI-induced 3T3-L1 pre-adipocytes time-course experiments

Table 1. MDI-induced 3T3-L1 gene expression data by RNA-seq.

GEO ID N Time (hr) Ref.

GSE100056 2 24 [32]

GSE104508 3 192 [33]

GSE35724 3 192 [34]

GSE50612 4 0/144 [35]

GSE50934 6 0/168 [36]

GSE53244 3 0/48/240 [37]

GSE57415 4 0/4 [38]

GSE60745 12 0/24/48 [39]

GSE64757 6 168 [40]

GSE75639 3 0/48/168 [41]

GSE84410 5 0/4/48 [42]

GSE87113 5 0/2/4/48/168 [43]

GSE89621 3 240 [44]

GSE95029 8 0/48/144/192 [45]

GSE95533 10 4/0/24/48/168 [46]

GSE96764 6 0/2/4 [47]

https://doi.org/10.1371/journal.pone.0250865.t001
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(Table 4). The knockdown conditions were generated using shRNA or siRNA against Cebpb
or Pparg respectively, or against scrambled sequences as controls. Gene counts and probe

intensities were downloaded using GEOquery and used to quantify the gene expression from

RNA-seq and microarray data, respectively [5].

Mouse genome annotations

Mouse gene ontology (GO) terms of biological processes were used to identify the gene prod-

ucts relevant to autophagy and lipogenesis [6]. The Bioconductor package org.Mm.eg.db and

GO.db were used to access the GO annotations [7, 8]. The gene accessor IDs were mapped

between gene symbols and Entrez IDs using TxDb.Mmusculus.UCSC.mm10.knownGene [9].

The same package was used to extract gene coordinates in the mouse genome.

The terms “autophagy” (GO:0006914) and “lipid metabolic process” (GO:0006629) repre-

sented the genes involved in the process of autophagy and lipogenesis. “Negative”

(GO:0010507) and “positive regulation” (GO:0010508) terms represented the genes involved

in the regulation of autophagy. Autophagy was further broken down into selective forms

(GO:0061912) gene sets such as “aggrephagy”, “mitophagy” and “reticulophagy” or subtypes

such as chaprone-mediated, late-endosomal microautophagy. GO terms for molecular func-

tions were used to identify the functional categories of the transcription factors targets: “tran-

scription” (GO:0003700), “kinases” (GO:0050222) and “phosphatases” (GO:0016791).

Table 2. Transcription factors binding data.

SRA ID N Antibody Ref.

SRP000630 12 PPARG/ RXRG [48]

SRP002337 2 PPARG [49]

SRP002507 2 CEBPB [50]

SRP006001 9 CEBPB/ CEBPD/ RXRG/ PPARG [51]

SRP028367 3 PPARG/ MED1 [52]

SRP041249 3 RXRG/ MED1/ EP300 [53]

SRP100871 28 CTCF/ MED1/ NCOR1/ EP300 [46]

https://doi.org/10.1371/journal.pone.0250865.t002

Table 3. Histone modification data.

SRA ID N Antibody Ref.

SRP002337 11 H3K4me3/ H3K27me3/ H3K36me3/ H3K4me2/ H3K4me1/ H3K27ac [49]

SRP041249 6 H3K27ac/ H3K4me1/ H3K4me2 [53]

SRP064188 3 H3K27me3/ H3K9me3 [54]

SRP078506 6 H3K4me3 [42]

SRP100871 6 H3K27ac/ H3K4me1/ H3K4me2 [46]

https://doi.org/10.1371/journal.pone.0250865.t003

Table 4. Perturbed MDI-induced 3T3-L1 gene expression data by RNA-seq.

GEO ID N KD Ref.

GSE57415 8 Cebpb [38]

GSE12929 18 Pparg [55]

https://doi.org/10.1371/journal.pone.0250865.t004
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Differential gene expression

RNA-seq reads were aligned to the mm10 mouse genome and counted in known genes using

HISAT2, and featureCount [10, 11]. Gene counts were filtered, normalized, transformed, and

subjected to batch effects removal. Microarray probe intensities were filtered and collapsed to

corresponding known genes, normalized, and transformed. To identify gene expression

changes over time or in response to the knockdown of a gene, we applied differential gene

expression analysis using DESeq2, or LIMMA [12, 13]. Briefly, the gene counts or the probe

intensities were compared between conditions (#hr vs. 0 hr or knockdown vs. control). Fold-

change and p-value for every gene in each comparison were calculated. False-discovery rate

(FDR) was used to adjust for multiple testing.

Binding peaks analysis

ChIP-seq reads were aligned to the mm10 mouse genome using BOWTIE2 [14]. Binding

peaks were identified using MACS2 with the annotation file of the same genome [15]. Peaks

were annotated and assigned to the nearest gene using ChIPSeeker [16]. The numbers of bind-

ing sites and targets were calculated in each sample. When more than one sample was available

for a given ChIP antibody, only replicated binding sites or targets were included. The intersec-

tions of binding sites and targets among the samples were calculated and visualized using

ggupset.

Hidden Markov chain models

Multi-state hidden Markov chain models of transcription factors and histone modifications in

differentiating adipocytes were built using ChromHMM [17]. Briefly, aligned ChIP-seq reads

were binarized to 100/200 bp windows over the mm10 mouse genome. Multivariate hidden

Markov chains were used to model the factor/marker’s presence or absence in combinatorial

and spatial patterns (states). Emission and transition probabilities for the states were calculated

to express the probability of each factor/marker being in a given state and the probability of

the states transitioning to/from another at different time points. State enrichment over geno-

mic locations and around the transcription start sites was calculated. The R package segmentr

(under development) was used to call ChromHMM, read, and visualize the output.

Gene set enrichment and over-representation

To calculate GO terms’ enrichment scores at different times of differentiation, we ranked all

genes by fold-change, performed a walk of the gene set members over the ranked list, and com-

pared it to random walks. The enrichment score is the maximum distance between the gene

set and the random walk [18]. ChromHMM calculates the enrichment of states as (C/A)/(B/D)

where A is the number of bases in the state, B is the number of bases in external annotation, C

is the number of basses in the state, and the annotation and D is the number of bases in the

genome. clusterProfiler calculates the over-representation as the number of items in the query

and subject groups compared to the groups’ total number [19].

Software & reproducibility

The analysis was conducted in R language and environment for statistical computing and

graphics [20]. Several Bioconductor packages were used as data containers and analysis tools

[21]. The software environment was packaged as Docker image (https://hub.docker.com/r/

bcmslab/hierarchy). The code for reproducing the analysis and generating the figures and
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tables in this manuscript is released under GPL-3 open source licence (https://github.com/

BCMSLab/hierarchical_autophagy_regulation).

Results

Adipogenic factors regulate autophagy genes during differentiation

To examine the expression of autophagy genes during adipogenesis, we used a dataset of MDI-

induced 3T3-L1 pre-adipocytes sampled at different time points and profiled by RNA-Seq. In

addition, we used two datasets of a similar time-courses with Cebpb or Pparg perturbations.

We found that pre-adipocytes responded to MDI induction by changes in gene expression as

early as 4 hours and continued for days. The size of the response was reasonably stable during

the differentiation and was evenly split (25% at a false-discovery rate (FDR) < 0.2) between

genes regulated in either direction. The response was strong for adipogenesis and lipogenesis

genes. A larger fraction (30% at day 2 and 50% at day 7 at FDR< 0.2) of the genes involved in

these processes were progressively induced (up-regulated) up until day 7 of differentiation. We

compared this pattern to that of lipogenic genes.

The autophagy response to the MDI induction is bi-phasic with an inflection point around

day 2 (Fig 1A). The initial response involved the down-regulation of most autophagy genes

(> 40% at FDR< 0.2). This pattern was reversed in the latter days, where many more autop-

hagy genes were up-regulated (40% at day 7 at FDR< 0.2). At the gene set level, the products

in the gene ontology (GO) term “autophagy” were represented in the down-regulated set (nor-

malized enrichment score (NES) < -1.3) up to day 2 and in the up-regulated set (NES > 0.8)

from then onward (Fig 1B). By contrast, the gene products in the GO term “lipid metabolic

process” were always represented in the up-regulated (NES > 1.2) ranks in the list of genes.

Although the trend is clear, the score at 24 hours appears to be an anomaly (p-value > 0.05),

possibly because the differential expression at this time point is based on a small number of

samples.

Adipogenic transcription factors such as CEBPB and PPARG drive autophagy gene expres-

sion changes. The expression of the genes coding for those two transcription factors was

induced (log2 fold-change (FC) > 1.75 and 2.5 at day 2 at FDR< 0.01, respectively). The

knockdown of these factors in pre-adipocytes produced a wide dysregulation of autophagy

genes (Fig 1C). Pparg-knockdown resulted in the up-regulation of 5 to 30 (FDR < 0.2) autop-

hagy genes during the first 48 hours of MDI-induction. More than ten autophagy genes were

down-regulated (FDR< 0.2) by the factor knockdown in the later stages of differentiation.

Cebpb-knockdown, on the other hand, resulted in the down-regulation (25 to 15 genes at

FDR< 0.2) of autophagy genes in pre-adipocytes four hours after MDI induction. Overall,

PPARG explains more of the variance in autophagy gene expression (3.5%) than CEBPB (2%)

or co-factors (Fig 1D).

Selective and organelle-specific autophagy exhibit stage-dependent

activation

In agreement with the previous literature, we observed the induction of CEBPB and PPARG in

early and intermediate adipogenesis. However, we could identify binding sites for both factors

at all time points and in pre-adipocytes. The targets of CEBPB seem to be regulated for a brief

period of time that coincided with the induction of the Cebpb expression and doesn’t last for

long (Fig 2B). By contrast, PPARG binding induced its targets’ expression, and the induction

lasted till the end of the experiment (Fig 2A).
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To further explore the effect of the factor binding on autophagy, we calculated the enrich-

ment scores of several autophagy-related terms at different time points of differentiation (Fig

2C). The term “negative regulation of autophagy” was enriched in the down-regulated genes

in the first two days of differentiation. This was reversed after 48 hours. Besides, the positive

regulation term was later enriched in up-regulated genes. Organelle-specific autophagy terms

Fig 1. Expression of autophagy gene products during adipocyte differentiation. We curated a dataset of MDI-induced 3T3-L1

pre-adipocytes gene expression using RNA-seq publicly available data (Table 1). Read counts were used to quantify the expression of

autophagy (and lipogenesis) genes at different times points of differentiation. Gene expression was compared to pre-adipocytes (0

hr) to calculate fold-change and p-values. Genes were descendingly ranked by fold-change. A) Number of up-or down-regulated

genes in the non-modified course. B) Over-representation of the “autophagy” and “lipid metabolic process” term members in the

top or bottom ranks of the list. We obtained two datasets of genetically perturbed (shRNA/siRNA against scrambled sequences

(control) or Cepbp and Pparg) 3T3-L1 differentiation courses (Table 4). Gene expression was profiled using RNA-seq and

microarrays, respectively. Differential expression was used to calculate the difference in the read counts and probe intensities

between knockdown and controls at the corresponding time points. C) Number of up-or down-regulated genes with Pparg-or

Cepbp-perturbations. D) Fraction of the variance of autophagy genes explained by the expression of adipogenic regulators coding

genes.

https://doi.org/10.1371/journal.pone.0250865.g001

PLOS ONE Regulation of autophagy in adipogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0250865 January 26, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0250865.g001
https://doi.org/10.1371/journal.pone.0250865


were enriched at the same time point (48 hr). Terms in the autophagy subtypes that related to

the same organelles were also enriched in the up-regulated genes in late-adipogenesis.

Together, the biphasic response of autophagy to the MDI-induction was significant in terms of

the number of regulated genes and at the gene set level. In particular, selective and organelle-

specific forms of autophagy were activated in late-adipogenesis.

Co-regulators are recruited to ubiquitously bound autophagy gene regions

and redistribute over time

We further explored the combined binding of key adipogenic factors and co-factor at genome-

scale using a ten-states model of the chromatin at the early and later stages of differentiation.

During the early stages of differentiation (4 hours), regions of the chromatin fell into one of

two categories demarcated by binding patterns (S1A Fig). The first were either devoid of bind-

ing proteins (90%), insulated by CTCF (1%), or repressed by NCOR1 (1%) regardless of the

presence of other proteins. These areas were generally stable and mainly transitioned to other

Fig 2. Expression of adipogenic transcription factor targets and enrichment of autophagy terms during the course

of differentiation. Gene expression profiles of differentiating adipocytes were curated from previously published data

as described in Fig 1. We curated another dataset of publicly available ChIP-seq samples in MDI-induced 3T3-L1 at

different time points (Table 2). Read counts from the RNA-seq were used to estimate gene expression. Binding peaks

from the ChIP-seq were used to identify the transcription factors binding sites and targets. Differential expression

analysis was applied to quantify the change of autophagy gene expressions (fold-change) at different time points

compared to pre-adipocytes. The median fold-change of A) PPARG or B) CEBPB targets at the corresponding time

points (blue, low & red, high). C) Genes were ranked descendingly rank based on the fold-change. Enrichment of the

autophagy “regulation,” “selective,” and “subtypes” terms was calculated by quantifying the over-representation of

their members in the top or bottom ranks of the list (blue, negative & red, positive enrichment).

https://doi.org/10.1371/journal.pone.0250865.g002
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states of the same category. The active areas were ubiquitously bound to multiple proteins, co-

factors only, or a specific transcription factor with its known co-factor. CEBPB associated with

MED1 (emission probability (EP) = 0.56 and 0.46, respectively) and PPARG associated with

RXRG (EP = 0.86 and 0.85, respectively). These regions were likely to make the transition

either from similar binding patterns or from areas devoid of factor binding. In sum, regions

that are not open for binding remain so. The binding of transcription factors is sometimes

associated with insulators or repressors and is mostly accompanied by co-factors.

The same patterns of transcription factor and co-factor combinations in an eight-states

model emerged at the later stages of differentiation with notable additions (S1B Fig). Repressed

regions were more stable and less likely to transition to other states. Transcription factors

CEBPB and PPARG associated with more than a single co-factor. In the case of PPARG, the

complex of the transcription factors and co-factors (RXRG and MED1) made the transition

from the earlier (PPARG + MED1) or PPARG alone state. However, the CEBPB complex

made the transition to areas devoid of factors. Possibly, co-factors allow in, or themselves are

being recruited by transcription factors to regions with high binding affinities.

Significant changes in the states that pertain to insulation, repression, or the binding avail-

ability of the chromatin occurred in early adipogenesis. On both autophagy and lipogenic

genes, the frequency of the chromatin regions ubiquitously bound to regulatory proteins and

co-factors in particular increased (> 3 fold) (Fig 3A). This was also accompanied by reduced

binding to insulators and repressors (> 2 fold). However, in the longer course of differentia-

tion, the more pronounced changes in state frequency involved the combinations of short and

long-acting transcription factors and their association with specific co-factors (Fig 3B). Fewer

regions were available for the CEBPB/MED1 complex, and more were available for PPARG

either alone or in association with RXRG and MED1.

Co-factors preceded their factor on the shared targets

To examine the co-occurrence of the adipogenic transcription factors on autophagy, we ana-

lyzed the intersections of the features they bind to at different time points. PPARG targeted the

largest numbers of autophagy genes (Fig 4A). Those targets localized in the later time points.

By contrast, CEBPB had the largest number of targets in pre-adipocytes and early after induc-

tion with MDI. The downstream targets of PPARG overlapped with those of RXRG, while

CEBPB targets overlapped with MED1, especially in early time points. Moreover, co-factors

such as MED1 and RXRG accessed their targets independent of the time point. This is con-

firmed by calculating the fraction of overlap between the PPARG and CEBPB binding with

that of the co-factors (Fig 4B). Unlike CEBPB, the overlap between the targets of PPARG and

the co-factors increased over time.

Co-factors localize to and prime gene enhancers

We then constructed a multi-state chromatin model of histone modifications and examined

their co-occurrence with different individual factors and the combinations. Chromatin regions

fell into one of two general categories: active or repressed chromatin (S2A Fig). The combina-

tion of H3K27ac and H3K4me1 marks the enhancer regions (EP > 0.7 and 0.9), while the

combination of H3K27ac and H3K4me3 (EP > 0.8 and 0.9) marks the active promoters.

H3K36me3 marks regions with strong transcriptional activity. The enhancers were further

classified into active, weak, or genic depending on the distribution of the histone markers.

Active regions mainly transitioned within the same category of enhancers and genic enhancers

to robust transcription. The inactive chromatin was annotated by either H3K27me3

(Repressed polycomb), H3K9me3 (Repeats), or devoid of any markers (Heterochromatin).
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The only transition from inactive to active regions occurred between weak enhancers and

repeats.

Autophagy genes regulatory regions such as promoters and enhancers were enriched in dif-

ferent sets of binding sites (S2B Fig). The active promoter chromatin state was enriched in

Fig 3. Frequencies of transcriptional states of autophagy gene regions in differentiating adipocytes. Multivariate chromatin models were built using

binarized signal tracks of transcription factors, co-factors, and DNA-binding proteins in differentiating adipocytes as described in S1 Fig. Autophagy and

lipogenesis genomic regions were segmented and labeled by the corresponding states. Frequencies of selected states were calculated at each time point of

the A) early-stage (up to 48 hr) and B) full course (up to 10 days) of differentiation.

https://doi.org/10.1371/journal.pone.0250865.g003
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PPARG binding sites independent of the time point (Score = 37–55). These regions were

enriched in CEBPB binding sites to a lesser extent (score = 16). Active and genic enhancer

states were the most enriched in CEBPB binding sites (score = 18–30). Different enhancer

states were enriched in co-factors EP300, MED1, and RXRG binding sites (score = 5–30). The

enrichment of enhancers in these binding sites increased over time. These observations suggest

that the co-factors may not share the same sites but bind to other regulatory regions of the

same target. This might explain the discrepancies between the factor-co-factor overlap based

on binding sites vs. gene targets.

Adipogenic transcription factors regulate autophagy through other transcription factors

and kinases. PPARG targeted DNA-binding transcription factors, especially early on during

the differentiation course (Fig 5A). We first observed that PPARG target several genes labeled

as transcription factors and autophagy-related in the gene ontology terms. The effect was more

significant (ratio = 0.3 at FDR < 0.2) in the case of autophagy compared to lipogenesis.

CEBPB targeted a smaller number of these factors. Both factors targeted genes coding for pro-

tein kinases throughout the course of differentiation (Fig 5A). By contrast, the two factors, and

CEBPB in particular, increasingly targeted genes coding for protein phosphatases related to

lipogenesis. The expression of autophagy transcription factors and kinases coding genes was,

on average, induced during the differentiation course (Fig 5A). The knockdown of Pparg in

pre-adipocytes resulted in failed induction of this set of targets. This effect persisted for several

days after the beginning of differentiation. A similar effect was observed for the knockdown of

Cebpb at 4 hours.

Fig 4. Autophagy gene target of adipogenic regulators and their overlap at different time points. Transcription factors (PPARG and CEBPB) and co-factors

(RXRG, MED1, and EP300) binding peaks were identified from a curated dataset of publically available ChIP-seq samples of differentiating adipocytes. Binding peaks

at each time point were assigned to the nearest autophagy gene. A) The intersection between the targets of every regulator at different time points was calculated. The

intersecting sets are shown as connected dots and the sizes of the sets are shown as bars. B) The overlap between the targets of every regulator at different time points

was calculated. The fraction of the overlapping targets of the transcription factors and cofactors are shown as bars.

https://doi.org/10.1371/journal.pone.0250865.g004
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Discussion

In this study, we used gene expression and chromatin binding data to build models for gene

regulation and transcription factors sites/targets in differentiating adipocytes. We were able to

identify likely targets among autophagy and lipogenic genes and evaluate the effect of their

binding on expression. We also built multi-state models for the transcriptional regulators and

chromatin states to explore the interactions between transcription factors, co-factors, and his-

tone modifications. Fig 6 shows a graphical summary of the main findings in the study.

We found that autophagy genes are regulated as part of the transcriptional program of dif-

ferentiating adipocytes. Therefore, they might be regulated by the same adipogenic transcrip-

tion factors (Fig 1). We previously made a similar observation [3]. Studies suggested several

one-to-one links between those transcription factors. CEBPB induces the expression of Pparg
either directly or by removing its inhibitors through autophagy [1]. We previously showed

that adipogenic transcription factors CEBPB and PPARG regulate autophagy gene products

during adipogenesis, either directly or indirectly through other transcription factors. Here, we

further explore this regulation by examining the temporal and the spatial arrangement among

those two factors, co-factors, and histone modifications.

Autophagy is essential for adipocyte differentiation. The knockdown of crucial autophagy

genes such as Atg5/7 resulted in failed induction of pre-adipocytes or reduced adipose mass

Fig 5. Fractions and expression of autophagy and lipogenesis gene targets in different functions during adipogenesis. A) Publicly available PPARG or CEBPB

ChIP-seq data in differentiating adipocytes were used to identify autophagy (and lipogenesis) gene targets at every time point differentiation. Gene ontology was used

to identify the molecular functions of these targets. The numbers of transcription factor binding targets belonging to a given molecular function are shown as bars. B)

Curated datasets of RNA-seq and microarrays of MDI-induced adipocytes with genetic perturbations (PPARG or CEBPB knockdown, Table 4) or without (None,

Table 1) were used to estimate gene expression. Differential expression was used to identify the difference in gene abundance between the time points and pre-

adipocytes or between knockdown and control conditions. Fold-changes of the genes in each molecular function gene ontology terms in (None) perturbed course,

Pparg-or Cebpb-knockdown cells are shown as boxplots (25, 50, and 75% quantiles).

https://doi.org/10.1371/journal.pone.0250865.g005
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tissue in mice [22, 23]. We observed the down-regulation of many autophagy gene products in

the early days of adipogenesis (Fig 1). This is likely to impede many, but not all autophagy

functions. Autophagy plays a role in maintenance and energy production in growing early adi-

pocytes and possibly benefit the white adipocyte phenotype above others [24, 25]. In the later

stages of differentiation, cells undergo phenotype changes that require the removal and recy-

cling of intracellular components such as the mitochondria. Indeed, we observed the activation

of organelle-specific forms of autophagy after two days of adipocyte induction (Fig 2C).

Together, the observed bi-phasic response to MDI-induction suggests two distinct autophagy

functions in early and late-adipogenesis.

Although their expression increase in response to MDI, adipogenic factors have binding

sites in pre-adipocytes. CEBPB activates as early as 4 hours, and PPARG follows later during

the differentiation course [26]. The abundance of the factors during the differentiation might

explain this. The former is induced very early during adipogenesis, while PPARG levels do not

max out until later. Co-factors exist on their targets irrespective of time points (Fig 4A). They

might be able to access the majority of their targets at all times. The combination of factor-co-

factor increased overtime for PPARG (Fig 4B). This is either because the complex is binding to

more targets over time or because a combination of two proteins is necessary to induce the

same targets.

Factors and co-factors localized to different genomic regions, even on the shared targets. As

expected, transcription factors CEBPB and PPARG bind to the promoter regions the most.

These regions were increasingly modified by histone markers associated with active promot-

ers. PPARG could bind as a single factor suggesting a pioneering function [27]. In other

words, it can access DNA, and other factors might provide selectivity. Co-factors were abun-

dant in regions identified as promoters or enhancers (S1 Fig). This suggests that co-factors

Fig 6. A model for transcriptional and chromatin modification on autophagy genes. Co-factors (CO) precede

transcription factors (TF) to their shared targets. Co-regulators localize to enhancer regions marked by lysine

monomethylation (Me1) and acetylation (Ac). They prime the targets for transcription, where transcription factors bind to

the promoter regions marked by lysine tri-methylation (Me3) and acetylation (Ac). These events regulate the expression of

autophagy genes in a bi-phasic manner. Early during adipogenesis, several autophagy genes are down-regulated, and possibly

only basal autophagy is functional. Later, autophagy genes are up-regulated, and autophagy, organelle-specific autophagy, in

particular, is activated.

https://doi.org/10.1371/journal.pone.0250865.g006
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such as RXRG and MED1 are required to bind with the main factors but may perform other

roles. That could be a form of assisted loading or priming enhancer regions for transcription

factors binding [28].

Although RXRG was reported to function as a transcription factor, in many cases, it was

also reported to work in partnership with PPARG. We do not hold strong views on the distinc-

tion between the factors and co-factors. For the purposes of this study, we treat either by their

previously reported functional role. Since the study includes only a handful of regulators, sev-

eral others must be at work which probably plays a role in the DNA-binding. ChIP-seq data

can show that a particular protein is associated with a piece of DNA but doesn’t exclude other

proteins on the exact site or specific form of direct or indirect binding. Our observation was,

for many autophagy gene regions, co-factors appeared to associate the DNA earlier in time

than the transcription factor. Those were not necessarily the same binding regions, but regions

assigned to the same gene.

A breakdown of the types of binding targets for the two adipogenic factors revealed an

interesting pattern. PPARG targeted genes coding for other transcription factors with down-

stream autophagy targets (Fig 5A). This was also evident in the case of lipogenic genes.

CEBPB, on the other hand, was mostly bound to genes involved in other activities such as

kinases and proteases. In addition to the larger number of targets, the high number of tran-

scription factors of PPARG suggests a broader effect on regulating autophagy genes. The more

downstream transcription factor genes, the larger the effect of the factor. Indeed, knocking

down Pparg resulted in a broader range of dysregulation (Fig 5B).

Studies suggested that a specific arrangement of transcriptional regulators is required for

successful reprogramming of differentiating neurons or neutrophils [29, 30]. Understanding

the role of these regulators enables managing the differentiation process and the function of

differentiated cells. By manipulating certain factors, it would be possible to fine control the

course of cell development. For example, inhibiting mitophagy in pre-adipocytes maintained

the beige adipocyte phenotype, rather than the white, and resulted in cells with greater thermo-

genic capabilities [25]. Reversing the differentiation of adipocytes would also be possible either

by targeting the regulators directly or the specific autophagy function they regulate [31].

Finally, mature adipocytes specialize in storing lipids, a function which lipophagy could mod-

ify. These observations are only valid insofar as the phenotypes reflect the underlying gene

expression. We used the gene set enrichment and over-representation analysis to quantify the

changes at the gene set level, which is more likely to correspond to biological functions than

claims based on changes in individual genes.

Our analysis was limited to the time points for which data was available. For example, we

observed that CEBPB effectively targeted and affected the expression of autophagy genes as

early as 4 hours. No data before 4 hours were available. Therefore, we do not know whether this

effect can be observed earlier. Our analysis doesn’t rule out the involvement of other transcrip-

tion factors in regulating autophagy genes. We observed significant binding and gene expres-

sion changes during adipogenesis that seem to be correlated with those two factors. In addition,

the two factors and their co-factors explain a significant portion of the variance over time.

The curated datasets comprise data from previously published studies. This noise may

result in masking key findings or exaggerating the effect size of others. We carefully curated

and processed the data to reduce batch effects resulting from the variations among the studies.

In the case of ChIP-seq data, we only used replicated peaks when more than one sample was

available. The integration of more than two data types (RNA-Seq and ChIP-seq) necessitate

careful matching of the biological, genetic metadata to make sure the samples correspond to

parallel conditions and the information on the expression and the binding matches that corre-

sponding entities. Pparg-knockdown microarray data had missing information on multiple
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genes that did not have corresponding probes. Finally, in the factor perturbation data during

the differentiation course, it was difficult to disentangle the time from the perturbation effect.

The findings presented in this manuscript were based on publicly available data of differen-

tiating adipocytes with or without perturbation. We used quantitative methods such as differ-

ential expression, gene set enrichment and chromatin segmentation to support the

observations presented in the manuscript. Some of the findings were based a correlation

between two or more observations. Those were not always possible to verify using the available

data and so remain to be experimentally tested.

Supporting information

S1 Fig. Transcriptional regulators multi-state model in early and full differentiation

courses. We curated a dataset of publicly available transcription factors, co-factors, and DNA-

binding proteins ChIP-seq samples in MDI-induced 3T3-L1 at different time points (Table 2).

Binarized binding signals were used to indicate the presence or absence of regulators at 100 bp

windows of the chromatin. A multi-variate model of combinations of regulators was built to

summarize A) ten states in the early (up to 48 hr) stage or B) eight states in the full course (up

to 10 days) of differentiation. Emission, the probability of each marker being at a given state.

Transition, the transitional probability of a given state from/to another. white, low, and black,

high probability.

(PNG)

S2 Fig. Histone modifications multi-state model and overlap with adipogenic regulators.

We curated a dataset of publicly available histone modification ChIP-seq samples in MDI-

induced 3T3-L1 at different time points (Table 3). Binarized binding signals were used to indi-

cate the presence or absence of histone markers at 200 bp windows of the chromatin. A multi-

variate model of combinations of markers was built to summarize nine states during the

course of differentiation. A) Emission, the probability of each marker being at a given state.

Transition, the transitional probability of a given state from/to another. white, low, and black,

high probability. B) Binding peaks of adipogenic regulators were used to identify gene targets

at different time points of adipocyte differentiation from publicly available ChIP-seq sample.

The fractions of overlap between the regulators’ binding sites and the chromatin states are

shown as color values (white, low, and black, high).

(PNG)
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